Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen )

Größe: px
Ab Seite anzeigen:

Download "Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 1. Übung (KW 15/16) Eisblumen )"

Transkript

1 1. Übung (KW 15/16) Aufgabe 1 (T 2.3 Eisblumen ) Eine Schaufensterscheibe in Reinholdshain, einem Ortsteil von Dippoldiswalde, hat die Dicke d. Die Wärmeleitfähigkeit des Glases ist λ, die Wärmeübergangskoeffizienten sind innen α i (Luft ruhend) und außen α a (Luft leicht bewegt). Im Innenraum wird die Temperatur ϑ i konstant gehalten. Am Morgen des 25. März 213 wurden an der Innenseite der Scheibe Eisblumen beobachtet. Wie tief muss die Außentemperatur ϑ a in der Nacht mindestens gewesen sein? d = 13 mm, ϑ i = 14 C, λ =.85 W m 1 K 1, α i = 12.5 W m 2 K 1, α a = 25 W m 2 K 1, (Tatsächlich betrug die tiefste Temperatur im benachbarten Ortsteil Reinberg in dieser Nacht 18 C.) Aufgabe 2 (T 2.6 Wasserspeicher I ) Ein Wasserspeicher hat die Oberfläche A. Seine Wand besteht aus Eisenblech der Dicke l 1, Glaswolle der Dicke l 2 und Eisenblech der Dicke l 3. Die Wand wird als eben angesehen. Der Speicher enthält Wasser der Temperatur ϑ i. Die Außentemperatur sei ϑ a. (a) Man skizziere den Temperaturverlauf ϑ(l) von innen nach außen! (b) Wie groß ist der Wärmedurchgangskoeffizient k? (c) Welche Wärme Q 1 muss der Heizkörper im Speicher in der Zeit t 1 an das Wasser abgeben, damit die Temperatur konstant bleibt? Welcher Heizleistung P entspricht das? (d) Welche Temperatur wird man an der Außenwand des Speichers messen? A = 1.2 m 2, l 1 = 3. mm, l 2 = 5 mm, l 3 = 1. mm, ϑ i = 95 C, ϑ a = 15 C, t 1 = 1 h α i = 6 W m 2 K 1 Übergang Wasser/Eisen α m = 15 W m 2 K 1 Übergang Eisen/Glaswolle α a = 3 W m 2 K 1 Übergang Eisen/Luft λ 1 = 58 W m 1 K 1 Wärmeleitung Eisen λ 2 =.48 W m 1 K 1 Wärmeleitung Luft Jens Patommel <patommel@xray-lens.de> Seite 1 von 9

2 Aufgabe 3 (T 2.7 Wasserspeicher II ) Der in Aufgabe T 2.6 beschriebene Wasserspeicher fasst Wasser der Masse m. (a) Berechnen Sie, nach welcher Funktion die Wassertemperatur ϑ mit der Zeit t abnimmt, wenn die Heizung abgeschaltet wird! Die Anfangstemperatur des Wassers sei ϑ i, die Außentemperatur ϑ a sei konstant. (b) Die Genauigkeit der Messung der Wassertemperatur sei so, dass Unterschiede der Größe T nicht mehr festgestellt werden können. Nach welcher Zeit t 1 wird man daher sagen können, dass die Wassertemperatur von ihrem Anfangswert ϑ i auf die Außentemperatur ϑ a abgesunken ist? m = 1 kg, ϑ i = 95 C, ϑ a = 15 C, T =.5 K, c W = 4.19 kj kg 1 K 1 Jens Patommel <patommel@xray-lens.de> Seite 2 von 9

3 Lösung zu Aufgabe 1 Wir setzen zunächst voraus, dass wir es mit einer stationären Situation zu tun haben, soll heißen, die Temperatur ist an jedem Ort zeitunabhängig. Insbesondere soll dies für die 4 Temperaturen ϑ i, ϑ 1, ϑ 2 und ϑ a gelten. Die Heizung im Innern des Raumes sorgt dafür, dass trotz des Wärmetransports die Temperatur im Innenraum nicht abnimmt, sondern konstant bleibt. Die Außenlufttemperatur können wir ebenfalls als konstant annehmen, weil sich die nach draußen transportierte Wärme sehr weit verteilt und dadurch der Temperaturanstieg der riesigen außerhalb des Gebäudes befindlichen Luftmassen kaum messbar ist, d. h. die Luft auf der Straße bildet ein sehr großes Wärmereservoir. Wenn nun ϑ i und ϑ a hinreichend lange konstant bleiben, stellt sich auch der Temperaturverlauf zwischen diesen beiden Temperaturen konstant ein: an den Grenzflächen als konstante Sprünge und dazwischen als gleichbleibende linear fallende Temperaturkurve (siehe Abbildung). Temperatur i d a # i 1. # # 2 # a Luft innen Glasscheibe Luft außen Ort Wir untersuchen jetzt den Wärmetransport von der Luft im Innenraum des Gebäudes durch die Fensterscheibe nach draußen entlang der folgenden Kette: 1. Wärmeübergang von der Luft im Innenraum zur Innenseite der Glasscheibe, 2. Wärmeleitung von der Innenseite zur Außenseite der Scheibe, 3. Wärmeübergang von der Innenseite der Glasscheibe zur Außenluft. An keinem der drei Übergänge wird Wärme in andere Energieformen noch wird sonstige Energie in Wärme umgewandelt. Dies ist der Fall, weil wir eine stationäre Situation voraussetzen. Im nichtstationären Fall, also wenn zum Beispiel die Fensterscheibe an bestimmten Orten mit der Zeit erwärmt oder abgekühlt würde, würde Wärme in Innere Energie oder Innere Energie in Wärme umgewandelt. Dies ist hier Jens Patommel <patommel@xray-lens.de> Seite 3 von 9

4 nicht der Fall, außerdem verichtet die Wärme keine Arbeit (es wird nichts ausgedehnt noch beschleunigt), so dass gemäß erstem Hauptsatz der Thermodynamik der Wärmestrom überall gleich groß sein muss: Q 1 = Q 2 = Q 3 = Q. Q 1 = Q = α i A (ϑ i ϑ 1 ) (1.1) Q 2 = Q = λ d A (ϑ 1 ϑ 2 ) (1.2) Q 3 = Q = α a A (ϑ 2 ϑ a ) (1.3) Die Gleichungen (1.1), (1.2) und (1.3) bilden ein Gleichungssystem für die 5 Variablen Q, ϑ i, ϑ 1, ϑ 2 und ϑ a, wobei die beiden Temperaturen ϑ i und ϑ 1 fest vorgegeben sind (14 C Raumlufttemperatur und C zum Bilden der Eisblumen auf der Fensterinnenseite), so dass wir es mit einem Gleichungssystem aus drei Gleichungen mit drei Unbekannten zu tun haben: Q = α i A (ϑ i ϑ 1 ) (1.4) Q = λ d A (ϑ 1 ϑ 2 ) (1.5) Q = α a A (ϑ 2 ϑ a ) (1.6) Wie man dieses Gleichungssystem löst, ist Geschmacksache. Zum Beispiel kann man aus (1.5) und (1.6) die Variable ϑ 2 und danach mittels (1.4) das Q eliminieren: (1.5) d Q } [ = ϑ λa 1 ϑ 2 (+) d (1.6) 1 Q = α aa = ϑ 2 ϑ a λa + 1 ] Q = ϑ 1 ϑ a α a A [ (1.4) d = λa + 1 ] α i A (ϑ i ϑ 1 ) = ϑ 1 ϑ a α a A ϑ a = ϑ 1 α i [ d λ + 1 α a ] (ϑ i ϑ 1 ). Wir setzen die gegebenen Werte ein und erhalten [ ] 13 1 = C 12.5 W m 2 K 1 3 m.85 W m 1 K W m 2 K 1 (14 C C) }{{} 14 K = 9.7 C. Eisblumen können sich natürlich auch dann bilden, wenn die Scheibentemperatur der Fensterinnenseite kleiner als C ist, d. h. der errechnete Wert gibt an, wie kalt die Luft auf der Straße mindestens gewesen sein muss, 9.7 C oder kälter. Alternativer Lösungsweg Ein anderer und etwas kürzerer Lösungsweg ist über den Wärmedurchgangskoeffizienten k 2,3 möglich, welcher die beiden Schritte 2. und 3. verknüpft. Auf diese Weise erspart man sich das Eliminieren der Temperatur ϑ 2 : [ d Q = k 2,3 A (ϑ 1 ϑ a ) mit k 2,3 = λ + 1 ] 1. α a Jens Patommel <patommel@xray-lens.de> Seite 4 von 9

5 Dies kann sofort mit (1.4) gleichgesetzt werden, wodurch man das Q loswird, [ d α i A (ϑ i ϑ 1 ) = λ + 1 ] 1 A (ϑ 1 ϑ a ), α a was sogleich nach ϑ a aufgelöst wird: [ d ϑ a = ϑ 1 α i λ + 1 ] (ϑ i ϑ 1 ). α a Lösung zu Aufgabe 2 (a) Im stationären Fall, also wenn die Heizung für konstante Wassertemperatur im Behäler sorgt und die Außenlufttemperatur konstant bleibt, stellt sich die in der Abbildung dargestellte Situation ein. i m m a # i l 1 l 2 l 3 Temperatur # # a Wasser Blech innen Glaswolle Blech außen Luft Ort Die Wassertemperatur ϑ i ist überall gleich, die Temperaturkurve ist also eine horizontale Linie. Beim Übergang von Wasser in Metall tritt ein Temperatursprung auf, der aber vergleichsweise klein ist, da der Wärmeübergangskoeffizient α i sehr groß ist. Im Eisenblech nimmt die Temperatur linear ab, wobei die Temperaturkurve aufgrund der hohen Wärmeleitfähigkeit nur eine sehr kleine Steigung aufweist. Eisen ist offensichtleich nicht besonders gut als Wärmeisolierung einsetzbar. An den Übergängen Eisen/Glaswolle bzw. Glaswolle/Eisen tritt hingegen ein recht großer Temperatursprung auf (kleines α m ). Außerdem ist der Wärmeleitkoeffizient λ 2 ziemlich klein, so dass die Temperatur innerhalb der Glaswolle stark abnimmt. Aus diesem Grund ist Glaswolle ein hervorragendes Wärmeisoliermaterial. Beim Übergang Jens Patommel <patommel@xray-lens.de> Seite 5 von 9

6 von Eisen in Luft gibt es noch einmal aufgrund des niedrigen Übergangskoeffizienten α a einen kräftigen Temperatursprung, wobei hier genaugenommen die Luftbewegung und die Luftfeuchtigkeit eine große Rolle spielen; der angegebene Wert ist nur ein grober Durchschnittswert. (b) Wir berechnen den Wärmedurchgangskoeffizienten als reziproke Summe der Kehrwerte: [ 1 k = + l l l ] 1 [ 1 = l 1 + l 3 + l ] 1 2 α i λ 1 α m λ 2 α m λ 1 α a α i α m α a λ 1 λ 2 =.92 W m 2 K 1. (c) Es sind der Wärmedurchgangskoeffizienten k sowie die Temperaturdifferanz zwischen dem Wasser im Behälter und der Luft jenseits der Behälterwand bekannt; daraus lässt sich der Wärmestrom berechnen: Q = ka (ϑ i ϑ a ) =.92 W m 2 K m 2 (95 C 15 C) = 88.2 W. Damit die Temperatur des Wassers im Speicher konstant bleibt, muss die Heizleistung P = 88.2 W betragen. Binnen einer Stunde fließt die Wärmemenge Q = Qt = P t = 88.2 W 36 s = 317 W s = 317 J. (d) Durch die Außenwand des Speichers fließt der in (c) berechnete Wärmestrom Q = 88.2 W. An dieser Grenzfläche gilt die Gleichung Q = α a A (ϑ ϑ a ), welche sich nach der gesuchten Temperatur ϑ auflösen lässt: ϑ = ϑ a + Lösung zu Aufgabe 3 Q α a A = W C + 3 W m 2 K m 2 = 17.4 K. (a) Wenn die Heizung im Wasserspeicher ausgeschaltet wird (Zeitpunkt t = ), so fließt aus dem Innern des Behälters Wärme ab, ohne dass Wärmeenergie aus der Heizung nachgeliefert wird, was zu einer Absenkung der Inneren Energie und somit zu einer Absenkung der Temperatur ϑ(t) des gespeicherten Wassers führt. Der wegtransportierte Wärmestrom lautet zum Zeitpunkt t Q(t ) = ka [ϑ(t ) ϑ a ]. (3.1) Die gesamte während des Zeitintervalls [, t] wegtransportierte Wärmemenge beträgt Q(, t) = dt Q(t ) (3.2) Jens Patommel <patommel@xray-lens.de> Seite 6 von 9

7 Dies führt nach dem ersten Hauptsatz der Thermodynamik zu einer Änderung der Inneren Energie von U(, t) = W (, t) Q(, t) = Q(, t), (3.3) wobei die während der Zeit [, t] verrichtete Arbeit W (, t) = beträgt, denn Arbeit wird nicht verrichtet (Wärmeausdehnungseffekte lassen wir unberücksichtigt). Das negative Vorzeichen bedeutet, dass positive abgeführte Wärme zu einer Erniedrigung der Inneren Energie des Wassers führt. Die kalorische Zustandsgleichung gibt einen Zusammenhang zwischen der Änderung der Inneren Energie und der Änderung der Temperatur an: U(, t) = [ϑ(t) ϑ()] ϑ(t) ϑ() = U. (3.4) Hierin werden die Gleichungen (3.1) (3.3) eingesetzt, so dass die Gleichung ϑ(t) ϑ() (3.4) = U (3.3) = Q (3.2) = = ϑ(t) ϑ() = ka dt Q(t ) (3.1) = dt [ϑ(t ) ϑ a ] herauskommt, die wir auf beiden Seiten nach t ableiten: dϑ(t) dt dϑ() dt dϑ(t) dt = ka d dt dt [ϑ(t ) ϑ a ] = ka [ϑ(t) ϑ a ]. dt ka [ϑ(t ) ϑ a ] Diese Differentialgleichung lösen wir mittels Trennung der Variablen (siehe auch Aufgabe 7 der Nullten Übung des Wintersemesters 212). Dazu bringen wir alle Terme, die ϑ und dϑ anthalten auf die eine und alle Terme, die t und dt enthalten auf die andere Gleichungsseite, dt = ka und führen das bestimmte Integral aus: dϑ ϑ ϑ a, dt = ka t t ϑ(t) ϑ() dϑ ϑ ϑ a = ka log ϑ ϑ a t = ka ϑ(t) ϑ() [ log ϑ(t) ϑ a log ϑ() ϑ a ] Jens Patommel <patommel@xray-lens.de> Seite 7 von 9

8 t = ka log ϑ(t) ϑ a ϑ i ϑ a. (3.5) Im letzten Schritt habe ich ϑ() durch ϑ i ersetzt, denn zum Zeitpunkt (Abschalten der Heizung) hat die Wassertemperatur gerade den Wert ϑ i. Gleichung (3.5) werden wir in Teilaufgabe (b) verwenden, um den Zeitpunkt zu ermitteln, ab dem sich die Wassertemperatur nicht mehr messbar ändert. Jetzt wird jedoch erst mal nach ϑ(t) aufgelöst: (3.5) log ϑ(t) ϑ a ϑ i ϑ a = ka t Da sich die Wassertemperatur (streng) monoton auf die Umgebungstemperatur abkühlt, ist die Differenz ϑ(t) ϑ a stets positiv. Gleiches gilt für die Differenz ϑ i ϑ a, so dass die Betragsstriche im Logarithmus unnötig sind und weggelassen werden können. Damit folgt ϑ(t) ϑ a ϑ i ϑ a ( ) ka = exp t ( ) ka ϑ(t) = ϑ a + (ϑ i ϑ a ), exp t das heißt, die Wassertemperatur kühlt sich exponentiell auf die Umgebungstemperatur ab. Die beiden folgenden Abbildungen zeigen den zetilichen Temperaturverlauf des Wassers in linearer und logarithmischer Darstellung., #(t) #(t) # a # [ C] # [ C] T # a + T Zeit / Stunden t 1 Zeit / Stunden t 1 Jens Patommel <patommel@xray-lens.de> Seite 8 von 9

9 (b) Es ist der Zeitpunkt zu ermitteln, ab dem die Wassertemperatur weniger als T von der Umgebungstemperatur abweicht. Dazu ersetzen wir in Gleichung (3.5) die Differenz ϑ(t) ϑ a durch T : t 1 = mc ( ) W T ka log = 1 kg 4.19 kj ( ) kg 1 K 1.5 K ϑ i ϑ a.92 W m 2 K m 2 log 8 K = s log(16) = s = 535 h = 22.3 d. Unter den in der Aufgabe gegebenen Umständen dauert es also reichlich drei Wochen, bis sich die Wassertemperatur nach Abschalten der Heizung auf die Umgebungstemperatur abkühlt. Quellen Die Aufgaben sind entnommen aus: Peter Müller, Hilmar Heinemann, Heinz Krämer, Hellmut Zimmer, Übungsbuch Physik, Hanser Fachbuch, ISBN: Die Übungs- und Lösungsblätter gibt es unter Die Homepage zur Vorlesung findet sich unter Jens Patommel <patommel@xray-lens.de> 9

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine ) 3. Übung KW 19/20) Aufgabe 1 T 4.5 Carnot-Wärmekraftmaschine ) Eine Carnot-Wärmekraftmaschine arbeitet zwischen den Temperaturen und. Während der isothermen Expansion vergrößert sich das Volumen von auf

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 2. Übung (KW 17/18) Eistemperatur ) Verbundfenster )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 2. Übung (KW 17/18) Eistemperatur ) Verbundfenster ) 2. Übung (KW 17/18) Aufgabe 1 (T 1.5 Eistemperatur ) Eis (Masse m E ) wird in siedendes Wasser (Masse m W ) gebracht. Die Mischungstemperatur ist ϑ M. Als Kalorimeter dient ein Thermogefäß, dessen Wärmekapazität

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond?

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 7. Erde und Mond ) (b) Welche Gewichtskraft hat die Mondlandeeinheit auf dem Mond? Aufgabenblatt 7 Aufgabe 7.2 Erde und ond ) Die Landeeinheit einer ondsonde habe auf der Erde eine Gewichtskraft von 20 000 N. Der Radius der Erde beträgt r E = 6370 km, einen Faktor 3.6 größer als derjenige

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 3. Übung (KW 19/20) Temperaturen ) Dampfmaschine )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 3. Übung (KW 19/20) Temperaturen ) Dampfmaschine ) 3. Übung (KW 19/20) Aufgabe 1 (T 4.1 Temperaturen ) Zwischen den beiden Wärmespeichern einer Carnot-Maschine (Wirkungsgrad η) besteht eine Temperaturdifferenz T. Welche Temperaturen und T t haben die beiden

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18) 2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf

Mehr

ENERGIE BAUPHYSIK TGA

ENERGIE BAUPHYSIK TGA ENERGIE BAUPHYSIK TGA Prof. Dipl.-Ing. Architektin Susanne Runkel ENERGIE, BAUPHYSIK UND TGA PROGRAMM WS 2016/17 1. 05.10.2016 Einführung, Entwicklung und Hintergrund Bauphysik 2. 12.10.2016 Wärmetransport

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum

Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum Universität Duisburg-Essen Fachbereich Ingenieurwissenschaften IVG / Thermodynamik Dr. M. A. Siddiqi Schnupperpraktikum 1 1. Semester Wärmeverlust durch verschiedene Wandmaterialien in einem kleinen Haus

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 9. März 20 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

16.1 Arten der Wärmeübertragung

16.1 Arten der Wärmeübertragung 16 Wärmeübertragung 16.1 Arten der Wärmeübertragung Bei der Wärmeübertragung, die gemäß dem 2. Hauptsatz der Wärmelehre nur bei Vorliegen einer Temperaturdifferenz stattfindet, sind drei Arten zu unterscheiden:

Mehr

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser SC-PROJEKT EISWÜRFEL: HÖHE = 21MM Patrick Kurer & Marcel Meschenmoser 2.1.2013 INHALTSVERZEICHNIS Inhaltsverzeichnis... 1 Allgemeine Parameter... 2 Aufgabe A Allgemeine Berechnung des Eiswürfels... 2 Aufgabe

Mehr

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom ) Technische Universität Dresden Seite 1 Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom 5.05.09) Beachte: In der Vorlesung wurden z. T. andere Symbole verwendet. Vorlesung Ergänzungsskript Bezeichnung

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

Thermodynamik II Musterlösung Rechenübung 8

Thermodynamik II Musterlösung Rechenübung 8 Thermodynamik II Musterlösung Rechenübung 8 Aufgabe a) Annahmen: (a) stationärer Zustand (b) -dimensionale Wärmeleitung (x-richtg.) (c) λ = konst., α = konst. (d) keine Wärmequellen (e) keine Wärmestrahlung

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 27. Juli 202 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Übungsaufgaben thermische Verfahrenstechnik

Übungsaufgaben thermische Verfahrenstechnik Übungsaufgaben thermische Verfahrenstechnik Aufgabe 1 Es soll überprüft werden, ob für die ideale Gasgleichung gilt: dp = 0 n R T p = p(t, V) = V Aufgabe 2 Es soll festgestellt werden, ob die angegebenen

Mehr

Verbesserung des Wärmetransports:

Verbesserung des Wärmetransports: 7. Wärmeübertragung durch berippte Flächen A b ϑ ϑ ) ( a Grundgleichung i Verbesserung des Wärmetransports: k zeigt 3 Möglichkeiten für 1.) Vergrößerung der Temperaturdifferenz: Durchführbarkeit: Meist

Mehr

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Lösungen zu den Zusatzübungen zur hysik für Ingenieure (Maschinenbau) (WS 13/14) rof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Zusatzübung (Lösung) alle Angaben ohne Gewähr Zusatzaufgabe

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 10/11. Rakete 1 )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 10/11. Rakete 1 ) Physik 1 Hydrologen/VNT, WS 14/15 Lösungen Aufgabenblatt 1/11 Aufgabenblatt 1/11 Aufgabe 1 M 5.1 Rakete 1 ) Eine Rakete hat die Startmasse m und hebt mit der Anfangsbeschleunigung a senkrecht vom Boden

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #4 am 3.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau 4 V π R Δp. Formen Sie die Größengleichung = in eine Zahlenwertgleichung t 8η l 4 V / m ( R / mm) Δp / MPa = α um und bestimmen Sie die Zahl α! t /

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 4. Übung (KW 22/23) Generator )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 4. Übung (KW 22/23) Generator ) 4. Übung (KW 22/2) Aufgabe 1 (E 1. Generator ) Bei einem Generator wird die Drehzahl so erhöht, dass die Stromstärke in der Zeit t 1 von Null auf I 1 nach der Funktion I(t) = kt 2 anwächst (k ist eine

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 4. August 2009 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

1 Näherung quasistatische Temperaturverteilung

1 Näherung quasistatische Temperaturverteilung 1 Näherung quasistatische Temperaturverteilung Behandelt wird das Braten von Fleisch, insbesondere das Braten einer Gans Die Gans wird als kugelförmig mit dem Radius r a angenommen Im Anfangszustand habe

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

Praktikum - Wärmepumpe

Praktikum - Wärmepumpe Praktikum - Wärmepumpe chris@university-material.de, Arthur Halama Inhaltsverzeichnis 1 Theorie 2 2 Durchführung 2 2.1 Prinzip............................................ 2 2.2 Messung...........................................

Mehr

Reglungstechnik Einführung Seite 1 von 10

Reglungstechnik Einführung Seite 1 von 10 Reglungstechnik Einführung Seite 1 von 10 Seite A Kessel-Wasser-Temperatur-Regelung 1 B Kessel-Wasser-Temperatur-Regelung (witterungsgeführt) 3 C Vorlauf-Temperatur-Regelung (witterungsgeführt) 4 D Fußboden-Heizungs-Temperatur-Regelung

Mehr

Thermodynamik II Klausur SS 2006

Thermodynamik II Klausur SS 2006 Thermodynamik II Klausur SS 0 Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten / Blatt Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag

Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag Aufgaben zur U-Wert-Berechnung Rechenbuch SHK Technische Mathematik Lösungsvorschlag CBR 23.09.205 Sanitär Heizung Klima - Technische Mathematik von Herbert Zierhut 5. Auflage Seite 87f Aufgabe 29. Berechnen

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Klausur. "Technische Wärmelehre" am 02. September 2010

Klausur. Technische Wärmelehre am 02. September 2010 Klausur "Technische Wärmelehre" am 02. September 2010 Diplomvorprüfung im - Diplomstudiengang Elektrotechnik und - Diplomstudiengang Elektrotechnik mit der Studienrichtung Technische Informatik Bachelorprüfung

Mehr

Referat: Kühlkörper von Florian Unverferth

Referat: Kühlkörper von Florian Unverferth von Florian Unverferth Quelle: www.fischerelektronik.de Inhalt 1) Wärmeübertragung 2) Kühlkörper Definition 3) Verlustleistung 4) Wärmewiderstand 5) Kühlarten 6) Berechnung eines Kühlkörpers 7) Einflüsse

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 26. 02. 2019 im Fach Technische Thermodynamik I Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 30 Dauer: 25 Minuten Regeln

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und / Wärmedurchlasswiderstand von Luftschichten Ruhende Luftschicht: Der Luftraum ist von der Umgebung abgeschlossen. Liegen kleine Öffnungen zur Außenumgebung vor und zwischen der Luftschicht und der Außenumgebung

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme.

Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme. 1 Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Tutorium Physik 1. Wärme.

Tutorium Physik 1. Wärme. 1 Tutorium Physik 1. Wärme. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge,

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge, 3 Wärme 3.1 Lernziel Die Studierenden vertiefen das Verständnis der Begriffe Innere Energie, Wärme, spezifische Wärmekapazität und molare Wärme von Festkörpern und Flüssigkeiten. Sie können den Wasserwert

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 30.01.015 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Projektbericht Kondensation an einem Fenster

Projektbericht Kondensation an einem Fenster Projektbericht Kondensation an einem Fenster Florian Hanzer Ruth Kalthaus Sommersemester 2009 Einleitung Da Glas ein relativ guter Wärmeleiter ist, sind Fenster einer der größten Schwachpunkte in Bezug

Mehr

Sämtliche Rechenschritte müssen nachvollziehbar sein!

Sämtliche Rechenschritte müssen nachvollziehbar sein! und Bioverfahrenstechnik Seite 1 von 5 Name: Vorname: Matr. Nr.: Sämtliche Rechenschritte müssen nachvollziehbar sein! Aufgabe 1 (Wärmeleitung), ca. 32 Punkte: Eine L = 50 m lange zylindrische Dampfleitung

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 29. 11. 2004 oder 6. 12. 2004 1 Aufgaben 1. In einer Metall-Hohlkugel (Innenradius

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen - Lösungen

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen - Lösungen Ferienkurs Experimentalphysik II Thermodynamik Grundlagen - Lösungen Lennart Schmidt 08.09.011 Aufgabe 1: Berechnen Sie den Volumenausdehnungskoeffizienten für das ideale Gas. Zustandsgleichung des idealen

Mehr

Wärmeübertrager ein Exkurs in zwei Welten

Wärmeübertrager ein Exkurs in zwei Welten Wärmeübertrager ein Exkurs in zwei Welten Dipl.-Ing. Roland Kühn Eine Einführung in die Wärmeübertragung und was den konventionellen Wärmeübertrager von einem thermoelektrischen unterscheidet Roland Kühn

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

Wärmeschutz. 2.1 Grundlagen

Wärmeschutz. 2.1 Grundlagen Wärmeschutz 2 2.1 Grundlagen Wärmebewegung durch Bauteile Trennt ein Bauteil einen beheizten Raum von einer Umgebung mit niedrigerer Temperatur, so fließt ein Wärmestrom durch ihn in Richtung des Temperaturgefälles.

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a Abiturprüfung Berufliche Oberschule 007 Mathematik 3 Technik - A I - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a mit f a ( ) ln mit a IR + und der maimalen Definitionsmenge D IR. a fa Teilaufgabe.

Mehr

D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II

D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Dr. A. aspar ETH Zürich, August 8 D-BIOL, D-HAB, D-HEST Prüfung zur Vorlesung Mathematik I/II. a) (i) ( Punkt) Die Ableitung ist mit Kettenregel f () = +. (ii) ( Punkte : jeweils.5 Punkt für a bzw. a und

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Tutorium Physik 1. Wärme.

Tutorium Physik 1. Wärme. Tutorium Physik 1. Wärme. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 19. März 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

Wärmetransport im Supertube Quantum Technology Group

Wärmetransport im Supertube Quantum Technology Group Wärmetransport im Supertube 08.10.2011 Version 2 1 Inhaltsverzeichnis 1. Einleitung 2. Beschreibung des Wärmetransportes 2.1 Einleitung der Wärme durch einen Wärmetauscher 2.2 Transport der Wärme innerhalb

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Musterlösung Übung 7

Musterlösung Übung 7 Musterlösung Übung 7 Aufgabe : Kühlschränke Das Prinzip eines Kühlschrankes ist schematisch in Abbildung - dargestellt. Überträgt man Wärme von der Region mit der tieferen emperatur zur Region mit der

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

27 Energie und Leistung

27 Energie und Leistung 0 Energie und Leistung Wärmeenergie kann in mechanische Energie und umgekehrt verwandelt werden. Wenn eine Dampflokomotive einen Eisenbahnzug fortbewegt, verrichtet sie mechanische Arbeit, denn: Arbeit

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie

Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie Physik 9 1/5 Dr M Ziegler Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie Zu Aufgabe 1 Hilfe 1: Im Aufgabenblatt Entropie, Temperatur und Masse hast du bereits wichtige Eigenschaften

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Bemerkungen Konvektion / Wärmefluss Wärme Gudrun Dirmhirn gudrun_dirmhirn@gmx.at Wärme wird bei der Konvektion

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10.014 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

1 Ein mathematisches Modell und die Änderungsrate

1 Ein mathematisches Modell und die Änderungsrate 1 Ein mathematisches Modell und die Änderungsrate Die Differenzial- und Integralrechnung 1 ist eine Sprache zur Beschreibung des quantitativen Zusammenhangs verschiedener Grössen in einem bestimmten Kontext

Mehr

Wärmelehre Wärme als Energie-Form

Wärmelehre Wärme als Energie-Form Wärmelehre Wärme als Energie-Form Joule's Vorrichtung zur Messung des mechanischen Wärme-Äquivalents alte Einheit: 1 cal = 4.184 J 1 kcal Wärme erwärmt 1 kg H 2 O um 1 K Wird einem Körper mit der Masse

Mehr