REAL-TIME DATA WAREHOUSING

Größe: px
Ab Seite anzeigen:

Download "REAL-TIME DATA WAREHOUSING"

Transkript

1 REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena

2 Lisa Wenige Agenda 1. Motivation 2. Begriffsbestimmung 3. Latenzzeiten 4. Beschleunigungspotentiale 1. im ETL-Bereich 2. im Analysebereich 5. Integration von OLAP und OLTP 6. Fazit

3 Lisa Wenige Motivation gestiegene Umweltdynamik kürzere Innovationszyklen größere Datenmengen in kleineren Zeitabständen Schnelligkeit als erfolgskritischer Faktor

4 Lisa Wenige Motivation - Beispiel Multimediahandel: Daten aus dem Onlineshop und den Einzelhandelszweigstellen gemeinsames OLAP-System Vorteile einer Beschleunigung schnelles Erkennen von Verkaufstrends unmittelbare Reaktion: Rabattaktionen, gezieltes Online-Marketing

5 Lisa Wenige Was ist ein Real-Time Data Warehouse? Charakterisierung des Echtzeitbegriffs durch Lehner/Thiele (2009): The real-time aspect in the context of data warehouses describe a new processing model where every change is automatically captured and pushed into the data warehouse. Definition aus Bauer/Günzel (2009): Realtime-Data-Warehouse-Systeme sind somit eine spezielle Ausprägung von Data-Warehouse-Systemen, die die analyseorientierten Informationen in jeder anforderungsbedingten Aktualität zur Verfügung stellen können.

6 Lisa Wenige Weitere Begriffe Near Real-Time Right-Time Real-Time Data Warehouse On-Time Data Freshness Active Data Warehouse

7 Lisa Wenige Klassifikation der Latenzzeiten in Anlehnung an Shel06.

8 Lisa Wenige Klassifikation der Latenzzeiten Organisatorische Latenz I Wahrnehmungslatenz Informationssystem-Erfassungslatenz Infrastrukturlatenz Ladelatenz Analyselatenz Organisatorische Latenz II Entscheidungslatenz

9 Lisa Wenige Infrastrukturlatenz Zeitverschiebungen, die bei der Analyse und Übertragung der Daten in das Data Warehouse auftreten Klassische Data-Warehouse-Systeme: tägliche mehrmals tägliche Aktualisierung -> batch load Sperrung des OLAP-Systems während des Ladeprozesses Quelle: Thie10.

10 Lisa Wenige Grenzen der Beschleunigung Quelle: Thie10.

11 Lisa Wenige Beschleunigung im ETL-Bereich Near-Realtime-Ansatz: Abschwächung der Echtzeitanforderung für weniger kritische Daten Erhöhung der Batchload-Frequenzen Monitoring-Komponente zur Feststellung der Nettoänderungen (timestamp-, log- oder snapshotbasiert) Trickle-Feed-Ansatz: synchrone Aktualisierung im Push-Modus bei Auftreten einer Änderung -> Auslösung eines Triggers Einbußen bei der Anfrageperformanz

12 Lisa Wenige Beschleunigung im ETL-Bereich Partitionsbasierter Ansatz:

13 Lisa Wenige Beschleunigung im ETL-Bereich Cachebasierter Ansatz: Aufbewahrung der Transaktionsdaten in einem separaten Real-time Data Cache (RTDC) die Faktentabellen des RTDC besitzen das gleiche Schema, wie die DW-Tabellen Abfrage der Daten über Just-in-time-Integration für große Mengen von Echtzeitdaten geeignet

14 Lisa Wenige Beschleunigung im ETL-Bereich Enterprise Application Integration:

15 Lisa Wenige Beschleunigung im Analysebereich Materialisierte Sichten und Präaggregation: SELECT Store.city, Time.day, sum(sales.sales_dollar) FROM Store, Time, Sales WHERE Sales.store_id=Store.store_id AND Sales.time_id=Time.time_id AND Time.year >= 2011 GROUP BY Store.city, Time.month

16 Lisa Wenige Beschleunigung im Analysebereich Rechtebeschränkungen: rollenbasierte Nutzung des Data Warehouse Beschränkung oder Sperrung einiger Queries/Daten für bestimmte Nutzer Priorisiertes Scheduling (nach Lehner et al.): Durchführung von Echtzeitaktualisierungen, die Relevanz für die aktuellen Queries besitzen Query-Queue Q für OLAP-Anfragen Update-Queue U für OLTP-Anfragen Auswahl derjenigen Updates aus U, die Relevanz für die Query besitzen

17 Lisa Wenige Beschleunigung im Analysebereich Just-in-time-Integration: Quelle: Thie10.

18 Lisa Wenige Integration von OLTP und OLAP Plattner stellt einen Systementwurf mit folgenden Eigenschaften vor: In-Memory-Datenhaltung und spaltenorientierte Speicherung schnellere Verarbeitung von JOIN-Operationen zur Laufzeit insert-only-ansatz -> schnelle Durchführung von Einfüge- und Ändeerungsoperationen timestampbasierte Abfrage

19 Lisa Wenige Diskussion: Was haltet ihr von diesem Entwurf? Vorteile ETL-Prozess gespart u. U. niedrigerer Aufwand Echtzeitanforderung ist stärker erfüllt Probleme/Grenzen bislang nur für eine DB mit 35 Mio. Tupeln getestet Begrenzung bei Schreiboperationen Höherer Entwicklungsaufwand ist höher Datenstrukturen müssen sowohl Analysen als auch OLTP unterstützen Sperren: optimistisch Kompromiss

20 Lisa Wenige Fazit Latenzzeiten lassen sich teilweise verringern allerdings: Zeiteinsparungen sollten nicht Selbstzweck sein Spannungsverhältnis zwischen Lade- und Analysebeschleunigungen die Integration von OLTP- und OLAP-Systemen kann zu Funktionalitätseinbußen führen

21 Lisa Wenige Quellen BaGü09. Andreas Bauer und Holger Günzel (Hrsg.). Data-Warehouse- Systeme: Architektur, Entwicklung, Anwendung, Band 3. Aufl. dpunkt-verl., Heidelberg Lang04. Real-time Data Warehousing: Challenges and Solutions, August LeTh09. Wolfgang Lehner und Maik Thiele. Evaluation of Load Scheduling Strategies for Real-Time Data Warehouse Environments. Proceedings of the 3 rd International Workshop on Business Intelligence for the Real-Time Enterprise, 2009 Plat09. A common database approach for OLTP and OLAP using an inmemory column database. In Proceedings of the 35th SIGMOD international conference on Management of data, 2009 Shel06. Real-TimeWarehousing und EAI. In Analytische Informationssysteme: Business Intelligence-Technologien und Anwendungen. Springer Thie10. Qualitätsgetriebene Datenproduktionssteuerung in Echtzeit- Data- Warehouse-Systemen. Dissertation, Technische Universität Dresden, 2010.

22 FRAGEN???? Lisa Wenige

Real-Time Data Warehousing

Real-Time Data Warehousing Real-Time Data Warehousing Möglichkeiten und Grenzen echtzeitnaher Analysesysteme von Lisa Wenige Betreuerin: Dipl-Math. Katharina Büchse Seminar Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität

Mehr

In.Memory im SQL Server 2014 im Vergleich mit SAP Hana im Praxistest

In.Memory im SQL Server 2014 im Vergleich mit SAP Hana im Praxistest In.Memory im SQL Server 2014 im Vergleich mit SAP Hana im Praxistest Synopsis Darmstadt 13.-14.05.2014 Guido Jacobs, Microsoft Tobias Maier & Dr. Benjamin Kettner, ixto GmbH Microsoft SQL Server 2014 //

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse

SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse www.osram-os.com SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse Oliver Neumann 08. September 2014 AKWI-Tagung 2014 Light is OSRAM Agenda 1. Warum In-Memory? 2. SAP HANA

Mehr

Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme

Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme FHDW-Schriftenreihe Band 4/2002 Stefan Nieland, Mathias Pöhling Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek -

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel ORM & OLAP Object-oriented Enterprise Application Programming Model for In-Memory Databases Sebastian Oergel Probleme 2 Datenbanken sind elementar für Business-Anwendungen Gängiges Datenbankparadigma:

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute,

Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute, Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute, Chatsworth, 2006, S. 11. Schieder: Datenqualitätsmanagement

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Data Warehousing 0-1. DBS-Module

Data Warehousing 0-1. DBS-Module Data Warehousing Sommersemester 2014 Prof. Dr. E. Rahm Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de 0-1 DBS-Module Master-Studium Informatik 10-202-2215 Moderne Datenbanktechnologien

Mehr

S A P B W O N H A N A P R O O F O F C O N C E P T B E I S. O L I V E R

S A P B W O N H A N A P R O O F O F C O N C E P T B E I S. O L I V E R S A P B W O N H A N A P R O O F O F C O N C E P T B E I S. O L I V E R S T E F A N M A R K 07.07.2015 F O L I E 1 V O N 2 7 F I R M E N P O R T R A I T S. O L I V E R GESCHICHTE F O L I E 2 V O N 2 7 F

