Statistische Tests Übersicht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistische Tests Übersicht"

Transkript

1 Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger Gruppen (verbundene Stichproben) 5. Vergleich mehrerer unabhängiger Gruppen (einfache analyse) 6. Vergleich mehrerer abhängiger Gruppen (einfaches Blockexperiment) 7. Weitere analysemodelle 8. Anpassungstests 9. Nichtparametrische Tests 275 / 330

2 Statistische Tests Einführung und Übersicht Diskrete Stetige Sei X ein Merkmal (eine Zufallsvariable), F X (x) = P(X x) = P θ (X x) = F X,θ (x) θ: Parametervektor Beispiel: θ = (µ, σ 2 ) µ: von X σ 2 : von X X 1, X 2,..., X n Beobachtungen von X µ 1 n n i=1 X i = X σ 2 1 n n 1 i=1 (X i X) 2 = s 2 D.h. die unbekannten Parameter werden geschätzt. 276 / 330

3 Statistische Tests: Einführung Diskrete Stetige Problem Schätzungen können sehr schlecht ausfallen! I.a. vertritt der Fachexperte gewisse Hypothesen bzgl. der (unbekannten) Parameterwerte! Diese Hypothesen werden verworfen, wenn die erhaltenen Schätzwerte (z.b. X, s 2 ) mit ihnen nicht in Einklang stehen. 277 / 330

4 Statistische Tests: Einführung Eine verwandte Problemstellung Diskrete Stetige Elektronischer Großhandel: TV-Geräte Händler sagt: Ausschußquote p 1% (p = 0.01) Käufer wäre einverstanden, prüft aber N Geräte! Davon: N f fehlerhaft, N f - Teststatistik N f N Zwei Fehler möglich 100% 1% Ablehnung a) Zufällig N f zu groß! p < 0.01 Käufer lehnt ab b) Zufällig N f zu klein! p groß, p 0.01 Käufer kauft 278 / 330

5 Statistische Tests: Einführung Risiken - Fehler Risiko des Händlers Käufer lehnt gute Ware ab (weil N f zufällig zu groß) Diskrete Stetige 279 / 330

6 Statistische Tests: Einführung Risiken - Fehler Diskrete Stetige Risiko des Händlers Käufer lehnt gute Ware ab (weil N f zufällig zu groß) Risiko des Käufers Käufer kauft schlechte Ware (weil N f zufällig zu klein) 279 / 330

7 Statistische Tests: Einführung Risiken - Fehler Diskrete Stetige Risiko des Händlers Käufer lehnt gute Ware ab (weil N f zufällig zu groß) Risiko des Käufers Käufer kauft schlechte Ware (weil N f zufällig zu klein) Risiken sollen quantifiziert werden: a) P( Nicht kaufen p 1%) b) P( Kaufen p > 1%) Beide Risiken nicht gleichzeitig zu minimieren. 279 / 330

8 Statistische Tests: Einführung Risiken - Fehler Diskrete Stetige Risiko des Händlers Käufer lehnt gute Ware ab (weil N f zufällig zu groß) Risiko des Käufers Käufer kauft schlechte Ware (weil N f zufällig zu klein) Risiken sollen quantifiziert werden: a) P( Nicht kaufen p 1%) b) P( Kaufen p > 1%) Beide Risiken nicht gleichzeitig zu minimieren. Lösung: P( Nicht kaufen p 1%) = α vorgeben P( Kaufen p > 1%) minimieren (oder es versuchen) 279 / 330

9 Hypothesentest Beispiel: Einstichproben-Lagetest Diskrete Stetige Sei µ ein Lageparameter, z.b. der. Sei µ 0 ein vorgegebener Wert. Nullhypothese und Alternativhypothese a) H 0 : µ µ 0 H A : µ > µ 0 b) H 0 : µ µ 0 H A : µ < µ 0 c) H 0 : µ = µ 0 H A : µ µ / 330

10 Hypothesentest Beispiel: Einstichproben-Lagetest Diskrete Stetige Sei µ ein Lageparameter, z.b. der. Sei µ 0 ein vorgegebener Wert. Nullhypothese und Alternativhypothese a) H 0 : µ µ 0 H A : µ > µ 0 b) H 0 : µ µ 0 H A : µ < µ 0 c) H 0 : µ = µ 0 H A : µ µ 0 Teststatistik T(X 1,..., X n ) = X µ 0 s T heißt auch Testgröße, Prüfgröße, Stichprobenfunktion. n 280 / 330

11 Hypothesentest Allgemein Diskrete Stetige Die Entscheidung für H A oder für H 0 wird anhand einer Teststatistik T = T(x 1,..., x n ) gefällt. Liegt der Wert von T in einem vorher bestimmten Bereich K, dem sogen. Ablehnungsbereich oder kritischen Bereich, dann wird H 0 abgelehnt, anderenfalls wird H 0 nicht abgelehnt. T K H 0 ablehnen, Entscheidung für H A T K H 0 nicht ablehnen, Entscheidung für H / 330

12 Hypothesentest Annahme- und Ablehnungsbereich Diskrete Stetige a) H 0 : µ µ 0 H A : µ > µ 0 große Werte von T sprechen für H A. Annahmebereich Krit.Bereich... t krit b) H 0 µ µ 0 H A : µ < µ 0 kleine Werte von T sprechen für H A. Krit.B. Annahmebereich... t krit c) H 0 : µ = µ 0 H A : µ µ 0 große Werte von T sprechen für H A. Annahmebereich.... t krit t krit 282 / 330

13 Hypothesentest Fehler 1. Art, Fehler 2. Art Fehler 1.Art Entscheidung für H A obwohl H 0 richtig ist. Diskrete Stetige 283 / 330

14 Hypothesentest Fehler 1. Art, Fehler 2. Art Fehler 1.Art Entscheidung für H A obwohl H 0 richtig ist. Fehler 2.Art Entscheidung für H 0 obwohl H A richtig ist Diskrete Stetige 283 / 330

15 Hypothesentest Fehler 1. Art, Fehler 2. Art Diskrete Stetige Fehler 1.Art Entscheidung für H A obwohl H 0 richtig ist. Fehler 2.Art Entscheidung für H 0 obwohl H A richtig ist Entscheidung Entscheidung für H 0 für H A H 0 richtig richtig, Sicher- Fehler 1. Art heitswkt. 1 α Fehlerwkt. α. H A richtig Fehler 2.Art richtig, Fehlerwkt. 1-β Güte β 283 / 330

16 Hypothesentest Fehler 1. Art, Fehler 2. Art Diskrete Stetige Fehler 1.Art Entscheidung für H A obwohl H 0 richtig ist. Fehler 2.Art Entscheidung für H 0 obwohl H A richtig ist Entscheidung Entscheidung für H 0 für H A H 0 richtig richtig, Sicher- Fehler 1. Art heitswkt. 1 α Fehlerwkt. α. H A richtig Fehler 2.Art richtig, Fehlerwkt. 1-β Güte β Entscheidung für H 0 heißt nicht notwendig, dass H 0 richtig ist. 283 / 330

17 Hypothesentest Fehler 1. Art, Fehler 2. Art Diskrete Stetige α und (1 β) können nicht gleichzeitig minimiert werden. Man gibt α vor (z.b. α = 0.05), d.h. man behält α unter Kontrolle und versucht die Teststatistik so zu definieren, daß β maximal wird. β (und manchmal auch α) hängen von wahren (i.a. unbekannten) Parametern ab. Signifikanzniveau α = sup θ Θ0 β(θ). Θ 0 : Nullhypothesenraum, also z.b. die Menge {µ : µ µ 0 } oder {µ : µ = µ 0 }. 284 / 330

18 Gütefunktion Diskrete Stetige Gütefunktion β = β(θ) = β(µ) = P µ (T K) K heißt Ablehnungsbereich oder Kritischer Bereich. Beispiel: t-test β(µ) = P(T K) K: kritischer Bereich = P(T > t 1 α,n 1 µ, σ 2 ) = 1 CDF( T, t 1 α,n 1, n 1, nc) nc = n µ µ 0 : Nichtzentralitätsparameter σ t 1 α,n 1 : kritischer Wert K = [t 1 α,n 1, ): kritischer Bereich. 286 / 330

19 Gütefunktion Einseitiger Test Diskrete Stetige 288 / 330

20 Gütefunktion Einseitiger Test Zweiseitiger Test Diskrete Stetige 288 / 330

21 Gütefunktion Diskrete Stetige Einseitiger Test Test_Guete_t.sas Zweiseitiger Test Test_Guete_t2.sas 288 / 330

22 Gütefunktion Diskrete Stetige Ideal: Unter H 0 : Güte 0 (d.h. Fehler 1. Art =0) Unter H A : Güte 1 (d.h. Fehler 2. Art =0) Das ist aber nicht möglich! Ziel: Test mit möglichst großer Gütefunktion (unter H A ). Wir schlagen natürlich nur solche sinnvollen Tests vor. 289 / 330

23 Lagetests (bei Normalverteilungsannahme) Einstichprobenproblem H 0 : µ µ 0 H A : µ > µ 0 H 0 : µ µ 0 H A : µ < µ 0 H 0 : µ = µ 0 H A : µ µ 0 Diskrete Stetige 290 / 330

24 Lagetests (bei Normalverteilungsannahme) Einstichprobenproblem H 0 : µ µ 0 H A : µ > µ 0 H 0 : µ µ 0 H A : µ < µ 0 H 0 : µ = µ 0 H A : µ µ 0 Einstichproben t-test PROC UNIVARIATE PROC TTEST Diskrete Stetige 290 / 330

25 Lagetests (bei Normalverteilungsannahme) Diskrete Stetige Einstichprobenproblem H 0 : µ µ 0 H A : µ > µ 0 H 0 : µ µ 0 H A : µ < µ 0 H 0 : µ = µ 0 H A : µ µ 0 Zweistichprobenproblem H 0 : µ 1 µ 2 H A : µ 1 > µ 2 H 0 : µ 1 µ 2 H A : µ 1 < µ 2 H 0 : µ 1 = µ 2 H A : µ 1 µ 2 Einstichproben t-test PROC UNIVARIATE PROC TTEST 290 / 330

26 Lagetests (bei Normalverteilungsannahme) Diskrete Stetige Einstichprobenproblem H 0 : µ µ 0 H A : µ > µ 0 H 0 : µ µ 0 H A : µ < µ 0 H 0 : µ = µ 0 H A : µ µ 0 Zweistichprobenproblem H 0 : µ 1 µ 2 H A : µ 1 > µ 2 H 0 : µ 1 µ 2 H A : µ 1 < µ 2 H 0 : µ 1 = µ 2 H A : µ 1 µ 2 Einstichproben t-test PROC UNIVARIATE PROC TTEST Einstichproben t-test (verbundene Stichproben) t-test (unverbundene Stichproben) PROC UNIVARIATE PROC TTEST 290 / 330

27 Lage- und Skalentests (bei Normalverteilungsannahme) c-stichprobenproblem H 0 : µ 1 =... = µ c H A : (i, j) : µ i µ j einfache analyse PROC ANOVA, PROC GLM Andere Alternativen sind: µ 1... µ c µ 1... µ c Diskrete Stetige 291 / 330

28 Lage- und Skalentests (bei Normalverteilungsannahme) Diskrete Stetige c-stichprobenproblem H 0 : µ 1 =... = µ c H A : (i, j) : µ i µ j einfache analyse PROC ANOVA, PROC GLM Andere Alternativen sind: µ 1... µ c µ 1... µ c Skalentest Zwei unverbundene Stichproben H 0 : σ 2 1 = σ 2 2 H A : σ 2 1 σ 2 2 PROC TTEST (bei Normalverteilung) 291 / 330

29 p-werte Diskrete Stetige bisher: H 0 abgelehnt oder H 0 beibehalten wenig informativ. Wir könnten uns auch bei jedem α fragen, ob H 0 abgelehnt wird oder nicht. Wenn der Test bei Signifikanzniveau α ablehnt, wird er das auch für α > α tun. Es gibt also ein kleinstes α, bei dem der Test H 0 ablehnt. Der p-wert ist das kleinste α, bei dem wir H 0 ablehnen können. Test_t_p_value 293 / 330

30 p-wert T: (zufällige) Teststatistik, t: beobachtete Teststatistik Diskrete Stetige Zweiseitige Alternative: µ µ 0 p-wert = P 0 ( T > t ) Einseitige Alternative: µ < µ 0 p-wert = P 0 (T < t) Einseitige Alternative: µ > µ 0 p-wert = P 0 (T > t) Der p-wert heißt auch Überschreitungswahrscheinlichkeit. 294 / 330

31 p-wert Illustration Einseitiger Test Diskrete Stetige 295 / 330

32 p-wert Illustration Einseitiger Test Zweiseitiger Test Diskrete Stetige 295 / 330

33 p-wert Illustration Einseitiger Test Zweiseitiger Test Diskrete Stetige Fäche unter der Dichte rechts der schwarzen Linie: Fäche unter der Dichte rechts der roten Linie: p-wert halber p-wert links entsprechend. 295 / 330

34 Bewertung von p-werten Der p-wert ist also, grob, ein Maß für den Grad dafür, dass die Nullhypothese nicht zutrifft. (vorsichtige) Interpretation p-wert Grad des Nicht-Zutreffens von H 0 < 0.01 sehr streng gegen H streng gegen H schwach gegen H 0 > 0.1 wenig oder gar nichts gegen H 0 Diskrete Stetige 296 / 330

35 Bewertung von p-werten Diskrete Stetige Der p-wert ist also, grob, ein Maß für den Grad dafür, dass die Nullhypothese nicht zutrifft. (vorsichtige) Interpretation p-wert Grad des Nicht-Zutreffens von H 0 < 0.01 sehr streng gegen H streng gegen H schwach gegen H 0 > 0.1 wenig oder gar nichts gegen H 0 Warnung: Ein großer p-wert heisst noch lange nicht, dass H 0 zutrifft. H 0 kann zutreffen, Der große p-wert kann aber auch daran liegen, dass der Test niedrige Güte hat! 296 / 330

36 p-wert und kritischer Wert Diskrete Stetige Einseitiger Test, t krit = t 1 α t t krit p-wert α = H 0 angenommen, t > t krit p-wert < α = H 0 abgelehnt. Zweiseitiger Test, t krit = t 1 α/2 t t krit p-wert α = H 0 angenommen, t > t krit p-wert < α = H 0 abgelehnt. Ausgabe bei SAS Wenn nicht anders vermerkt: zweiseitige p-werte. 297 / 330

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/453 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

10 Der statistische Test

10 Der statistische Test 10 Der statistische Test 10.1 Was soll ein statistischer Test? 10.2 Nullhypothese und Alternativen 10.3 Fehler 1. und 2. Art 10.4 Parametrische und nichtparametrische Tests 10.1 Was soll ein statistischer

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

6. Statistische Hypothesentests

6. Statistische Hypothesentests 6. Statistische Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

5.9. Nichtparametrische Tests Übersicht

5.9. Nichtparametrische Tests Übersicht 5.9. Übersicht Es werden die wichtigsten Rang-Analoga zu den Tests in 5.2.-5.6. behandelt. 5.9.0 Einführung 5.9.1 Einstichprobenproblem (vgl 5.2), 2 verbundene Stichproben (vgl. 5.3) Vorzeichentest, Vorzeichen-Wilcoxon-Test

