15 Grundlagen der Idealtheorie

Größe: px
Ab Seite anzeigen:

Download "15 Grundlagen der Idealtheorie"

Transkript

1 15 Grundlagen der Idealtheorie Definition und Lemma Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is i. Wir definieren S) := {alle R-Linearkombination von S} = { n i=1 λ is i n N 0, λ i R, s i S} Wir definieren ferner ) := {0}. S) ist ein Ideal in R, genannt das von S erzeugte Ideal. Falls S = {a 1,..., a n }, so schreibt man kurz a 1,..., a n ) statt {a 1,..., a n }). Insbesondere gilt für 1-elementiges S = {a}: S) = a) = Ra, das von a erzeugte Hauptideal. Ist I R ein Ideal, dann wird jede Teilmenge S R mit S) = I ein Erzeugendensystem von I genannt. Ein Ring R heißt Hauptidealring HIR) falls gilt: i) R ist Integritätsbereich, und ii) Jedes Ideal in R ist ein Hauptideal. Bemerkung ) Sei I R ein Ideal. Dann gilt I = I). Wir sind oft daran interessiert, Erzeugendensysteme mit möglichst wenigen Elementen zu finden. 2) = S, T R. Dann gilt: S) T ) S T ). Insbesondere also: S) = T ) S T ) und T S). 3) Für x, y R gilt: u R mit x = uy = x) = y). Die Umkehrung gilt, falls R ein Integritätsbereich ist. Beispiel. 1) Die Ideale in Z sind genau die nz = n), n N 0. Also ist Z ein HIR. 2) Wir zeigen später: K Körper = K[X] ist HIR. 3) Wir wissen Übung): 2, X) Z[X] ist kein Hauptideal. Also ist Z[X] zwar ein Integritätsbereich aber kein HIR. 4) In Z[X]: 2, X) = 2, X + 2X 2 ) = 6, 4 + X, 2X) =.... 1

2 Lemma Sei R ein Ring, I 1,..., I n Ideale in R. Dann sind I 1 + I I n = n i=1 I i = { n i=1 a i a i I i } I 1 I 2... I n = n i=1 I i I 1 I 2 I n = n i=1 I i = { m i=1 a i1 a in m N 0, a ij I j } Ideale in R, und es gilt: n n I i I i i=1 i=1 n I i. i=1 Bemerkung. Für a 1,..., a n R gilt: a 1 ) a n ) = a 1,..., a n ) und a 1 ) a n ) = n i=1 a i). Satz und Definition Sei R ein Ring, I R ein Ideal. a) Folgende Aussagen sind äquivalent: i) I R und a, b R gilt: ab I = a I oder b I; ii) R/I ist ein Integritätsbereich. Falls I eine und damit beide) der obigen Bedingungen erfüllt, so nennt man I ein Primideal in R oder sagt: I ist prim in R). b) Folgende Aussagen sind äquivalent: i) I R und falls J R ein Ideal ist mit I J, so ist J = I oder J = R. ii) R/I ist ein Körper. Falls I eine und damit beide) der obigen Bedingungen erfüllt, so nennt man I ein maximales Ideal in R. Korollar Sei R ein Ring, I R ein Ideal. Dann gilt: I ist maximal = I ist prim. Beispiel. In Z: die Ideale sind genau die n) = nz mit n N 0. Indem man untersucht, wann Z/nZ ein Integritätsbereich bzw. Körper ist, sieht man leicht: n) ist prim n = 0 oder n ist Primzahl; n) ist maximal n ist Primzahl. 2

3 Beispiel. Betrachte ev 0 : Z[X] Z : a 0 + a 1 X +... a 0. Man hat: ev 0 ist surjektiv mit Kern X). Also Z[X]/X) = Z. Da Z Integritätsbereich aber kein Körper ist, so ist X) prim aber nicht maximal. Sei π 2 : Z Z/2Z : a a mod 2 und sei ϕ := π 2 ev 0 : Z[X] Z/2Z : a 0 + a 1 X +... a 0 mod 2. Man hat: ϕ ist surjektiv mit Kern 2, X). Also Z[X]/2, X) = Z/2Z. Da Z/2Z Körper ist, so ist 2, X) maximal. Ähnlich zeigt man: p, X) ist maximal für jede Primzahl p. Man hat also eine aufsteigende Kette von Primidealen das letzte in der Kette sogar maximal): 0) X) p, X). Korollar Seien R, S Ringe, f : R S ein Ringhomomorphismus, I S ein Ideal. Dann gilt: 1) I prim in S = f 1 I) prim in R; 2) I maximal in S und f surjektiv = f 1 I) maximal in R. Satz Sei R ein Ring, I R ein Ideal. Dann existiert ein maximales Ideal M in R mit I M R. Dies beweisen wir nicht in der Vorlesung. Der Beweis benötigt einen Satz aus der axiomatischen Mengenlehre genannt Zorns Lemma. Bemerkung. In Situationen, in denen R explizit gegeben ist und ebenfalls ein Ideal I R explizit gegeben ist, ist es oft nicht leicht, ein maximales Ideal M zu finden, welches I enthält. Man weiß aber, dass es existiert. Definition Sei R ein Ring, I, J R Ideale. I und J heißen relativ prim oder koprim, oder prim zueinander), falls I + J = R, d.h. also falls a I, b J : a + b = 1. Lemma Sei R ein Ring, I, J R relativ prime Ideale. Dann gilt IJ = I J. Beispiel. In Z: nz = n) und mz = m) n, m N) sind prim zueinander ggtn, m) = 1. Lemma Seien R, S Ringe. i) R S zusammen mit der Addition a, b) + a, b ) := a + a, b + b ) und der Multiplikation a, b)a, b ) := aa, bb ) zu einem Ring mit 0 R S = 0 R, 0 S ), 1 R S = 1 R, 1 S ), und es gilt R S = R S. 3

4 ii) R = S als Ringe) = R = S als multiplikative Gruppen). Satz Chinesischer Restsatz). Sei R ein Ring und seien I 1,..., I n R Ideale, die paarweise relativ prim sind also I i + I j = R falls i j). Dann ist die Abbildung R/I 1 I n R/I 1... R/I n a mod I 1 I n a mod I 1,..., a mod I n ) ein wohldefinierter) Ringisomorphismus. Insbesondere also R/I 1 I n = R/I1... R/I n. Beispiel. Die Ideale 4) = 4Z, 3) = 3Z, 25) = 25Z in Z sind paarweise relativ prim und es gilt 4)3)25) = 300) = 300Z nach dem Chinesischen Restsatz gilt Z/300Z = Z/4Z Z/3Z Z/25Z. Der Satz sagt präziser aus, dass zu allen a, b, c Z ein d Z existiert mit d a mod 4, d b mod 3, d c mod 25, und dass dieses d modulo 300 eindeutig bestimmt ist. Der Beweis des Satzes gibt auch einen Weg vor, dieses d zu bestimmen. Man finde z.b.) zunächst ein d Z mit d a mod 4, d b mod 3. Dieses ist modulo 12 eindeutig bestimmt. Dann finde man d Z mit d d mod 12 und d c mod 25. Dieses d liefert den gewünschten Wert. Hier eine Beispielrechnung für a = 1, b = 2, c = 3: Bestimmung von d : Schreibe 1 = u + v mit u 4Z, v 3Z. Z.B. u = 4, v = 3. Setze nun d := av+bu = 1 3)+2 4 = 5. Man sieht: 5 1 mod 4, 5 2 mod 3. Bestimmung von d: Schreibe 1 = x + y mit x 12Z, y 25Z. Z.B. x = 24, y = 25. Setze nun d = d y + cx = ) = 53. Man sieht: 53 5 mod 12 und 53 3 mod 25, insgesamt also 53 1 mod 4, 53 2 mod 3, 53 3 mod 25. Korollar Seien n, m N, ggtm, n) = 1. Dann gilt C mn = Cm C n. Dies folgt natürlich auch aus dem Hauptsatz über die Struktur endlicher abelscher Gruppen siehe auch das Beispiel am Ende von 12), oder auch mittels Aufgabe 2.4c). Korollar Mit den Voraussetzungen aus dem Chinesischen Restsatz 15.11: R/I1 I n = R/I1... R/In. 4

5 Beispiel. Z/300Z = Z/4Z Z/3Z Z/25Z. Man rechnet leicht nach, dass die rechten Faktoren alle zyklisch sind: Z/4Z = 3 mod 4 = C 2 Z/3Z = 2 mod 3 = C 2 Z/25Z = 2 mod 25 = C 20 = C4 C 5 Damit: Z/300Z = C2 C 2 C 4 C 5. Definition Die Eulersche ϕ-funktion ist definiert als ϕ : N N mit ϕn) := {a N 1 a n, ggta, n) = 1} = Z/nZ. Satz Sei ϕ : N N die Eulersche ϕ-funktion. i) Sei p eine Primzahl, n N. Dann gilt: ϕp n ) = p n p n 1 = p n 1 p 1). ii) Falls m, n N mit ggtm, n) = 1, so gilt ϕmn) = ϕm)ϕn). 5

14 Ideale und Ringhomomorphismen

14 Ideale und Ringhomomorphismen 14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein

Mehr

14 Ideale und Ringhomomorphismen

14 Ideale und Ringhomomorphismen 14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen 20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)

Mehr

3.1 Homomorphismen, Ideale und Faktorringe

3.1 Homomorphismen, Ideale und Faktorringe Algebra I c Rudolf Scharlau, 2002 2012 123 3.1 Homomorphismen, Ideale und Faktorringe Aus dem Einleitungskapitel 1.5 sind uns folgende Begriffe bereits bekannt: Ring, kommutativer Ring mit Eins, Teilring

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

5 Noethersche Ringe und Moduln, Algebren und Ganzheit

5 Noethersche Ringe und Moduln, Algebren und Ganzheit 5 Noethersche Ringe und Moduln, Algebren und Ganzheit Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen

Mehr

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i 2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls

Mehr

Man schreibt auch a b statt a + ( b). Beispiel A = {0,1,2,3} als abelsche Gruppe

Man schreibt auch a b statt a + ( b). Beispiel A = {0,1,2,3} als abelsche Gruppe 9 Wichtige Sätze und Definitionen zu 3: Gruppen, Ringe und Körper aus der Vorlesung: LV-NR 150 239 Veranstaltung Diskrete Mathematik II, 4.0 std Dozent Holtkamp, R. 3.1 a) (A, ) sei Monoid mit neutralem

Mehr

Algebra WS 2008/ Übungsblatt

Algebra WS 2008/ Übungsblatt Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m)

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m) 290 7.1 Ringe und Ideale Erinnern wir uns zunächst an die Definition von Ringen, es sind Mengen R mit zwei Verknüpfungen + und, so daß (R, +) eine abelsche Gruppe, (R, ) eine Halbgruppe ist, und die beiden

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

5 Noethersche Ringe und Moduln

5 Noethersche Ringe und Moduln 5 Noethersche Ringe und Moduln Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen sind äquivalent: (i) A

Mehr

Zahlentheorie. Vorlesung 2. Ideale

Zahlentheorie. Vorlesung 2. Ideale Prof. Dr. H. Brenner Osnabrück WS 016/017 Zahlentheorie Vorlesung Ideale Alle Vielfachen der 5, also Z5, bilden ein Ideal im Sinne der folgenden Definition. Definition.1. Eine nichtleere Teilmenge a eines

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 22 In dieser und der nächsten Vorlesung beweisen wir zwei Versionen zur eindeutigen Primfaktorzerlegung in Zahlbereichen, die beide Abschwächungen

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Einführung in die Algebra Blatt 1 Abgabe

Einführung in die Algebra Blatt 1 Abgabe Blatt 1 Abgabe 2.5.2017 Begründen Sie, dass die folgende Menge mit der dazugehörigen Multiplikation eine Halbgruppe bildet. Entscheiden Sie, welche der Halbgruppen eine Gruppe ist. (i) G = Z 1 versehen

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 80 Andreas Gathmann 11. Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als ein Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

1 Herangehensweise an eine Aufgabe

1 Herangehensweise an eine Aufgabe Im Folgenden seien sofern nicht anders angegeben G eine Gruppe, R, S Ringe, I, J Ideale, K, L Körper, p Z eine Primzahl und m Z. 1 Herangehensweise an eine Aufgabe Soll man einen gewissen Sachverhalt A

Mehr

14 Kreisteilungskörper

14 Kreisteilungskörper 14 Kreisteilungskörper Wir wenden unsere Ergebnisse auf einen Fall an, mit dem die Algebraische Zahlentheorie begann und der bis heute im Zentrum der Forschung steht. 14.1 Erweiterungen mit Einheitswurzeln

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Übungsblatt 2: Ringe und Körper

Übungsblatt 2: Ringe und Körper Übungsblatt 2: Ringe und Körper 1. RINGE 1.1. Zeigen Sie, dass die Menge R n n der n n-matrizen über einem Ring R mit den üblichen Operationen einen Ring bildet. Lösungshinweise: Man kopiert die Beweise

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 14 Restklassenbildung Nach Satz 13.6 ist der Kern eines Ringhomomorphismus ein Ideal. Man kann umgekehrt zu jedem Ideal I R in

Mehr

Kap. II Ringe und Körper

Kap. II Ringe und Körper Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen

Mehr

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel II. Moduln 1 Moduln Sei R ein Ring (stets kommutativ und mit 1). 1.1 Definition. 1. Ein R-(links-)Modul ist

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Algorithmische Zahlentheorie

Algorithmische Zahlentheorie Algorithmische Zahlentheorie ICPC-Proseminar-Vortrag vom 22. Mai 2010 Tomáš Přerovský Abschnitt 1: Grundlagen. Ringe Unter einem Ring R versteht man eine Menge zusammen mit zwei Operationen + (Addition)

Mehr

Chinesischer Restsatz für Ringe

Chinesischer Restsatz für Ringe Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den 1. Übungsblatt für den 11. 3. 2010 1. Es seien a, b Z. Beweisen Sie: a) a b T (a) T (b) b) Für jedes k Z gilt: T (a) T (b) = T (a) T (b + ka) c) Für jedes k Z gilt: ggt(a, b) = ggt(a, b + ka). 2. Für n

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

2.8 Endliche Varietäten

2.8 Endliche Varietäten Universität Konstanz Algorithmische Algebraische Geometrie Fachbereich Mathematik und Statistik Wintersemester 2015/2016 Markus Schweighofer 2.8 Endliche Varietäten In diesem Abschnitt sei stets C K eine

Mehr

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz:

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz: Modulare Arithmetik Wir rechnen mit den sogenannten Restklassen: Es sei n 2 N, n 1. Betrachte für k 2 Z die Menge k + nz: k + nz = {...,k 2n, k n, k, k + n, k + 2n, k + 3n,...} Beachte: (k + nz) \ (` +

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Algebraische Kurven. Vorlesung 10. Noethersche Moduln

Algebraische Kurven. Vorlesung 10. Noethersche Moduln Prof. Dr. H. Brenner Osnabrück SS 202 Algebraische Kurven Vorlesung 0 Noethersche Moduln Wir wollen zeigen, das für einen noetherschen Ring R und einen endlich erzeugten R-Modul jeder R-Untermodul wieder

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ 1 2 3 4 5 Σ Aufgabe 1 (i) X Menge, Äquivalenzrelation auf X, x, y X x y [x] = [y] [x] [y], X ist disjunkte Vereinigung aller Äquivalenzklassen (Letzte Aussage) Paarweise verschiedene Äquivalenzklassen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Serie 3: Gruppen, Ringe und Körper

Serie 3: Gruppen, Ringe und Körper D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 3: Gruppen, Ringe und Körper 1. Im Folgenden sei n N und Z/nZ bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 Nun kommen wir zur Teilbarkeitstheorie in Integritätsbereichen. Es wird ganz elementar in dem Sinne, dass wir wieder mehr von Elementen als von

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

2 Gruppen, Ringe, Körper, Algebren

2 Gruppen, Ringe, Körper, Algebren 2 Gruppen, Ringe, Körper, Algebren 2.1 Gruppen Definition 2.1. Sei G eine Menge, 1 G G, sowie : G G G eine Abbildung (statt (g,h) schreiben wir meistens g h und nennen eine binäre Verknüpfung). Wir nennen

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Elemente der Mathematik - Sommer 2017

Elemente der Mathematik - Sommer 2017 Elemente der Mathematik - Sommer 2017 Prof. Dr. Peter Koepke, Thomas Poguntke Lösung 1 Aufgabe 54 (4+2 Punkte). In der Vorlesung wurde die Multiplikation auf den ganzen Zahlen definiert durch (a, b) (a,

Mehr

PROSEMINAR LINEARE ALGEBRA

PROSEMINAR LINEARE ALGEBRA PROSEMINAR LINEARE ALGEBRA von Daniel Cagara Zunächst benötigen wir einige Elemente der Gruppentheorie. Definition 1. Eine Gruppe ist ein Tupel, bestehend aus einer nicht leeren Menge G und einer Verknüpfung,

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

3-1 Elementare Zahlentheorie

3-1 Elementare Zahlentheorie 3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 16 Polynomringe Definition 16.1. Der Polynomring über einem kommutativen Ring R besteht aus allen Polynomen P = a 0 +a 1 X +a

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100)

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) #1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) Name, Vorname: Matrikelnr.: Übungsgruppe: Hinweis: Es ist Ihnen erlaubt, Ergebnisse aus vorherigen Aufgaben dieser Klausur in den nachfolgenden Aufgaben

Mehr

UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF

UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF UNTERLAGEN ZUR CHARAKTERISIERUNG ENDLICH ERZEUGTER ABELSCHER GRUPPEN ENTWURF VORLESUNG ALGEBRA, SOMMERSEMESTER 2004 1. Die Charakterisierung endlich erzeugter abelscher Gruppen Satz 1.1 ([Pilz, 1984, Satz

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Zahlentheorie. Arbeitsblatt 23. Übungsaufgaben. 1 p νr

Zahlentheorie. Arbeitsblatt 23. Übungsaufgaben. 1 p νr Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Zahlentheorie Arbeitsblatt 23 Übungsaufgaben Aufgabe 23.1. Bestimme den Hauptdivisor zu 840 in Z. Aufgabe 23.2. Bestimme den Hauptdivisor zu 840 in Z[i]. Aufgabe

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Multiplikative Idealtheorie

Multiplikative Idealtheorie Universität Regensburg Fakultät für Mathematik Wintersemester 2016/2017 Seminar zum Thema: Gröbnerbasen und Regularität Multiplikative Idealtheorie vorgelegt von: Selina Strathmeyer Seminarleitung Prof.

Mehr