Mehr

Automatisierung mit der Line of Business verbinden. Ralf Paschen

Automatisierung mit der Line of Business verbinden. Ralf Paschen Automatisierung mit der Line of Business verbinden Ralf Paschen Agenda Die Herausforderung Was wollen wir? Was hindert uns? Was müssen wir lösen? Wir automatisieren 3 Property of Automic Software. All

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

www.informatik-aktuell.de

www.informatik-aktuell.de www.informatik-aktuell.de Flashback Reise in die Vergangenheit einfach. gut. beraten. Warum Oracle Zeitreisen anbieten kann, der Microsoft SQL Server aber leider nicht. IT-Tage Datenbanken 18.12.2015,

Mehr

Teil XI Spalten-orientierte DBMSs

Teil XI Spalten-orientierte DBMSs Teil XI Spalten-orientierte DBMSs Spalten-orientierte Datenbankmanagementsysteme 1 Motivation 2 Funktionsweise 3 Erweiterungen 4 Literatur c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte

Mehr

Andrea Held. Motivation ILM: Definition und Strategien Lösungen für Oracle Datenbanken. Empfehlungen

Andrea Held. Motivation ILM: Definition und Strategien Lösungen für Oracle Datenbanken. Empfehlungen Andrea Held Motivation ILM: Definition und Strategien Lösungen für Oracle Datenbanken Partitionierung Komprimierung ILM Assistant Flashback Data Archive Empfehlungen 1 Datenwachstum Wachsende Kosten Schlechtere

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Entwicklung eines Benchmarks für die Performance von In-Memory OLAP-Systemen. Abschlusspräsentation Master-Thesis

Entwicklung eines Benchmarks für die Performance von In-Memory OLAP-Systemen. Abschlusspräsentation Master-Thesis Entwicklung eines Benchmarks für die Performance von In-Memory OLAP-Systemen Abschlusspräsentation Master-Thesis Zu meiner Person Informatik- und Wirtschaftsinformatik-Studium an der HS Karlsruhe seit

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

Innovative Unternehmensanwendungen mit In-Memory Data Management

Innovative Unternehmensanwendungen mit In-Memory Data Management Wolfgang Lehner, Gunther Piller (Hrsg.) Innovative Unternehmensanwendungen mit In-Memory Data Management Beiträge der Tagung IMDM 2011 2.12.2011 in Mainz Gesellschaft für Informatik e.v. (GI) Lecture Notes

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

EXASOL AG Zahlen & Fakten

EXASOL AG Zahlen & Fakten Big Data Management mit In-Memory-Technologie EXASOL AG Zahlen & Fakten Name: EXASOL AG Gründung: 2000 Tochterges.: Management: Produkte: Firmensitz: Niederlassung: EXASOL Cloud Computing GmbH Steffen

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Management Information System SuperX status quo and perspectives

Management Information System SuperX status quo and perspectives Management Information System SuperX status quo and perspectives 1 Agenda 1. Business Intelligence: Basics 2. SuperX: Data Warehouse for Universities 3. Joolap: OLAP for Universities 4. Cooperative reporting

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz Ausgangspunkt Datenintegration Web Informationssysteme Wintersemester 2002/2003 Donald Kossmann Daten liegen in verschiedenen Datenquellen (Extremfall: jede URL eigene Datenquelle) Mietautos bei www.hertz.com

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Von$Siebel$zu$Fusion$als$evolu0onärer$Weg$$$$$$$$$$$$$$$$$$$$$$$ Alexander$Doubek$ Senior$Manager$ $

Von$Siebel$zu$Fusion$als$evolu0onärer$Weg$$$$$$$$$$$$$$$$$$$$$$$ Alexander$Doubek$ Senior$Manager$ $ Von$Siebel$zu$Fusion$als$evolu0onärer$Weg$$$$$$$$$$$$$$$$$$$$$$$ Alexander$Doubek$ Senior$Manager$ $ Riverland$at$a$glance$ Partner for High Quality System Integrations Commited to deliver premium business

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

Search-Driven Applications. Florian Hopf, freiberuflicher Softwareentwickler Tobias Kraft, exensio GmbH

Search-Driven Applications. Florian Hopf, freiberuflicher Softwareentwickler Tobias Kraft, exensio GmbH Search-Driven Applications Florian Hopf, freiberuflicher Softwareentwickler Tobias Kraft, exensio GmbH Agenda Motivation Aufbau der Such-Datenstruktur Anwendungsfälle Fallstricke Was ist Suche? Was wollen

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015 Near Realtime ETL mit Oracle Golden Gate und ODI Lutz Bauer 09.12.2015 Facts & Figures Technologie-orientiert Branchen-unabhängig Hauptsitz Ratingen 240 Beschäftigte Inhabergeführt 24 Mio. Euro Umsatz

Mehr

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1 Name Klasse Datum 1 OLAP vs. OLTP In den RDBMS Konfigurationen unterscheidet man zwei verschiedene Grundtypen: OLTP: OnLine Transactional Processing ist für die Transaktionsprozesse und somit zur funktionalen

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele

Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele Einsatzmöglichkeiten von BI Accelerator anhand konkreter Kundenbeispiele Jürgen Karnstädt Senior Consultant HP SAP Competence Center Hewlett-Packard Development Company, L.P. The information contained

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

5.4 Benchmarks für Data Warehouses

5.4 Benchmarks für Data Warehouses 5.4 Benchmarks für Data Warehouses Benchmark ( Massstab ) zum Vergleich der Leistungsfähigkeit von Systemen Für Datenbanken: Serie von Benchmarks des Transaction Processing Performance Council (www.tpc.org)

Mehr

Implementing a Data Warehouse with Microsoft SQL Server MOC 20463

Implementing a Data Warehouse with Microsoft SQL Server MOC 20463 Implementing a Data Warehouse with Microsoft SQL Server MOC 20463 In dem Kurs Implementing a Data Warehouse with Microsoft SQL Server lernen Sie, wie Sie eine Data-Warehouse-Plattform implementieren, um

Mehr

Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008

Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008 Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008 Seit der Datenbankversion 9i bietet Oracle das Feature Change Data Capture an. Aber was genau

Mehr

Performance Tuning & Scale-Out mit MySQL

Performance Tuning & Scale-Out mit MySQL Performance Tuning & Scale-Out mit MySQL Erfa-Gruppe Internet Briefing 2. März 2010 Oli Sennhauser Senior MySQL Consultant, FromDual oli.sennhauser@fromdual.com www.fromdual.com 1 Inhalt Allgemeines zu

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Datenintegrationsmuster MKWI 2004, Essen, 10. März 2004

Datenintegrationsmuster MKWI 2004, Essen, 10. März 2004 Datenintegrationsmuster MKWI 2004, Essen, 10. März 2004 Universität St. Gallen Institut für Wirtschaftsinformatik, Lehrstuhl Prof. Dr. R. Winter Kompetenzzentrum Application Integration Management (CC

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Data-Wa re house-systeme

Data-Wa re house-systeme P Andreas Bauer + Holger Günzel (Hrsg.) Data-Wa re house-systeme Architektur Entwicklung Anwendung 2., überarbeitete und aktualisierte Auflage dpun kt.verlag I n ha I t sve rzeic h n is Teil I 1 1.1 1.2

Mehr

Terminierungs-Analyse von SQL-Triggern. Sommersemester 05 T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs-Analyse 1

Terminierungs-Analyse von SQL-Triggern. Sommersemester 05 T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs-Analyse 1 Terminierungs- von SQL-Triggern T. Jahn Seminar Intelligente Datenbanken SQL-Trigger: Terminierungs- 1 Terminierungs- von SQL-Triggern Seminar Intelligente Datenbanken Prof. Dr. R. Manthey Andreas Behrend

Mehr

Nr. 33. NoSQL Databases

Nr. 33. NoSQL Databases Nr. 33 NoSQL Databases Das Berner-Architekten-Treffen Das Berner-Architekten-Treffen ist eine Begegnungsplattform für an Architekturfragen interessierte Informatikfachleute. Partner Durch Fachvorträge

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

Open Source Datawarehouse für das IT-Management

Open Source Datawarehouse für das IT-Management Open Source Datawarehouse für das IT-Management 09.06.2010 Linuxtag Berlin Referent: Bernd Erk Agenda DESTINATION TIME REMARK KURZVORSTELLUNG ÜBERBLICK DATAWAREHOUSE DATENINTEGRATION DATENHALTUNG DATENORGANISATION

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05.

InspireIT. SAP HANA Sesam öffne dich. Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH. Frankfurt am Main, 11.05. InspireIT SAP HANA Sesam öffne dich Stefan Kühnlein Solution Architekt OPITZ CONSULTING Deutschland GmbH Frankfurt am Main, 11.05.2015 OPITZ CONSULTING GmbH 2015 Seite 1 Checker Fragen Ist SAP HANA eine

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr