Der Boden und die Decke dieses Zimmers sind wärmeisoliert, so dass durch Boden und Decke kein Wärmefluß stattfindet.

Größe: px
Ab Seite anzeigen:

Download "Der Boden und die Decke dieses Zimmers sind wärmeisoliert, so dass durch Boden und Decke kein Wärmefluß stattfindet."

Transkript

1 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 1/7 Prof. Dr. R. Kessler, Hochschule Karlsruhe, Sensorsystemtechnik, Homepage: Simulation Zimmerheizung, periodische Schwankungen der Außentemperatur Tu infolge Sonnen-Einstrahlung, Variation Wandstärke d, wahlweise ohne oder mit Regelung der Zimmertemperatur. d h L L Aufstellen der Gleichungen: Ein quadratisches Zimmer befindet sich in einem Hochhaus, es hat 4 Außenwände, Höhe h, Länge L. Die Wand hat die Dicke d. Um die instationäre (also zeitabhängige) Wärmeleitung durch die Wand zu modellieren, denken wir uns die Wand in vier gleich dicke Schichten mit der Dicke d1 = d/4 aufgeteilt. Die Temperatur T innerhalb einer Schicht nehmen wir als konstant an. Die Schicht an der Außenfläche hat die Temperatur T1, die nächste die Temperatur T2, die dritte die Temperatur T3, die vierte die Temperatur T4. Der Boden und die Decke dieses Zimmers sind wärmeisoliert, so dass durch Boden und Decke kein Wärmefluß stattfindet. Die Außenluft (Umgebungsluft) hat die Temperatur Tu, die Zimmertemperatur ist TZ. Der Wärmeübergangkoeffizient der Außenluft zur Außenwand ist ala [Watt/(m^2 * Grad], Der Wärmeübergangkoeffizient der Innenluft zur Innenwand ist ali, [Watt/(m^2 * Grad] Die Wand ist homogen aufgebaut, also aus einheitlichem Material Die Dichte des Wandmaterials ist row [kg/m^3], die Dichte der Zimmerluft ist roz [kg/m^3]. De Wärmeleitungskoeffizient des Wandmaterials ist lam [Watt/(m*Grad)] Die Zimmerluft kann mit der Leistung P [Watt] geheizt werden, wahlweise mit PI-Regler geregelt oder mit konstanter Heizleistung Pcon. Zum Aufstellen der DGLn wird der Energiesatz formuliert Erste Wandschicht, Temperatur T1: (A= gesamte Wandfläche = 4*L*h, s. Figur), Jede Wandschicht (Dicke d/4) hat den Wärmeinhalt pro Grad E = Spezifische Wärme * Masse = cw* row*4*l*h*d/4 = cw*row*l*h*d Die Wand hat die Fläche A= 4*L*h Wärmezufuhr von Außenluft = E * dt1/dt + Wärmefluß von Schicht 1 zur Schicht 2, in Formeln: ala * A * (TU-T1) = E * dt1/dt + lam * A* (T1-T2)/(d/4), oder A und E eingesetzt: a1a * 4*L*h * (Tu-T1) = cw*row*l*h*d * dt1/dt + lam* 4*L*h (d/4)* (T1-T2) und nach dt1/dt aufgelöst ergibt dt1/dt = (a1a * 4*L*h)/( cw*row*l*h*d) * (Tu-T1) ( lam*4*l*h*/( d/4 )/(cw*row*l*h*d /4)*(T2-T1 Der Faktor bei (Tu-T1) wird geschrieben als kuw= ala* 4 / ( cw*row*d) Der Faktor vor (T2-T1) wird kw = (lam*16)/(row*cw*d*d) Damit lautet die DGL für die Temperatur T1

2 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 2/7 dt1/dt = kuw * (Tu-T1) + kw* (T1-T2) Vierte Wandschicht: Für die Temperatur T4 ergibt sich eine ähnliche Gleichung (allerdings a dt4/dt = kw* (T3-T4) + kwz * (T4-TZ) mit kwz= ali * 4 / (row*cw*d) Innenschichten : Zweite Schicht kw* (T1-T2) = dt2/dt + kw*(t2-t3) oder als DGL für T2: dt2/dt = kw*(t1-2*t2 + T3) und entsprechend dt3/dt = kw*(t2-2*t3 + T4) Zimmerluft: Die Energiebilanz für die Temperatur TZ der Zimmerluft lautet Wärmefluß von der Wand + Heizleistung P = cz*roz*l*l*h * dtz/dt oder ali*4*l*h*(t4-tz) + P = cz*roz*l*l*h * dtz/dt oder nach dtz/dt aufgelöst dtz/dt = kz *(T4 - TZ) + kp * P mit kwz=ali*4/(roz*cz*l) und kp=1/(roz*cz*l*l*h) Simulation mit Tephys Hinweis: Die oben eingeführten Abkürzungen kuw. kw, kwz, kz, kp werden mit 3600 multipliziert. Dadurch ist die in sec angezeigte Zeit in Wirklichkeit die Zeit in Stunden Datei Zihzh1.txt 1 ato=ar*ja(t-t1)*ja(t2-t) { ar= Sinusamplitude für die Temperatur Tu der Umgebungsluft.Sie ist nur ungleich null im Zeitbereich t1 [Stunde] bis t2 [Stunde] } 2 Tu=Tu0+aTo*sin(2*pi*f*t) {Tu= Umgebungstemperatur, Tu0 konstanter Wert, f= 1/24= =Frequenz [1/Stunde], also Periode=1 Tag =24 h} 3 kuw=ala*4*3600/(row*cw*d) { ala= Wärmeübergangszahl Umgebungsluft.. Außenwand [Watt/(Grad*m^2)], row= Dichte des Wandmaterials [kg/m^3], cw= spezifische Wärmekapazität des Wandmaterials [Joule/(kg*Grad)]} 4 kw=lam*16*3600/(row*cw*d*d) { lam= Wärmeleitzahl des Wandmaterials in [Watt/(m*Grad)] } 5 kwz=ali*4*3600/(row*cw*d) { ali= Wärmeübergangszahl Innenwand Innenluft [Watt/(Grad*m^2)], d= Wandstärke [m]} 6 kz=ali*4*3600/(roz*cz*l) { roz= Dichte der Zimmerluft [kg/(m^3)], cz= spezifische Wärmekapazität des Wandmaterials [Joule/(kg*Grad)], L= Zimmerbreite [m] } 7 kp=3600/(roz*cz*l*l*h) { h = Zimmerhöhe [m]} 8 T1=T1+(kUW*(Tu-T1)-kW*(T1-T2))*dt { T1= Temperatur [Grad] der 1.Wandschicht, T2= Temperatur [Grad] der 2.Wandschicht dt= zeitliche Schrittweite [Stunde]} 9 T2=T2+kW*(T1-2*T2+T3)*dt { T3= Temperatur [Grad]der 3.Wandschicht } 10 T3=T3+kW*(T2-2*T3+T4)*dt { T4= Temperatur [Grad]der 4.Wandschicht } 11 T4=T4+(kW*(T3-T4)-kWZ*(T4-TZ))*dt { TZ=Temperatur [Grad] der Zimmerluft } 12 TZ=TZ+(kP*P+kZ*(T4-TZ))*dt { P= Heizleistung [Watt] für die Zimmerluft } 13 int=int+(ts-tz)*dt { TS= Sollwert [Grad] der Zimmerluft, TZ= Temperatur [Grad] der Zimmerluft} 14 P=ja(Reg)*begr(Ap*(TS-TZ+int/Ti),P0,0)+nein(Reg)*Pcon { bei Reg > 0 wird geregelt, bei Reg <= 0 wird nicht geregelt, Ap= Proportionalfaktor der PI-Regelung, Ti= Zeitkonstante

3 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 3/7 des I-Anteils [Stunde], P0= Maximalwert der Heizleistung [Watt] bei Regelung, Pcon= Heizleistung [Watt] bei konstanter Heizleistung } 15 t=t+dt { dt = zeitliche Schrittweite [Stunde] } Kommentar in der Tephys-Datei: Heft 57, S. 108, Text Zi-Heiz-1..6, Heizungsregelung eines Zimmers bei Sonneneinstrahlung und instationärer Wärmeleitung durch die Wand (homogene Wand). Wand: Dicke d, eingeteilt in 4 Abschnitte (d/4) mit je konstanter Temperatu. T1 (außen) bis T4 (innen). ala bzw. ali= Waermeuebergangszahl außen bzw. innen. cw, cz = spez. Wärmekapazität Wand, bzw. Zimmerluft. row, roz = Dichte der Wand bzw. der Zimmerluft 4 Aussenwände: Länge L, Höhe h. Zimmer: kein Wärmeaustausch nach oben oder unten, sondern nur durch die 4 Wände. Heizung mit Heizleistung P [in Watt], geregelt mit PI-Regler (wenn Reg > 0) oder ungeregelt (wenn Reg <= 0) mit konstanter Heizleistung Pcon. Sonne: ar= Amplitude der Umgebungs-Luft-Temperatur. In der Zeit t1 bis t2 periodischer Temp.Verlauf mit Tagesperiode 1/f = 24 h.. Zeiteinheit so gewählt, dass die in sec angegebene Zeit gleich der Zeit in Stunden ist.

4 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 4/7 Keine Zimmerheizung, Variation der Wandstärke d

5 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 5/7 Konstante Heizleistung Pcon, so eingestellt, dass die mittlere Zimmertemperatur 20 Grad beträgt, Variation der Wandstärke d

6 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 6/7 P-Regelung der Heizleistung, Sollwert TS= 20 Grad, Variation der Wandstärke d

7 Prof. Dr. R. Kessler, C:\ro\Si05\RT3\WAERME\ZimHeizSonne2.doc, S. 7/7 PI-Regelung der Heizleistung, Sollwert TS= 20 Grad, Variation der Wandstärke d

Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum

Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum 1 1. Semester Wärmeverlust durch verschiedene Wandmaterialien in einem kleinen Haus

Mehr

PID-Regelung wahlweise mit Pulsweiten-Modulation, simuliert mit Matlab, C:\ro\Si05\RT3\PWM\PWM_Matlab3.doc

PID-Regelung wahlweise mit Pulsweiten-Modulation, simuliert mit Matlab, C:\ro\Si05\RT3\PWM\PWM_Matlab3.doc Prof. Dr. R. Kessler, FH-Karlsruhe, Sensorsystemtechnik, C:\ro\Si5\RT3\PWM\PWM_Matlab3.doc, Seite /5 PID-Regelung wahlweise mit Pulsweiten-Modulation, simuliert mit Matlab, C:\ro\Si5\RT3\PWM\PWM_Matlab3.doc

Mehr

Weglose Waage: Simulation Einstellregeln von Tietze-Schenk und von Ziegler-Nichols

Weglose Waage: Simulation Einstellregeln von Tietze-Schenk und von Ziegler-Nichols Prof. Dr. R. Kessler, Hs-Karlsruhe, Sensorsystemtechnik, C:\ro\Si05\ks_simul\KS_REGEL\WAAG\weglwag_4.doc, Seite 1/9 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Weglose Waage: Simulation Einstellregeln

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Drei gekoppelte Massen, wahlweise mit 3 optimal dimensionierten Tilgern,

Drei gekoppelte Massen, wahlweise mit 3 optimal dimensionierten Tilgern, Prof. Dr. R. Kesser, C:\Si05\HOMEPAGE\tilgeroptimal\3_Massen_3Tilger2.doc, S. 1/6 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Drei gekoppelte Massen, wahlweise mit 3 optimal dimensionierten Tilgern,

Mehr

Versuchsanleitung MV_5_1

Versuchsanleitung MV_5_1 Modellbildung und Simulation Versuchsanleitung MV_5_1 FB 2 Stand August 2011 Prof. Dr.-Ing. Hartenstein Seite 1 von 11 1. Versuchsgegenstand Versuchsziel Ziel des Versuches ist es, die im Lehrfach Mechatronische

Mehr

Optimale Tilger- Dimensionierung bei Variation des Massenverhältnisses fakm= mt/m, Frequenzgänge und Zeitbereich x(t)

Optimale Tilger- Dimensionierung bei Variation des Massenverhältnisses fakm= mt/m, Frequenzgänge und Zeitbereich x(t) Prof. Dr. R. Kessler, Hs-Karlsruhe, C:\ro\Si5\didaktik\Tilger\TilgerOpt3.doc, S. /5 Homepage: http://www.home.hs-karlsruhe.de/~kero/ Optimale Tilger- Dimensionierung bei Variation des Massenverhältnisses

Mehr

ANSYS-Prozeβe der Abkühlungs- und der gekoppelten Verformungssimulation an einem Feinguβbeispiel*

ANSYS-Prozeβe der Abkühlungs- und der gekoppelten Verformungssimulation an einem Feinguβbeispiel* ANSYS-Prozeβe der Abkühlungs- und der gekoppelten Verformungssimulation an einem Feinguβbeispiel* Asst.Prof.Dr. S. Yilmaz, Dipl.-Ing. E. Erzi, Ing. F. Özkan İstanbul Üniversitaet Fakultaet für Ingenieurwesen

Mehr

Hubschrauber PID-Regelung, versuchsweise auch mit AntiWindUp

Hubschrauber PID-Regelung, versuchsweise auch mit AntiWindUp Prof. Dr. R. Kessler, HS-Karlsruhe, Hub_PID_AU.doc S / Homepage: http://www.home.hs-karlsruhe.de/~kero Hubschrauber PID-Regelung, versuchsweise auch mit AntiindUp Link auf die bisherige optimale PID-Regelung

Mehr

Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich

Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich Prof. Dr. R. Kessler, HS-Karlsruhe, C:\Si5\HOMEPAGE\akttiefpass\AktiverTiefpass 6_2.doc, S. /7 Homepage: http://www.home.hs-karlsruhe.de/~kero/ Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser SC-PROJEKT EISWÜRFEL: HÖHE = 21MM Patrick Kurer & Marcel Meschenmoser 2.1.2013 INHALTSVERZEICHNIS Inhaltsverzeichnis... 1 Allgemeine Parameter... 2 Aufgabe A Allgemeine Berechnung des Eiswürfels... 2 Aufgabe

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

16.1 Arten der Wärmeübertragung

16.1 Arten der Wärmeübertragung 16 Wärmeübertragung 16.1 Arten der Wärmeübertragung Bei der Wärmeübertragung, die gemäß dem 2. Hauptsatz der Wärmelehre nur bei Vorliegen einer Temperaturdifferenz stattfindet, sind drei Arten zu unterscheiden:

Mehr

Anhang: Regelungstechnische Bauteile des Buches

Anhang: Regelungstechnische Bauteile des Buches Anhang: Regelungstechnische Bauteile des Buches P-Regler P-Reg Eingang für Regelgröße x Führungsgröße w Ausgang y y = Kp. (w - x) Einstellbare Attribute mit Vorschlags-(Default-)werten: Obere Begrenzung

Mehr

Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz ( Sweep )

Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz ( Sweep ) Prof. Dr. R. Kessler, FH-Karlsruhe, Sensorsystemstechnik, SweepFedMas.doc, S. / homepage: http://www.home.hs-karlsruhe.de/~kero/ Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz

Mehr

1 Näherung quasistatische Temperaturverteilung

1 Näherung quasistatische Temperaturverteilung 1 Näherung quasistatische Temperaturverteilung Behandelt wird das Braten von Fleisch, insbesondere das Braten einer Gans Die Gans wird als kugelförmig mit dem Radius r a angenommen Im Anfangszustand habe

Mehr

Passive Netz-Gleichrichterschaltungen, numerische Simulation mit Tephys

Passive Netz-Gleichrichterschaltungen, numerische Simulation mit Tephys Prof. Dr. R. Kessler, FH-Karlsruhe, Sensorsystemtechnik, Gleichrichterschaltungen_3.doc, Seite 1/9 Passive Netz-Gleichrichterschaltungen, numerische Simulation mit Tephys Einführung: Im nachfolgenden Text

Mehr

Regelung einer Heizungsanlage

Regelung einer Heizungsanlage Regelung einer Heizungsanlage Was ist eigentlich die Heizgrenztemperatur? Die Heizgrenztemperatur ist die Außentemperatur, ab der nicht mehr geheizt werden muss Die Wärmeverluste im Gebäude werden ab dieser

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Energiebilanzmodell I

Energiebilanzmodell I Schema der globalen Energieflüsse in der Atmosphäre (Wm -2 ) Die Erde im sichtbaren Licht Albedo ausgewählter Oberflächen Untergrund Albedo Untergrund Albedo Sand trocken 30-5% Wasseroberfläche -95% Energiebilanzmodell

Mehr

Projektbericht Kondensation an einem Fenster

Projektbericht Kondensation an einem Fenster Projektbericht Kondensation an einem Fenster Florian Hanzer Ruth Kalthaus Sommersemester 2009 Einleitung Da Glas ein relativ guter Wärmeleiter ist, sind Fenster einer der größten Schwachpunkte in Bezug

Mehr

Instrumentenpraktikum

Instrumentenpraktikum Instrumentenpraktikum Theoretische Grundlagen: Bodenenergiebilanz und turbulenter Transport Kapitel 1 Die Bodenenergiebilanz 1.1 Energieflüsse am Erdboden 1.2 Energiebilanz Solare Strahlung Atmosphäre

Mehr

Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab)

Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab) Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\f4ueb\F4UEB\XFERer_Tphys_Matlab_2.doc, Seite 1/1 Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab) Tiefpass 5.Ordnung 2 CLC Pi-Glieder, hat

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

Schwachstelle Lüftung

Schwachstelle Lüftung Schwachstelle Lüftung Gestaltung der Zu- und Abluftführung Effiziente Lüftungssteuerungen Für Alt- und Neubauten Rolf Feldmann Infoveranstaltung Energieeffizienzverbesserung in Stallgebäuden 03. Juni 2013

Mehr

Ein nulldimensionales Energiebilanzmodell

Ein nulldimensionales Energiebilanzmodell Ein nulldimensionales Energiebilanzmodell 2 Wir formulieren hier das denkbar einfachste Klimamodell, das die Erde als Punkt im Weltraum modelliert. Das Modell basiert auf der Strahlungsbilanz eines nulldimensionalen

Mehr

Vergleich mehrerer Solver beim Pendel großer Amplitude

Vergleich mehrerer Solver beim Pendel großer Amplitude Prof. Dr. R. Kessler, C:\ro\Si5\Matlab\DGLn\Solver_Vergleich_Pendel.doc, S. 1/1 Homepage: http://www.home.hs-karlsruhe.de/~kero1/ Vergleich mehrerer Solver beim Pendel großer Amplitude Download: http://www.home.hs-karlsruhe.de/%7ekero1/solververgleich/solvpend.zip

Mehr

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom ) Technische Universität Dresden Seite 1 Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom 5.05.09) Beachte: In der Vorlesung wurden z. T. andere Symbole verwendet. Vorlesung Ergänzungsskript Bezeichnung

Mehr

Mathias Hinkel, WS 2010/11

Mathias Hinkel, WS 2010/11 Mathias Hinkel, WS 2010/11 1. Motivation und Einführungsbeispiel 2. Mathematische Beschreibung des Ofenprozesses 3. Lösungsansätze für Differentialgleichung 4. Einführung der Laplace-Transformation 5.

Mehr

Thermodynamik II Klausur SS 2006

Thermodynamik II Klausur SS 2006 Thermodynamik II Klausur SS 0 Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten / Blatt Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern

Mehr

Bandpass: Eingang Rechteck, Zeitbereich des Ausgangs ua mit inverser FFT und mit DGLn berechnet

Bandpass: Eingang Rechteck, Zeitbereich des Ausgangs ua mit inverser FFT und mit DGLn berechnet Prof. Dr. R. Kessler, HS-Karlsruhe, C:\ro\Si5\didakt\Fourier\invDFT\Bandpass Zeitber_u_ inversdft.doc, S. /7 Homepage: http://www.home.hs-karlsruhe.de/~kero/ Bandpass: Eingang Rechteck, Zeitbereich des

Mehr

Modelica Building-Bibliothek und Gebäudemodelle

Modelica Building-Bibliothek und Gebäudemodelle Modelica Building-Bibliothek und Gebäudemodelle Symposium Integrale Planung und Simulation in Bauphysik und Gebäudetechnik, 27.03.2012, Moritz Lauster EBC Lehrstuhl für Gebäude- und Raumklimatechnik Standard-Gebäudemodelle

Mehr

forum zürich Betriebsoptimierung der WRG von Lüftungsanlagen

forum zürich Betriebsoptimierung der WRG von Lüftungsanlagen forum zürich Betriebsoptimierung der WRG von Lüftungsanlagen Hauptreferent: Prof. Kurt Hildebrand Hochschule Luzern Veranstaltung 16.05.2018 Betriebsoptimierung der WRG von Lüftungsanlagen 2 Plattenwärmetauscher

Mehr

Simulation AM-Radio: Sender und Empfänger

Simulation AM-Radio: Sender und Empfänger Prof. Dr. R. Kessler, FH-Karlsruhe, FB-NW, C:\ro\Si05\kuellmar\radio\AMRADIO_6.doc, Seite 1/6 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Simulation AM-Radio: Sender und Empfänger Prinzip-Aufbau

Mehr

Regelungstechnik. Eine kurze Einführung

Regelungstechnik. Eine kurze Einführung Regelungstechnik Eine kurze Einführung Regelungstechnik Übersicht und Begriffe Zweipunkt-Regler PID-Regler Weitergehende Konzepte Praktische Umsetzung Simulation Regelung vs. Steuerung Wert einstellen,

Mehr

MC-Hx 003. Rechnerische Auswertung mit Formeln II. MB DataTec GmbH. Stand:

MC-Hx 003. Rechnerische Auswertung mit Formeln II. MB DataTec GmbH. Stand: MC-Hx 003 Rechnerische Auswertung mit Formeln II MB DataTec GmbH Stand: 11.2011 Kontakt: MB DataTec GmbH Friedrich Ebert Str. 217a 58666 Kierspe Tel.: 02359 2973-22, Fax 23 Web : www.mb-datatec.de e-mail:

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik Dampftafel 1 Zur Berechnung thermodynamischer Prozesse (Kraftwerk, Wärmepumpe, etc.) reicht das ideale Gasgesetz nicht mehr aus Stoffdaten der realen Fluide werden benötigt Für die Bestimmung der Stoffdaten

Mehr

Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik

Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik Wenke Wilhelms, Julia Weißflog Institut für Geophysik und Geoinformatik Übung zur Vorlesung Numerische Simulationsmethoden in der Geophysik 04. Dezember 2013 Die Diffusionsgleichung 1D-Wärmeleitungsgleichung...

Mehr

Der Menüpunkt Bauteile dient zur Berechnung des U-Wertes von Wänden und Decken (ÖNORM EN ISO 6946)

Der Menüpunkt Bauteile dient zur Berechnung des U-Wertes von Wänden und Decken (ÖNORM EN ISO 6946) 1 Bauteile Der Menüpunkt Bauteile dient zur Berechnung des U-Wertes von Wänden und Decken (ÖNORM EN ISO 6946) 1.1 Bauteile - Übersicht 1) Neu anlegen einer neuen Wand oder einer neuen Decke. 2) Bearbeiten

Mehr

Hantel-Motor mit Tephys und mit Matlab simuliert

Hantel-Motor mit Tephys und mit Matlab simuliert C:\tephys\Beisp\HantelMotor4.doc, S. 1/6 Prof. Dr. R. Kessler, FH-Karlsruhe, homepage: http://www.home.fh-karlsruhe.de/~kero0001/ Email: mailto:kessler_robert@web.de Hantel-Motor mit Tephys und mit Matlab

Mehr

Theoretische Prozessanalyse Übungsaufgaben

Theoretische Prozessanalyse Übungsaufgaben TU Dresden Institut für Verfahrenstechnik und Umwelttechnik Prof. Dr.-Ing. habil. W. Klöden Theoretische Prozessanalyse Übungsaufgaben 1. Übung Für die im folgenden Bild dargestellte Schaltung zweier Wärmeübertrager

Mehr

Öko- und Ertragsphysiologie : Strahlung & Energiebilanz. Dr Mana Gharun, Institut für Agrarwissenschaften

Öko- und Ertragsphysiologie : Strahlung & Energiebilanz. Dr Mana Gharun, Institut für Agrarwissenschaften Öko- und Ertragsphysiologie 26.10.17: Strahlung & Energiebilanz Dr Mana Gharun, Institut für Agrarwissenschaften Öko- und Ertragsphysiologie DS6 Strahlungs- und Energiebilanz Strahlungsspektrum Strahlungs-

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Herleitung der Gleichungen

Herleitung der Gleichungen Prof. Dr. R. Kessler, C:\ro\Si5\Andy\tephys\Bahm\Schwingerkette mit Matlab1.doc, S. 1/7 Homepage: http://www.home.hs-karlsruhe.de/~kero1/ Schwingerkette mit Matlab-Befehl inv berechnet, auch Eigenfrequenzen,

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2016 Praktikum Kraft- und Arbeitsmaschinen Versuch 2 Betriebsfeld und Energiebilanz eines

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Achtung Fehler: Die Werte für die spezifische Gaskonstante R s haben als Einheit J/kg/K, nicht, wie angegeben,

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946.

Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946. 1 Bauteile Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946. Bauteile Übersicht Bauteile 1) BB Blatt Ausdruck des bauphysikalischen

Mehr

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\homepage\welcome\ZusstellAufstell\Fourier_falsch_1.doc, S. 1/1 Prof. Dr. R. Kessler, FH Karlsruhe homepage: http://www.home.hs-karlsruhe.de/~kero1 Demo falsche

Mehr

Rechenübungen zur Physik I im WS 2009/2010

Rechenübungen zur Physik I im WS 2009/2010 Rechenübungen zur Physik I im WS 2009/2010 2. Klausur (Abgabe Fr 12.3.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID 2) ist: 122 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

Projekt: Duingen Grundlagenermittlung TU Braunschweig Projekt-Nr Verbrauchsdaten Institut für Gebäude und

Projekt: Duingen Grundlagenermittlung TU Braunschweig Projekt-Nr Verbrauchsdaten Institut für Gebäude und Tabelle B1 Projekt-Nr. 243-024 Verbrauchsdaten Institut für Gebäude und Tabelle B1 Hauptschule + Sporthalle Wärmeverbrauch 2002 2003 2004 2005 2006 Mittelwert über Monat 5 Jahre [kwh] [kwh] [kwh] [kwh]

Mehr

Leseprobe aus Kapitel 4 Mechanische Dynamik des Buchs Strukturbildung und Simulation technischer Systeme

Leseprobe aus Kapitel 4 Mechanische Dynamik des Buchs Strukturbildung und Simulation technischer Systeme Reibungskraft F.R Leseprobe aus Kapitel 4 Mechanische Dynamik des Buchs Strukturbildung und Simulation technischer Systeme In diesem Beispiel wird gezeigt, wie Formeln Strukturbildung numerisch berechnet

Mehr

Klausur. "Technische Wärmelehre" am 02. September 2010

Klausur. Technische Wärmelehre am 02. September 2010 Klausur "Technische Wärmelehre" am 02. September 2010 Diplomvorprüfung im - Diplomstudiengang Elektrotechnik und - Diplomstudiengang Elektrotechnik mit der Studienrichtung Technische Informatik Bachelorprüfung

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

KLAUSUR HEIZTECHNIK II WS 2008/2009. Name: Vorname: Gesamtpunktzahl: Aufgabe 40 Punkte

KLAUSUR HEIZTECHNIK II WS 2008/2009. Name: Vorname: Gesamtpunktzahl: Aufgabe 40 Punkte Fachhochschule Gießen-Friedberg Prof. Dr.-Ing. Boris Kruppa KLAUSUR HEIZTECHNIK II WS 2008/2009 Fachbereich MMEW Mittwoch, 04. Februar 2009 Name: Vorname: Gesamtpunktzahl: 120 Matrikelnummer: Erreichte

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall

( ) ( ) J =920. c Al. m s c. Ü 8.1 Freier Fall Ü 8. Freier Fall Ein Stück Aluminium fällt aus einer Höhe von z = 000 m auf den Erdboden (z = 0). Die Luftreibung wird vernachlässigt und es findet auch kein Energieaustausch mit der Umgebung statt. Beim

Mehr

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und / Wärmedurchlasswiderstand von Luftschichten Ruhende Luftschicht: Der Luftraum ist von der Umgebung abgeschlossen. Liegen kleine Öffnungen zur Außenumgebung vor und zwischen der Luftschicht und der Außenumgebung

Mehr

Drei Kompensations-Tilger an einem Feder-Masse-System

Drei Kompensations-Tilger an einem Feder-Masse-System Prof. Dr. R. Kessler, HS-Kalrsruhe, C:\ro\Si05\tilger\KompTilger\Komp3Tilg1.doc, S. 1/6 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Drei Kompensations-Tilger an einem Feder-Masse-System Auf die

Mehr

T9 Kühlen mit Wärmepumpen

T9 Kühlen mit Wärmepumpen Technische Merkblätter AWP T9 Kühlen mit Wärmepumpen Technische Merkblätter AWP 2/5 Inhalt 1. Einführung 2. Querhinweis auf Normen und andere Schriftstücke 3. Arten des Kühlens mit Wärmepumpen 3.1. Passives

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Debye.docx Titel Debye-Temperatur Debye-Temperatur Bei tiefen Temperaturen (T

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Physische Geographie - Klimatologie

Physische Geographie - Klimatologie Physische Geographie - Klimatologie Christoph Gerbig, Sönke Zaehle Max-Planck-Institut für Biogeochemie Hans-Knöll Str. 10, PF 10016, 07701 Jena l.: (0361) 57-6373 (Gerbig) -6230 (Zaehle) Vorlesungswebsite:

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion s(t) beschreiben, die zu jedem Zeitpunkt t (Stunden oder Sekunden)

Mehr

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE

ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE ÜBUNGSBEISPIELE AUS DER WÄRMELEHRE VON ING. WERNER BERTIES 16., verbesserte Auflage Mit 74 Bildern einem h,s-, h,x- und lg p,/i-diagramm sowie einer Zusammenstellung der Gleichungen Friedr. Vieweg & Sohn

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

Physische Geographie - Klimatologie

Physische Geographie - Klimatologie Physische Geographie - Klimatologie Christoph Gerbig, Sönke Zaehle Max-Planck-Institut für Biogeochemie Hans-Knöll Str. 10, PF 10016, 07701 Jena l.: (0361) 57-6373 (Gerbig) -6230 (Zaehle) Vorlesungswebsite:

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Infrarotstrahler ELIR Für alle Außenanwendungen, die eine besondere Flexibilität erfordern

Infrarotstrahler ELIR Für alle Außenanwendungen, die eine besondere Flexibilität erfordern 1200 W Elektroheizung 1 Ausführung Infrarotstrahler ELIR Für alle Außenanwendungen, die eine besondere Flexibilität erfordern Einsatzbereich ELIR liefert eine intensive Wärme und ist für alle Außenanwendungen

Mehr

Lösungen der Übungsaufgaben zur Regelungstechnik

Lösungen der Übungsaufgaben zur Regelungstechnik Prof. Dr. R. essler, FH-arlsruhe, Sensorsysemechnik, C:\ro\Si05\RT3\Loes_Regechn_.doc, Seie Homepage hp://www.home.hs-karlsruhe.de/~kero000/ Lösungen der Übungsaufgaben zur Regelungsechnik Tex der Aufgabensellung:

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

SUNNYHEAT Onlinebroschüre SUNNYHEAT - die Infrarotheizung maßgeschneidert für Ihr Zuhause.

SUNNYHEAT Onlinebroschüre SUNNYHEAT - die Infrarotheizung maßgeschneidert für Ihr Zuhause. SUNNYHEAT Onlinebroschüre SUNNYHEAT - die Infrarotheizung maßgeschneidert für Ihr Zuhause. SUNNYHEAT Infrarotheizung - das heißt heizen wie die Sonne. Doch Infrarotheizung ist nicht gleich Infrarotheizung

Mehr

Kinetische Gastheorie - Die Gauss sche Normalverteilung

Kinetische Gastheorie - Die Gauss sche Normalverteilung Kinetische Gastheorie - Die Gauss sche Normalverteilung Die Gauss sche Normalverteilung Die Geschwindigkeitskomponenten eines Moleküls im idealen Gas sind normalverteilt mit dem Mittelwert Null. Es ist

Mehr

1. Beispiel - Druckluftspeicher

1. Beispiel - Druckluftspeicher 1. Beispiel - Druckluftspeicher Gewebefilter mit Druckstoßabreinigung (für 180000 Nm³/h Abgas)- Druckluftspeicher Druckluftdruck Betrieb (max) p 0,6 MPa Erforderliches Speichervolumen V s 2 m³ Gesucht:

Mehr

Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946.

Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946. 1 Bauteile Der Menüpunkt Bauteile dient zur Berechnung des U Wertes der Hüllflächenbauteile des Projektes gem. ÖNORM EN ISO 6946. Bauteile Übersicht 1) BB Blatt Ausdruck des bauphysikalischen Berechnungsblattes

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen ) 1. Übung (KW 15/16) Aufgabe 1 (T 2.3 Eisblumen ) Eine Schaufensterscheibe in Reinholdshain, einem Ortsteil von Dippoldiswalde, hat die Dicke d. Die Wärmeleitfähigkeit des Glases ist λ, die Wärmeübergangskoeffizienten

Mehr

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung...3 1.2 Definitionen... 5 1.2.1 Wärmestrom und Wärmestromdichte... 5 1.2.2 Wärmeübergangszahl und Wärmedurchgangszahl...5

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 9. März 20 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

KLAUSUR HEIZTECHNIK II SS Name: Vorname: Gesamtpunktzahl: Aufgabe 25 Punkte

KLAUSUR HEIZTECHNIK II SS Name: Vorname: Gesamtpunktzahl: Aufgabe 25 Punkte Fachhochschule Gießen-Friedberg Prof. Dr.-Ing. Boris Kruppa KLAUSUR HEIZTECHNIK II SS 2010 Fachbereich MMEW Montag, 12. Juli 2010 Name: Vorname: Gesamtpunktzahl: 110 Matrikelnummer: Erreichte Punktzahl:

Mehr

in Zusammenarbeit mit jäckel architekten, Oberwesel

in Zusammenarbeit mit jäckel architekten, Oberwesel Beschreibung des Energiekonzepts zum Neubau eines Verwaltungsgebäudes der Rhein-Hunsrück-Entsorgung RHE Vorlage für die Gestaltung der Informationstafel im Foyer des Gebäudes Auftraggeber RHE Projektnummer

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

These 3 Detail. Das Raumklima wird von mehreren Faktoren beeinflusst. In diesem Thesenpapier wird auf folgende Punkte eingegangen:

These 3 Detail. Das Raumklima wird von mehreren Faktoren beeinflusst. In diesem Thesenpapier wird auf folgende Punkte eingegangen: These 3 Detail These Ist eine Mauer aus Sichtbackstein genügend dimensioniert, kann im Innern eines Gebäudes auch ohne eine Wärmedämmung ein angemessenes und konstantes Klima erzeugt werden. Das Raumklima

Mehr

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I Musterlösung WS08 1. Aufgabe (26 Punkte) a) Massen in den Kammern b) Kraft in der Kolbenstange (Freischnitt System I): c) Gleichungssystem m 1 = p 0V 0, m 2 = p 0/4 2V 0 = m 1 RT 0 RT 0 2 F = M g Gleichgewicht:

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Strukturbildung und Simulation technischer Systeme

Strukturbildung und Simulation technischer Systeme Leseprobe aus Kapitel 13,Wärme-Technik des Buchs Strukturbildung und Simulation technischer Systeme Weitere Informationen zum Buch finden Sie unter strukturbildung-simulation.de Wenn die vorher behandelten

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Herzlich Willkommen zur Präsentation

Herzlich Willkommen zur Präsentation Herzlich Willkommen zur Präsentation AM ANFANG ETWAS PHYSIK Wir unterscheiden 3 Arten von Wärme, die in jeder Heizung erzeugt werden: Wärmearten = Art der Wärmeübertragung 1. Konduktion/Wärmeleitung findet

Mehr

Elias. Die Heizung. Zusammenfassung Feuchtigkeit & Aufbau

Elias. Die Heizung. Zusammenfassung Feuchtigkeit & Aufbau Elias. Die Heizung. Zusammenfassung Feuchtigkeit & Aufbau Wichtig zum Verständnis. Welche Auswirkung hat Mauerfeuchte auf die Heizkosten? Wie wurde vor der Einführung von wasserführenden Zentralheizungen

Mehr

BOX 22. Energiesparen durch richtiges Lüften.

BOX 22. Energiesparen durch richtiges Lüften. Energiesparen durch richtiges Lüften. Unser Modell ist ein beheizbares Häuschen. An diesem Häuschen könnt ihr selber ausprobieren, wie sich die Raumtemperatur im Häuschen beim Lüften verändert. Wir empfehlen

Mehr

Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag

Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag CBR 23.09.205 Sanitär Heizung Klima - Technische Mathematik von Herbert Zierhut 5. Auflage Seite 87f Aufgabe 29. Berechnen

Mehr