2. Der Gleichstromkreis

Größe: px
Ab Seite anzeigen:

Download "2. Der Gleichstromkreis"

Transkript

1 L.Kerbl, HTL Abteilung Lernbehelf für AET,.JG Letzte Änderung:..999; 5:00 D.. Lothar KEBL, Donaustadtstr 45, 0 WEN. Der Gleichstromkreis. Der Widerstand lineare Widerstände Messwerttabelle, Grafik (Widerstandskennlinie) nichtlineare Widerstände (Glühlampe, Diode) Der elektrische Leitwert. Abhängigkeiten des Widerstandswertes.. Der spezifische Widerstand und der spezifische Leitwert Der Widerstand ändert sich mit der Form des Widerstandskörpers: ρ * L Länge des Widerstandskörpers in m A Querschnittfläche des Widerstandskörpers in mm² ρ spezifischer Widerstand des Materials in Ohm*mm²/m Oft wird anstelle des spezifischen Widerstandes der spezifische Leitwert angegeben. Es gilt: σ/ρ l A σ spezifischer Leitwertn in Sm/mm².. Die Temperaturabhängigkeit des elektrischen Widerstandes Mit Veränderung der Temperatur ändert sich der elektrische Widerstand. Es gilt: ( T) 0 * ( α 0 ( T 0 C)) (T) Widerstand bei der Temperatur T (in C) 0 Widerstand bei Bezugstemperatur (0 C) α0 Temperaturkoeffizient; Dimension : /K (Kelvin) :0 Seite (0)

2 L.Kerbl, HTL Abteilung für Cu: α0,9*0 - K Für genauere Betrachtungen müsste ein zusätzlicher quadratischer Term berücksichtigt werden... Thermistoren, Varistoren, LD, MD Verschiedene Materialien zeigen abhängig von verschiedenen physikalischen Größen Änderung in ihren Widerstandswerten. So gibt es Lichtabhängige Widerstände (LD light depedent resistors) Magnetfeldabhängige Widerstände (MD) Widerstände mit einem Wert abhängig von der magnetischen Feldstärke. Leistung am Widerstand U* > 0 Elektrische Energie wird aufgenommen U* < 0 Elektrische Energie wird abgegeben m Widerstand erfolgt eine Umwandlung von elektrischer Energie in thermische Energie Andere Energieformen: Mechanische Energie, Thermische Energie, Licht,....4 Schaltung mehrerer Verbraucher.4. Gesamtwiderstand von Parallel- und Serienschaltung Serienschaltung: Kurzschreibweise : Zur Berechnung des Gesamtwiderstandswertes sind die einzelnen Widerstandswerte zu addieren... n n einer Serienschaltung ist der Gesamtwiderstand immer größer als der größte Einzelwiderstand Wichtige Sonderfälle von Serienschaltungen 0 * :0 Seite (0)

3 L.Kerbl, HTL Abteilung Parallelschaltung: Kurzschreibweise: G G G... Einfach zu berechnen ist der Gesamtleitwert G n Da meist mit Widerstandswerten gerechnet wird, muss der Zusammenhang zwischen Widersatndswert und Leitwert berücksichtigt werden. (Kehrwert!) n einer Parallelschaltung ist der Gesamtwiderstand immer kleiner als der kleinste Widerstand. Bei Paralleschaltung von zwei Verbrauchern kann mit folgender Formel gerechnet werden: (Es entfällt der Umweg über die Berechnung der Leitwerte) * Wichtige Sonderfälle von Parallelschaltungen 0 0 /.4. Spannungsteilerregel n Serie liegende Widerstände werden von demselben Strom durchflossen.... n Die an den einzelnen Widerständen auftretende Spannungen stehen in demselben Verhältnis zueinander wie die Widerstandswerte. Diese egel lässt sich zur Berechnung einer unbekannten Spannung folgendermaßen anschreiben: ( Berechnen der anliegenden Spannung mit der Spannungsteilerregel ) U * U U U... U n :0 Seite (0)

4 L.Kerbl, HTL Abteilung G... G G G n n.4. Stromteilerregel Parallel liegende Widerstände liegen an derselben Spannung. Die durch die einzelnen Zweige fließenden Ströme stehen in demselben Verhältnis zueinander wie die G * G Leitwerte der Zweige. Diese egel lässt sich zur Berechnung eines unbekannten Teilstromes folgendermaßen anschreiben: ( Berechnen eines Teilstromes mit der Stromteilerregel hier für ) Für zwei parallele Zweige gilt der folgende wichtige Sonderfall (Verwendung von Widerstandswerten): * * Es geht immer der gegenüberliegende Widerstand in die Berechnung einbezogen..4.4 Die Knotenregel (Erstes Kirchoffsches Gesetz) An keiner Stelle der Schaltung entstehen oder versickern elektrische Ströme, daher kann das erste Kirchhoff sche Gesetz folgendermaßen formuliert werden: Die Summe der zufließenden Ströme ist gleich der Summe der abfließenden Ströme U U U U n n Die Summe aller Ströme in einem Knoten ist gleich Null Zufließende Ströme und abfließende Ströme müssen durch verschiedene Vorzeichen unterschieden werden :0 Seite 4 (0)

5 L.Kerbl, HTL Abteilung Sollten die Werte der Ströme negativ sein, so muss das zusätzlich beim Einsetzen der Werte für... 5 berücksichtigt werden. Merke: Strom- und Spannungspfeile müssen vor dem Aufstellen der Gleichungen festgelegt werden und dürfen während der Berechnungen nicht mehr verändert werden. Auch dann nicht, wenn die Ergebnisse negativ werden! Anmerkung: Der Begriff Knoten kann durch den Begriff Bereich ersetzt werden. Über das nnenleben (die nnenschaltung) eines derartigen Bereiches muss nichts Genaueres bekannt sein. Auch in einem solchen Bereich können keine Ströme entstehen oder versickern, und deshalb gelten die beiden angeführten Sätze sinngemäß für alle Ströme, die die Hülle dieses Gebietes passieren Beispiel: Computer mit Bildschirm: Obwohl sehr viele verschiedene Ströme innerhalb des Computers fließen, werden die Ströme durch die Anschlussleitungen entgegenetzt und gleich groß sein..4.5 Die Maschenregel (Zweites Kirchhoffsches Gesetz) Entlang eines chlossenen We innerhalb einer Schaltung ist die Summe aller Spannungen Null. Welchen Umlaufsinn (im oder entegen dem Uhrzeiger) man wählt ist gleichgültig, es ist nur zu beachten, dass alle gleich gerichteten Spannungen positiv, die dem Weg entegengerichteten negativ gezählt werden. U U U U4 0 Sollten die Werte der Spannungen negativ sein, so muss das zusätzlich beim Einsetzen der Werte für U... U5 berücksichtigt werden. Vgl. Hinweis zur Festlegung der Pfeile VO Beginn der echnung im vorigen Kapitel!.4.6 Stern Dreieck Transformation Eine besondere Form, in der Widerstände nicht ohne weiterers zu Parallel oder Serienschaltungen umgeformt werden können, sind Schaltungen in Stern oder Dreieckform. Wenn man voraussetzt, dass die Anschlusspunkte nach außen gleich wirksam sein sollen, dann kann man einen Stern in ein Dreieck und umgekehrt umformen: Man setzt an : ()... Daraus lassen sich die Werte,, berechnen Stern aus Dreieck: :0 Seite 5 (0)

6 L.Kerbl, HTL Abteilung ; Dreieck aus Stern:.5 Strom und Spannungsquellen.5. deale Strom und Spannungsquellen Anstelle von Verbrauchern treten in Netzwerken auch Spannungs und Stromquellen als Zweipole auf. Bei einer Spannungsquelle ist die Spannung zwischen ihren Klemmen definiert, der Strom stellt sich ein. Bei einer Stromquelle ist der fließende Strom definiert, die Spannung zwischen den Klemmen stellt sich ein. Bei idealen Spannungs- und Stromquellen besteht also KEN Zusammenhang zwischen anliegender Spannung und fließendem Strom. (Vergleiche : an Widerständen besteht dieser Zusammenhang über das Ohmsche Gesetz) Beispiele zur Berechnung von Netzwerken mit Strom und Spannungsquellen..5. eale Strom und Spannungsquellen reale Spannungsquellen Würde man an eine ideale Spannungsquelle einen Widerstand mit 0 Ohm anschließen, so würde ein unendlich großer Strom fließen. Außerdem würde aus der Quelle unendlich viel Leistung entnommen werden :0 Seite 6 (0)

7 L.Kerbl, HTL Abteilung Jede Spannungsquelle zeigt eine Veränderung der Klemmenspannung bei Stromentnahme. ( reale Stromquelle ) Das Verhalten entspricht der Serienschaltung einer idelane Spannungsquelle mit einem Widerstand. Man kennzeichnet eine Quelle durch Leerlaufspannung und Kurzschlussstrom bzw. durch ihren nnenwiderstand nnenwiderstand einer Spannungsquelle: Wie stark ändert sich die Spannung, wenn an den Klemmen der Quelle Strom entnommen wird. reale Stromquellen Würde man an eine ideale Stromquelle leerlaufen lassen, so würde eine unendlich hohe Spannung zwischen ihren Klemmen auftreten. Außerdem würde aus der Quelle unendlich viel Leistung entnommen werden. Jede Stromquelle zeigt eine Veränderung des Stromes bei Anlegen einer Spannung. ( reale Stromquelle ) Das Verhalten entspricht der Parallelschaltung einer idealen Stromquelle mit einem Widerstand. Wie ändert sich der Strom, wenn zwischen den Klemmen der Quelle eine Spannung angelegt wird.5. Leistung, Energie, Wirkungsgrad und Leistungsanpassung Leistung (P), Energie (W) Es gilt: W P * t Energie kann nicht erzeugt oder vernichtet werden, sie kann nur von einer Form in eine andere umgewandelt werden. Beispiel: An einem Widerstand mit 00 Ohm wird über 6 Sekunden hinweg eine Spannung von 00V angelegt. Welche Leistung und welche Energiemengen werden dabei umetzt? Solange die Spannung anliegt wird eine elektrische Leistung von 00Watt von elektrischer in thermische Leistung umetzt. Während sechs Sekunden wird dabei eine elektrische Energie(menge) von 00 Ws in eine gleich große thermische Energie umetzt. Das EVU verrechnet neben der Grundgebühr - die tatsächlich verbrauchte elektrische Leistung Wirkungsgrad: Am ohmschen Widerstand wird erfolgt eine Umwandlung von elektrischer in thermische Energie mit einem Wirkungsgrad von 00% (vollständig) Wirkungsgrad: :0 Seite 7 (0)

8 L.Kerbl, HTL Abteilung η(%) P P ABGEGEBEN ZUGEFÜHT *00% Solarzelle: Umwandlung von zugeführter Lichtenleistung in el. Lesitung % Batterie: Umwandlung von peicherter chemischer Energie in el. Leistung Akkumulator: Umwandlung von el. Leistung in chemische Leistung (beim Laden) diese zugeführte Leistung ist als chemische Energie peichert; Umwandlung der peicherten chem. Energie in el. Leistung (beim Entladen) Atomkraft: Umwandlung von Atomenergie in thermische Leistung und diese wird in kinetische Leistung umgewandelt. (Turbine). Der Generator wandelt die kinetische Leistung in el. Leistung um Leistungsanpassung: Wie kann aus einer realen elektrischen Spannungs- oder Stromquelle die größtmögliche Leistung entnommen werden? Übung (EXCEL) U0 Eingabefeld Eingabefeld L Ohm (Eingabevektor) Pab Ergebnisvektor Pquelle Ergebnisvektor Eta Ergebnisvektor Aus einer realen Quelle ist der Maximalwert der Leistung zu entnehmen, wenn der Lastwiderstand gleich dem nnenwiderstand ist (Leistungsanpassung). Das gilt sowohl für Spannungs- als auch für Stromquellen..6 Methoden zur Berechnung elektrischer Netzwerke.6. Spannungen und Potentiale Spannung ist die Potentialdifferenz zwischen zwei Punkten in einer elektrischen Schaltung. (in V) Die Festlegung eines Bezugspotentials ist willkürlich möglich, somit kann jedem Punkt ein Potential zugeordnet werden. (Vergleiche Höhenangaben über dem Meer oder über der Stadt) Neben Strömen in Leitern oder Zweipolen und den Spannungen zwischen einzelnen Knoten können in einer Schaltung den Knoten Potentiale zugeordnet werden. (ϕ...v) Zuvor ist allerdings die Festlegung eines Punktes mit Bezugspotential (ϕ0v) notwendig (Symbol!) :0 Seite 8 (0)

9 L.Kerbl, HTL Abteilung Ohne Angabe eines Bezugspotential für die Schaltung ist die Angabe von Potentialen nicht sinnvoll. Das Potential eines Punktes der Schaltung ist die Spannung zwischen diesem Punkt und dem Bezugspotential der Schaltung. Die Spannung zwischen zwei Punkten der Schaltung ergibt sich durch die Differenz der Potentiale dieser Punkte. Die Lage des Bezugspotentiales ist für die Ermittlung der Spannung zwischen zwei Punkten ohne Bedeutung. Beispiel: Zeichne in einer Schaltung Potentiale und Spannungen ein. Ermittle aus einer Schaltung mit angegebenen Spannungswerten die Potentiale der Knoten Ermittle aus einer Schaltung mit angegebenen Potentialen die Spannungen zwischen verschiedenen Punkten Hinweis: Bei vielen Messgeräten ist die Messung von Spannungen zwischen beliebigen Punkten der Schaltung nicht möglich. n diesem Fall muss die uchte Spannung nach der Formel U AB ϕ ϕ A B Ermittelt werden..6. Systematische Aufstellung von Gleichungssystemen Lineare Gleichungssysteme können gelöst werden, wenn genau soviele Unbekannte vorhanden sind, wie Gleichungen zur Verfügung stehen. Bei der Aufstellung der Gleichungen sind die Strom und Spannungswerte (bzw. Potentialwerte) die Unbekannten, deren Zusammenwirken durch Ohmsches Gesetz und Kirchhoff sche egeln beschrieben wird. So entsteht ein Gleichungssystem, das lösbar ist, wenn mindestens genau so viele Gleichungen gefunden werden, wie unbekannte Größen vorhanden sind. Vergleiche: Lösen von Gleichungssystemen mit zwei oder mehr Unbekannten.6. Überlagerungsprinzip (Helmholtz) Prinzip: n Schaltungen, in denen mehr als eine Spannungs und/oder Stromquelle wirksam ist, werden Teilberechnungen durchgeführt, sodass immer nur eine Spannungs- bzw. Stromquelle aktiv ist. Die deaktivierten Quellen werden durch Kurzschlüsse (Spannungsquellen) bzw. Leerläufe (Stromquellen) ersetzt. Am Ende werden uchte Ströme bzw. Spannungen durch einfaches Addieren der Teilergebnisse ermittelt. Wichtig: Die Bezugspfeile in der Schaltung müssen für alle Teilberechnungen gleich sein, die Ergebnisse sind immer vorzeichenrichtig zu verwenden. Übung: Brückenschaltung (zwei reale Spannungsquellen) Transistorverstärker (reale Strom und Spannungsquelle) Gegentaktendstufe (zwei reale Spannungs- und zwei reale Stromquellen) :0 Seite 9 (0)

10 L.Kerbl, HTL Abteilung *.6.4 Methode der Kreisströme Man kann die Ströme auch zu Kreisen zusammenfassen. n manchen Zweigen können die Ströme mehrerer Kreise gemeinsam fließen und sich dementsprechend verstärken oder abschwächen :0 Seite 0 (0)

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 11: Strom- und Spannungsteilung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Auf der Basis der Kirchhoffschen Gesetze wurden Methoden zur Zusammenfassung

Mehr

Stand: 4. März 2009 Seite 1-1

Stand: 4. März 2009 Seite 1-1 Thema Bereiche Seite Ladung Berechnung - Spannung allgemeine Definition - Berechnung - Definition über Potential - Stromstäre Berechnung über Ladung - Stromdichte Berechnung - Widerstand Berechnung allgemein

Mehr

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige

Mehr

Schaltung von Messgeräten

Schaltung von Messgeräten Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #18 am 25.05.2007 Vladimir Dyakonov Schaltung von Messgeräten Wie schließt man ein Strom- bzw.

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

Kirchhoffsche Gesetze Anwendung der Kirchhoffschen Gesetze zur Berechnung der Spannungen und Ströme in elektrischen Netzwerken Beispiel:

Kirchhoffsche Gesetze Anwendung der Kirchhoffschen Gesetze zur Berechnung der Spannungen und Ströme in elektrischen Netzwerken Beispiel: Kirchhoffsche esetze Es gibt zwei Kirchhoffsche esetze in elektrischen Netzwerken:. Maschenregel: die Summe der Spannungsgewinne entlang eines geschlossenen Weges ist gleich Null. Spannungsgewinne und

Mehr

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6 Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

3 Lineare elektrische Gleichstromkreise

3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise 7 3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise Lineare elektrische Stromkreise bestehen aus auelementen mit einer linearen

Mehr

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung: Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-

Mehr

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse . Netzwerke II 4. Maschenstromanalyse 5. Knotenpotentialanalyse 4. Netzwerkberechnungsverfahren Das Maschenstromanalyse Paul, Elektrotechnik 2, Seite 68 ff. Unbehauen, Grundlagen der Elektrotechnik 1,

Mehr

Netzwerkberechnung. (mittels des Ohm schen Gesetzes und der beiden Kirchhoff schen Gesetze) GRUNDLAGEN der ELEKTROTECHNIK I

Netzwerkberechnung. (mittels des Ohm schen Gesetzes und der beiden Kirchhoff schen Gesetze) GRUNDLAGEN der ELEKTROTECHNIK I GRNLAGEN der ELEKTROTECHNK Netzwerkberechnung (mittels des Ohm schen Gesetzes und der beiden Kirchhoff schen Gesetze) Vereinfachtes Schema zum Aufstellen der unabhängigen Gleichungen: 1) Parallel- oder

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

I. Bezeichnungen und Begriffe

I. Bezeichnungen und Begriffe UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik 1 Dr. W. Bodenberger 1. Einige Bezeichnungen und Begriffe I. Bezeichnungen und Begriffe Spannung: Bezeichnung: u Signalspannung U Versorgungsspannung

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz

Mehr

Grundlagen der Elektrotechnik I (W8800) Seite 4.1 Lösungen zu Übungsaufgaben

Grundlagen der Elektrotechnik I (W8800) Seite 4.1 Lösungen zu Übungsaufgaben Grundlagen der Elektrotechnik I (W8800) Seite 4.1 4. Aufgabe Im dargestellten Netzwerk gibt es k = 4 Knoten (K1-K4), also k - 1 = 3 unabhängige Knotenpunktgleichungen. Weiterhin gibt es z = 7 Zweige. (Die

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen

Mehr

Elektrolytischer Trog

Elektrolytischer Trog Elektrolytischer Trog Theorie Er dient zur experimentellen Ermittlung von Potentialverteilungen. Durchführung Die Flüssigkeit im Trog soll ein Dielektrikum sein. (kein Elektrolyt) Als Spannungsquelle dient

Mehr

Gleichstromtechnik. Vorlesung 10: Zusammenschaltung von Zweipolen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 10: Zusammenschaltung von Zweipolen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 10: Zusammenschaltung von Zweipolen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Zusammenschaltung von Widerständen Um die Übersichtlichkeit von Schaltkreisen

Mehr

Lineare Quellen. Martin Schlup. 7. Februar 2014

Lineare Quellen. Martin Schlup. 7. Februar 2014 Lineare Quellen Martin Schlup 7. Februar 204. Ideale Quellen Ideale Quellen sind Modelle mit Eigenschaften, die in Wirklichkeit nur näherungsweise realisiert werden können. Ideale Quellen sind z. B. in

Mehr

Gleichstromtechnik. Vorlesung 8: Knoten- und Maschenregel. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 8: Knoten- und Maschenregel. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 8: Knoten- und Maschenregel Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Maschen- und Knotenregel Begriff des Zweipols In technischen Aufgabenstellungen

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Elektrodynamik I Elektrische Schaltkreise

Elektrodynamik I Elektrische Schaltkreise Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen

Mehr

Gleichstromtechnik. Vorlesung 15: Verbindung von Zweipolen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 15: Verbindung von Zweipolen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 15: Fakultät für Elektro- und nformationstechnik, Manfred Strohrmann Grundidee Betrieb eines passiven Zweipols an einer linearen Quelle über verlustfreie Leitungen Spannungen

Mehr

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb HS EL / Fachb. Technik / Studiengang Medientechnik 13.04.14 Seite 2-1 2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb 2.1 Quellen 2.1.1 Grundlagen, Modelle, Schaltsymbole Eine elektrische Spannungsquelle

Mehr

Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" Physikalische Grundbegriffe... 1

Gliederung des Vorlesungsskriptes zu Grundlagen der Elektrotechnik I Physikalische Grundbegriffe... 1 - Grundlagen der Elektrotechnik I - I 23.05.02 Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" 1 Physikalische Grundbegriffe... 1 1.1 Aufbau der Materie, positive und negative Ladungen...

Mehr

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle Grundlagen der Elektrotechnik GET 2-387- 9. Netzwerksätze Einführende Bemerkung Der Überlagerungssatz Satz von der Ersatzspannungsquelle Satz von der Ersatzstromquelle [Buch GET 2: Seiten 323-343] Einführende

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Zusammenfassung v09 vom 28. Mai 2013

Zusammenfassung v09 vom 28. Mai 2013 Zusammenfassung v09 vom 28. Mai 2013 Ohm sche Widerstände sind durch die Befolgung des Ohm schen Gesetzes charakterisiert. Dies beinhaltet in (idealisierten Fällen) die Linearität zwischen Strom und Spannung,

Mehr

Lineare elektrische Netze

Lineare elektrische Netze Lineare elektrische Netze Energiegewinn &-verlust Energiegewinn, Erzeugung Energieverlust, Verbrauch ds E ds E, U I U I F= m g d s F= m g U I Drei Beispiele aus der Mechanik und aus der Elektrotechnik

Mehr

Aufgabe 1 - Knotenspannungsanalyse

Aufgabe 1 - Knotenspannungsanalyse KLAUSUR Grundlagen der Elektrotechnik 02.03.2011 Prof. Ronald Tetzlaff Dauer: 150 min. Aufgabe 1 2 3 4 5 Σ Punkte 11 7 10 11 11 50 Aufgabe 1 - Knotenspannungsanalyse Gegeben ist das Netzwerk mit den folgenden

Mehr

Grundlagen der Elektrotechnik Teil 2

Grundlagen der Elektrotechnik Teil 2 Grundlagen der Elektrotechnik Teil 2 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger Gleichstromkreise 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski Elisabeth Seibold Nathalie Tassotti Tobias Krieger ALLGEMEIN Ein Gleichstromkreis zeichnet sich dadurch aus,

Mehr

1 Die Brückenschaltung mit komplexen Widerständen

1 Die Brückenschaltung mit komplexen Widerständen Elektrotechnik - Brückenschaltung 1 Die Brückenschaltung mit komplexen Widerständen 1.1 Aufbau der Brückenschaltung mit Belastung Z2 Z4 1.2 Lösung bei abgeglichener Brückenschaltung Wenn die Brücke abgeglichen

Mehr

Die Parallelschaltung elektrischer Widerstände

Die Parallelschaltung elektrischer Widerstände Kapitel 5 Die Parallelschaltung elektrischer Widerstände Wie verteilt sich eigentlich der elektrische Strom an einem Knoten? Wodurch wird festgelegt, durch welche Teile einer verzweigten Schaltung viel

Mehr

Fragenausarbeitung TPHY TKSB, WS 2001/2002

Fragenausarbeitung TPHY TKSB, WS 2001/2002 Fragenausarbeitung TPHY TKSB, WS 2001/2002 1. Blatt, Kapitel Gleichstrom! siehe Ausarbeitungen...... 17 19, sowie 22 39 Johannes Helminger... 17 26 Matthias Tischlinger... 17-23 sowie 15 Manfred Jakolitsch

Mehr

2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche Regeln

2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche Regeln 2.. ENFACHE SCHALTUNGEN,KCHHOFF 03 2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche egeln Netzwerke aus Widerständen (aber auch anderen Bauelementen) können sehr gut mittels den Kirchhoffschen

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Z 1 Z 2 a Z 3 Z 1 Z 2 + Z 3. îq1 =0 = Z 3

Z 1 Z 2 a Z 3 Z 1 Z 2 + Z 3. îq1 =0 = Z 3 Übung 3 /Grundgebiete der Elektrotechnik 3 (WS17/18) Netzwerkanalyseverfahren Teil 1 Dr Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe 1

Mehr

Grundlagenwissen Elektrotechnik

Grundlagenwissen Elektrotechnik Marlene Marinescu I Jürgen Winter Grundlagenwissen Elektrotechnik Gleich-, Wechsel- und Drehstrom 3., bearbeitete und erweiterte Auflage Mit 281 Abbildungen und ausführlichen Beispielen STUDIUM 11 VIEWEG+

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Ekkehard Batzies www.hs-furtwangen.de/ batzies 28. März 2008 Unser Beispiel: mit 4 Knoten. R 0,1 := Widerstand zwischen Knoten 0 und Knoten

Mehr

Ein- und Ausschaltvorgang am Kondensator ******

Ein- und Ausschaltvorgang am Kondensator ****** 6.2.3 ****** Motivation Bei diesem Versuch werden Ein- und Ausschaltvorgänge an RC-Schaltkreisen am PC vorgeführt. 2 Experiment Abbildung : Versuchsaufbau zum Eine variable Kapazität (C = (0 bis 82) nf)

Mehr

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27 Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...

Mehr

Kapitel. Eins zurück, zwei vor: die ersten Schritte

Kapitel. Eins zurück, zwei vor: die ersten Schritte Kapitel 1 Eins zurück, zwei vor: die ersten Schritte ASIMO ist ein dem Menschen nachempfundener Roboter, der sich auf zwei Beinen fortbewegen kann. Er vereint alle Inhalte der Elektrotechnik und Elektronik

Mehr

1.2 Stromkreis Stromquelle Batterie

1.2 Stromkreis Stromquelle Batterie 1.2 Stromkreis 1 + + + Stromquelle Batterie + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Pluspol: Positiv geladene Atome warten sehnsüchtig auf Elektronen. Minuspol:

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Gleichstromtechnik. Vorlesung 13: Superpositionsprinzip. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 13: Superpositionsprinzip. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 13: Superpositionsprinzip Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Einige Schaltungen weisen mehr als eine Quelle auf, Beispiel Ersatzschaltbild

Mehr

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit!

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit! 11 Elektrodynamik Der elektrische Gleichstromkreis 11.1 Strom Schliesst man eine Spannungsquelle (z.b. Batterie), eine Lampe und zwei Kabel (leitfähiges Material) richtig zusammen, so beginnt die Lampe

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze)

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) 1/6 Lernziele Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) Sie kennen die Kirchhoff'schen Gesetze und können den Maschen- sowie den Knotensatz in ihrer Bedeutung als Bilanzgesetze erläutern. Sie können

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

R 1 = 10 Ω, R 2 = 20 Ω, R 3 = 30 Ω, U ges = 6 V. I ges = I 1 = I 2 = I 3 =... = I n. U ges = 6 V U 2 U 1 = 1 V U 2 = 2 V U 3 = 3 V

R 1 = 10 Ω, R 2 = 20 Ω, R 3 = 30 Ω, U ges = 6 V. I ges = I 1 = I 2 = I 3 =... = I n. U ges = 6 V U 2 U 1 = 1 V U 2 = 2 V U 3 = 3 V Grundschaltungen - KOMPKT. eihenschaltung elektrischer Widerstände usgang Eingang ; usgang Eingang... ntersuchung des Stromverhaltens: 0 Ω, 0 Ω, 0 Ω, 6 00 m 00 m 00 m 00 m n der eihenschaltung ist die

Mehr

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr. Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

IPMG-GET-V1. Interdisziplinäres Praktikum Mathe/GET. GET-Vorbereitungsunterlagen für den Versuch 1 / EME 13

IPMG-GET-V1. Interdisziplinäres Praktikum Mathe/GET. GET-Vorbereitungsunterlagen für den Versuch 1 / EME 13 IPMG-GET-V1 Interdisziplinäres Praktikum Mathe/GET GET-Vorbereitungsunterlagen für den Versuch 1 / EME 13 Gleichstromkreis mit Leistungsanpassung WS 2017/18 Revision 01 Prof. Dr.-Ing. Holger Wrede holger.wrede@hs-duesseldorf.de

Mehr

Aufg. P max 1 12 Klausur "Elektrotechnik" am

Aufg. P max 1 12 Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlagen der Elektrotechnik Kapitel : Wichtige Schaltungen der Elektrotechnik Wichtige Schaltungen der Elektrotechnik.1 Belasteter Spannungsteiler. Messschaltungen 4..1 Wheatstone-Messbrücke 4.. Kompensationsschaltung

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-5

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-5 20.7 Berechnung linearer Netzwerke.7. Netzwerksanalyse Der Lernende kann - den Netzwerkgraf eines Netzwerkes skizzieren und die Zahl der Knoten und Zweige ermitteln - die Zahl der unabhängigen Knotengleichungen

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 1: Gleichstrommessungen Übersicht In dieser Übung sollen die Vielfachmessgeräte (Multimeter) des Labors kennengelernt werden. In mehreren Aufgaben sollen Spannungen,

Mehr

Basiswissen Gleich- und Wechselstromtechnik

Basiswissen Gleich- und Wechselstromtechnik Marlene Marinescu Jürgen Winter Basiswissen Gleich- und Wechselstromtechnik Mit ausführlichen Beispielen Mit 217 Abbildungen Studium Technik vieweg VII Inhaltsverzeichnis I. Grundlegende Begriffe 1 1.

Mehr

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 = Aufgabe MG01 Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =4 10 4 1 C. Um welchen Faktor ist seine Stromaufnahme bei der Anfangstemperatur

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Grundlagen der Elektrotechnik LF-2

Grundlagen der Elektrotechnik LF-2 Grundbildung IT-Systemelektroniker Grundlagen der Elektrotechnik LF-2 Mitschriften der Ausbildung Jörg Schumann 13. Februar 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ladungsträger 3 2 elektrische Spannung

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise nhalt 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter

Mehr

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis 27 2 Gleichstromtechnik 2.1 Der unverzweigte Stromkreis 2.1.1 Der Grundstromkreis Ein unverzweigter Stromkreis ist die geschlossene Hintereinanderschaltung verschiedener Schaltelemente: Spannungsquellen,

Mehr

Gleichstromtechnik. Vorlesung 6: Aktive Zweipole. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 6: Aktive Zweipole. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 6: Aktive Zweipole Fakultät für Elektro- und nformationstechnik, Manfred Strohrmann Begriff des Zweipols Viele Elemente von Schaltungen können als Zweipole beschrieben werden

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Strom (Elektrisch) Spannung (Elektrisch) Widerstand (Elektrisch)

Strom (Elektrisch) Spannung (Elektrisch) Widerstand (Elektrisch) Strom (Elektrisch) Als elektrischen Strom bezeichnet man die Bewegung von Ladungsträgern durch einen Stoff oder durch einen luftleeren Raum. Ladungsträger sind zum Beispiel Elektronen oder Ionen. Bewegen

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis 1 Elektrischer Strom................................... 1 1.1 Grundwissen kurz und bündig........................ 1 1.1.1 Stoffe................................... 1 1.1.2 Atombau, elektrischer Strom....................

Mehr

Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände

Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände Fachhochschule für Technik und Wirtschaft Berlin Elektrische Grundlagen der Informationstechnik Laborprotokoll: Nichtlineare Widerstände Mario Apitz, Christian Kötz 2. Januar 21 Inhaltsverzeichnis 1 Vorbeitung...

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Gleichstromtechnik. Vorlesung 12: Lineare Quellen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 12: Lineare Quellen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 12: Lineare Quellen Fakultät für Elektro- und nformationstechnik, Manfred Strohrmann Motivation deale Quellen sind ein stark idealisiertes Modell realer Quellen Reale Quellen

Mehr

Elektrischer Strom. Strommessung

Elektrischer Strom. Strommessung Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt:

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt: Parallelschaltung Mit Hilfe des 1. Kirchhoffschen Satzes kann die Parallelschaltung von Widerständen abgeleitet werden. Werden einer idealen Spannungsquelle zwei Widerstände R1 und R2 parallel geschaltet,

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen ersuchsdurchführung ersuch : Messungen an linearen und nichtlinearen Widerständen. Linearer Widerstand.. orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die

Mehr

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Prüfung _1. Lösung. Seite-01. Aufgabe ET2 U Q2

Prüfung _1. Lösung. Seite-01. Aufgabe ET2 U Q2 niversity of Applied Dipl.-Wirt. ng. (FH) Prüfung 6-_ Aufgabe ET Seite- Stand: 9..6; Bei dieser Aufgabe ist zu beachten, dass der Strom aus der Stromquelle negativ ist. Das bedeutet, dass man die Pfeilrichtung

Mehr