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Exakter Binomialtest als Beispiel

Exakter Binomialtest als Beispiel Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

4 Testen von Hypothesen

4 Testen von Hypothesen 4 Testen von Hypothesen Oft müssen zweiwertige Entscheidungen ( Ja oder Nein ) gefällt werden. Denken wir an die elektronisch gesicherten Waren, wo am Ausgang eines Geschäftes durch eine Maschine geprüft

Mehr

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe

Mehr

Alternativtest Einführung und Aufgabenbeispiele

Alternativtest Einführung und Aufgabenbeispiele Alternativtest Einführung und Aufgabenbeispiele Ac Einführendes Beispiel: Ein Medikament half bisher 10% aller Patienten. Von einem neuen Medikament behauptet der Hersteller, dass es 20% aller Patienten

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

7. Zusammenfassung. Zusammenfassung

7. Zusammenfassung. Zusammenfassung Zusammenfassung Basiswissen Klassifikation von Merkmalen Wahrscheinlichkeit Zufallsvariable Diskrete Zufallsvariablen (insbes. Binomial) Stetige Zufallsvariablen Normalverteilung Erwartungswert, Varianz

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Prof. Dr. J. Böhm-Rietig Mathematik 3 / Statistik FH-Köln, FB 19 Schließende Statistik 02261/

Prof. Dr. J. Böhm-Rietig Mathematik 3 / Statistik FH-Köln, FB 19 Schließende Statistik 02261/ Parametertests Induktive Statistik / Hypothesentests / Signifikanztests Philosophie Der Begriff der statistischen Signifikanz: Statistische Signifikanz befaßt sich mit der Frage, ob es in ausreichendem

Mehr

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419 5.8 8.1 Einführung empirische Verteilungsfunktion 8.2 EDF- Kolmogorov-Smirnov-Test Anderson-Darling-Test Cramer-von Mises-Test 8.3 Anpassungstest auf Normalverteilung - Shapiro-Wilk-Test 8.4. auf weitere

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Einführung in die statistische Testtheorie II

Einführung in die statistische Testtheorie II 1 Seminar: Simulation und Bildanalyse mit Java Einführung in die statistische Testtheorie II Guntram Seitz Sommersemester 2004 1 WIEDERHOLUNG 2 1 Wiederholung Grundprinzip: Annahme: Beobachtungen bzw.

Mehr

GRUNDPRINZIPIEN statistischen Testens

GRUNDPRINZIPIEN statistischen Testens Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und Übersicht über die Vorlesung Teil 1: Deskriptive fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable und Verteilungen Februar 2010 Teil

Mehr

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2010 1 Tests für Erwartungswerte Teststatistik Gauß-Test Zusammenhang zu Konfidenzintervallen t-test

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2013 Diskrete Wahrscheinlichkeitstheorie Javier Esparza Fakultät für Informatik TU München http://www7.in.tum.de/um/courses/dwt/ss13 Sommersemester 2013 Teil V Induktive Statistik Induktive Statistik

Mehr

2.1 Einführung in das Testen von Hypothesen

2.1 Einführung in das Testen von Hypothesen 2.1 Einführung in das Testen von Hypothesen 1 Gliederung 2.1 Einführung in das Testen von Hypothesen 2.1.1 Typische Fragestellungen 2.1.2 Mittelwertvergleich 2.1.2.1 Einstichprobenproblem 2.1.2.2 Zweistichprobenproblem

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis.

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Statistik II und Hypothesentests Dr. Michael Weber Aufgabenbereich Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Ist die zentrale Fragestellung für alle statistischen

Mehr

11 Tests zur Überprüfung von Mittelwertsunterschieden

11 Tests zur Überprüfung von Mittelwertsunterschieden 11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr