Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:"

Transkript

1 ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz). Gunsätzlch sn e vescheene Möglchketen e ämeübetgung möglch: ämeletung, Konvekton un Sthlung: ämeübetgung / \ mt Übetgungsmeum ohne Übetgungsmeum / \ ohne Stoffbewegung mt Stoffbewegung Sthlung ämeletung Konvekton

2 ämeletung Be e ämeletung geben e Moleküle enes festen Köpes, ene Flüssgket oe enes Gses he Schwngungsenege n benchbte Moleküle wete ämeübetgung uch Impulsustusch. Dbe veänen se he Lge m Rum ncht. Im folgenen w nu sttonäe, enmensonle ämeletung betchtet,.h. e empetu änet sch nu n ene Rumchtung e ötlche empetu st zetlch konstnt ( f(t))

3 ämeletung n e ebenen Ene ebene n us homogenem Mtel e Dcke ht n hen Obeflächen e empetuen un. n De uch e n geletete ämestom st em empetugenten /x un e nfläche senkecht zum ämestom popotonl. De Popotonltätsfkto w ls ämeletzhl oe ämeletfähgket bezechnet.

4 Fouesches Gesetz: x f (x) De ämestom fleßt n umgekehte Rchtung zum empetugenten. negtves Vozechen De ämeletfähgket st ene tempetubhängge Stoffkonstnte: gute ämelete: goßes flche Kuvenveluf schlechte ämelete: klenes stele Kuvenveluf x x x

5 De ämeletfähgket De ämeletfähgket st e Enegestom, e be ene nstäke von m uch ene Fläche von m², be ene empetuffeenz von K geletet, w. Mtel Cu l Zegelmuewek Kesselsten Beton Holz Isolestoffe Fenstegls Es Schmeöle sse ssestoff Luft (/m K) ,4-0,6 0,6 -, 0,5-,5 0, 0,0-0,,6, 0, - 0,7 0,- 0,7( 0,00 t) 0,04( 0,00 t)

6 Bestmmung es ämestoms: x Duch Integton es Foueschen Gesetzes knn be Kenntns e ämeletfähgket e ämestom uch e Stecke x beechnet ween: ennung e Vblen: x x - x Integton: (x -x ) ( - ) Mt x -x un - folgt: n, spezfsch: x q n /m².

7 Bestmmung es ämestoms: Legen mehee Schchten vo, nn glt ebenflls fü jeen bschntt s Fouesche Gesetz. D es sch um enen sttonäen Vogng hnelt, muß wegen e Enegeehltung uch jee Schcht e gleche ämestom fleßen. Fü jee Schcht glt: Legen e Schchten cht (ohne Luftsplt) nenne, nn sn e empetuen e ngenzenen Flächen glech. Fü constnt glt: ( ) ( ) ( )

8 Bestmmung es ämestoms: Elmneen e Zwschentempetuen: n n q ) ( ) ( ) (

9 ämeletung uch Rohwäne >

10 Bem Roh änet sch e ueschnttsfläche fü e ämeübetgung n bhänggket von. nmmt mt em Rohus zu, e ämestom blebt be konstnt. E vetelt sch somt nch ußen hn uf ene mme gößee Fläche,.h. e ämeletungswestn w mme göße ken lnee empetuveluf! Foue-Glechung: mt L, R πl : Rohus, R πl L: Rohlänge R L ln R πl q R L π ( q R R ln πl( ) ln π ( ) )

11 Konvekton Be Konvekton bewegen sch e Moleküle enes Flus uch en Rum un tnspoteen be ämeenege. Konvekton st he we ämeletung n Mtee gebunen. Flüssgketen un Gse: schlechte ämeletung, be gute ämetnspot uch Konvekton, elchen lecht beweglch Feststoffe: kene Konvekton, elchen m Gtte fest gebunen

12 ämeämmung uch Luft Enfche Gsschcht wämetnspoteene Konvektonsstömung stellt sch en Isolto (schumtg) uch Untetelung n vele klene Gsäume w e Konvektonsstömung untebunen

13 Fee / ezwungene Konvekton Untescheung von: Konvekton fee Konvekton ezwungene Konvekton (ntülche Konvekton) (künstlch ezeugt) Stoffbewegung uch Dchte- Stoffbewegung uch Duckunteschee unteschee (Luftzkulton) (Pumpen, Ventltoen)

14 Bespel fü fee Konvekton: beheztes Zmme - Luft w uch Ewämung n e Hezung spezfsch lechte stegt nch oben - uch bkühlung n e neen Zmmehälfte w e Luft spezfsch schwee un snkt wee nch unten Luftzkulton Hezung

15 ämeübegng n nnähe: lmne Genzschcht,.h. e elchen bewegen sch uf pllelen Bhnen kene uevemschung e elchen wete weg: lmne oe tubulente Stömung (n bhänggket von e Stömungsgeschwngket, en Egenschften es Flus (sehe Re-Zhl) un e nobefläche ekt n e n: uch nebung c 0 ("nhftbengung") he nu ämeletung

16 Newtonsches Gesetz q q : empetugefälle zwschen Flu un n : ämeübegngszhl n /m² K : flächenspezfsche übegehene ämestom oe ämestomchte n /m²

17 ämeübegngszhl De ämeübegngszhl knn vestnen ween ls e ämestom, e uf m² nfläche, je K empetuffeenz übegeht. hängt z.b. b von: - physklschen Egenschften e Stoffe (Dchte, ämekpztät, ämeletfähgket, Vskostät,...) - t e Stömung un e Stömungsgeschwngket - Geomete es um- oe uchstömten Köpes - Obeflächenbeschffenhet ( beückschtgt uch ämeletung un -sthlung) "In st lles enthlten, ws w ncht wssen

18 ämeuchgng uch ene ebene n: ) ( De ämestom uch e n st n jee Stelle n x-rchtung glech goß: Elmneung e ntempetuen: Fü mehschchtge äne glt nlog: ämeuchgngszhl n /m²k (Mekegel: k st mme klene ls e klenste -et) ) ( ) ( ) ( w w w w n n k k k q

19 ämeuchgng uch Rohwäne R L π ln Fü enschchtge Rohe: Fü mehschchtge Rohe: ämeuchgngszhl n n n R L π ln n n n R k π ln k L q R R Lk R R

20 . Übung L m S 05/06: ämeuchgng Lt.: Elsne, Cebe/Hoffmnn Ene Huswn mt e Fläche 50 m² ht en folgenen ufbu: ußenputz 4 cm, 0,79 /mk Isolton 0 cm 0,0 /mk Zegelmue 4 cm 0,46 /mk Innenputz 4,5 cm 4 0,76 /mk De ämeübegngszhl zwschen Rumluft un n betägt 7,5 /m² K, ejenge zwschen n un ußenluft betägt 5 /m² K. De empetu m Rum betägt t 0 C un e ußenlufttempetu t - C. Emtteln Se.) e ämeuchgngszhl k n /m² K ese n, b.) en spezfschen ämestom q n /m² un en bsoluten ämestom n, (Dskuteen Se, wouch e ämestom entscheen bestmmt st un welchen Effekt e Dämmung ht.) c.) e empetu n e Obefläche e ußensete t w, e empetuen e Genzschchten t, t, t 4 un e empetu n e Obefläche e Innensete t w n C. s wüe sch be ene Innenämmung änen un ws hätte eses fü Konsequenzen?.) Zechnen Se en empetuveluf n e n uf. Emtteln Se e.) e ämeuchgngszhl enes Enfchfenstes k EF n /m² K un en ämestom uch s Fenste be ene Fläche von 4 m² (EF 4 mm, EF,6 /mk,, we oben). f.) e goß wäe e ämestom uch en Defchfenste be gleche Glsstäke un enem Schebenbstn von L mm? De Luft m Zwschenum knn ls uhen ngenommen ween mt L 0,0 /mk un Gls/Luft 5 /m² K. g.) Veglechen Se e spezfschen ämestöme von n, Enfch- un Defchfenste un stellen Se en Effekt e Defchveglsung n Zusmmenhng mt e Fenstegöße m Bezug uf e Göße e n.

21 . Übung L II m S 05/06.) De ämeuchgngszhl k n /m K ese n: k k k n m K 0,04m mk 0,m mk 7,5 0,79 0,0 0,5 m K 4 4 0,4m mk 0,46 0,05m mk 0,76 m K 5 b.) Den spezfschen ämestom n : spezfsch: q 0,5 (0 ( )) K m K bsolut: q 8 50m 400 m 8 q n /m un en bsoluten ämestom c.) De empetu t w n e Obefläche e Innensete: q 8 q t t t t C m ( w ) w 0 8, 9 C 7,5 m K m De empetuen e Genzschchten t, t, t 4 : m q 8 0, q ( t t t t C m 4) 4 w 8,9 8, ,76 mk m q 8 0,04 t t C m 4 8,77 4, 59 C 0,46 mk m q 8 0, t t C m 4,59, 7 C 0,0 mk De empetu t w n e Obefläche e ußensete: m q 8 0,04 t t C m w,7, 68 C 0,79 mk w C

22 Pobe: Beechnung e ußentempetu: t q 8 t C m w,68 C 5 m K.) Zechnen Se en empetuveluf n e n uf t [ C]

23 e.) De ämeuchgngszhl enes Enfchfenstes k EF n /m² K un en spezfschen ämestom q [/m²] uch s Fenste be ene Fläche EF von 4 m² mt ( EF 4 mm; EF,6 /m K; 7,5 /m² K ; 5 /m² K). Fo.s.: k EF 5,66 EF 0,004 m m K EF 7,5,6 5 m K m K m K k EF EF 5,66 4 m² K 74, 48 m K q 74,48 EF 4 m² 8, m² f.) e goß wäe e spezfschen ämestom q [/m² ] uch en Defchfenste be gleche Glsstäke un enem Schebenbstn von L mm? De Luft m Zwschenum knn ls uhen ngenommen ween mt L 0,0 /m K un Gl./L. 5 /m² K. EF L. EF L. EF Fo.s.: k EF EF EF Gl./ L. L. L. Gl./ L. EF EF Gl./ L. L. L. Gl./ L. EF EF 0,004m 0,00m 0,004m 0,00m 0,004m 7,5,6 5 0,0 5,6 5 0,0 5,6 5 m K m K m K m K m K m K m K m K m K m K m K k EF 0,804 m² K

24 k EF EF 0,804 4 m K 0, 9 m K 0,9 q EF 4 m² 5,7 m²

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider TU Deen, AG Mechanche Vefahentechnk, Voleene: D.Ing. Benno Weely 1/7 yklonabchee Lteatu: E. Muchelknautz (Stuttgat), CIT 44 (197), N. 1+, S. 671 Duckelut un Abcheega n yklonen, VDI Wämeatla, 6. Aufl.,

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

9 Integration von Funktionen in mehreren Variablen

9 Integration von Funktionen in mehreren Variablen 9 Integrton von Funktonen n mehreren Vrlen 9 9 Integrton von Funktonen n mehreren Vrlen Der Integrlegrff für Funktonen n mehreren Vrlen st wesentlch velfältger ls der e Funktonen n ener Vrlen. Dem unestmmten

Mehr

Lineare Gleichungssysteme und ihre Lösung

Lineare Gleichungssysteme und ihre Lösung III Lnee Glechungssysteme und he Lösung In den Kpteln II. und II. wude de Bedeutung von Lneen Glechungssysteme (LGS) fü Poleme de Anlytschen Geomete deutlch. eshl stellt sch de Fge nch systemtschen Lösungsvefhen.

Mehr

Grundlagen der Wärme- und Stoffübertragung

Grundlagen der Wärme- und Stoffübertragung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fkultät für Verfhrens- und Systemtechnk Insttut für Strömungstechnk und Thermodynmk Prof Dr-Ing E Specht Vorlesungsmnuskrpt Grundlgen der Wärme- und Stoffübertrgung

Mehr

5. Dynamik starrer ausgedehnter Körper

5. Dynamik starrer ausgedehnter Körper nnhmen: 5. Dnmk ste usgedehnte Köpe bstände m Köpe fest: ncht defomeb, d.h. fü lle ssepunkte, j glt: j ( t) ( t) const j olumen: sse: m m echnsche Dchte: 3 d mt: d d dm kg/ m sse: Homogene sse: dm d dm

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

BSc GG01: Einführung in die Geodäsie WS 2015/16. Prinzipien der Positionsbestimmung Satellitengestützte Positionsbestimmung

BSc GG01: Einführung in die Geodäsie WS 2015/16. Prinzipien der Positionsbestimmung Satellitengestützte Positionsbestimmung BSc GG0: Enführung n e Geoäse WS 05/6 Prnzpen er Postonsbestmmung Stelltengestützte Postonsbestmmung Folen un Frgen zur Lernkontrolle Lmbert Wnnnger, Geoätsches Insttut, TU Dresen Geoäse, Vermessung, Geomtk,

Mehr

5. Mehrkomponentensysteme - Gleichgewichte

5. Mehrkomponentensysteme - Gleichgewichte 5. Mehrkomonentensysteme - lechgewchte 5.1 Phsenglechgewchte Enfluss gelöster Stoffe osmotscher ruck Trennung zweer Lösungen durch sem-ermeble Membrn, de nur für ds Lösungsmttel durchlässg st (z.. Schwensblse,

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

G Bereitstellungsmenge des internationalen öffentlichen Umweltgutes

G Bereitstellungsmenge des internationalen öffentlichen Umweltgutes Insttut für Volkswrtschftslehre und Ökonometre Fkultät Wrtschftswssenschften II cht-koopertve Lösungen und hre Egenschften. Modellrhmen Zur Verenfchung betrchten wr en Zwe-Länder-Szenro. Ene Verllgemenerung

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung ..1 Enkuelvorgng Der schemtsche ufbu ener Rebkulung zegt ds Bld.45. Bld.45 Schemtscher ufbu ener mechnschen Rebkulung Ene ulung wndelt de Drehzhl durch Schluf während des uelvorgnges, ds Drehmoment st

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Contents blog.stromhaltig.de

Contents blog.stromhaltig.de Contents We hoch st egentlch Ihre Grundlast? Ene ncht ganz unwchtge Frage, wenn es um de Dmensonerung ener senannten Plug&Play Solar-Anlage geht. Solarsteckdosensystem für jermann, auch für Meter lautete

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Mikroökonomik. 5.5 Preisstrategien

Mikroökonomik. 5.5 Preisstrategien Mkroökonomk 5.5 Presstrategen 5.5. Presskrmnerung Arten von Presskrmnerung nach Pgou: ersten Graes: Kunen zahlen für jee Enhet hren Reservatonsres zweten Graes: Kunen zahlen ro Enhet n Abhänggket von er

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

Einführung: Sequence Alignment

Einführung: Sequence Alignment lgorthmsche nendungen - Prktkum WS 7/8 ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 - Hener Klocke Fchhochschule Köln Informtk Prktkum: ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 9 ufge Kptel ynmsche

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1 Stehn Brumme, SST,.FS, Mtrelnr. 7 5 44 Aufge... Zegen Se, dss de Folge onvergert und der Grenwert st, d.h. es glt lm Es st u egen, dss ene Nullfolge st D ene Nullfolge st, stellt ene onvergente Folge mt

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

2. Stationäre Wärmeleitung

2. Stationäre Wärmeleitung Sttonäre Wärmeletung Von ttonärer Wärmeletung prcht mn, fll ch de Temperturen nur mt dem Ort, jedoch ncht mt der Zet ändern Der Wärmetrom t dnn bezüglch Ort und Zet kontnt ( Q ɺ kontnt) De Wärmetromdchte

Mehr

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q&

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q& Pro. r.-in. tths n Insttut ür hermsche erhrenstechnk r.-in. homs etze ärmeübertrun I ösun zur. Übun onenston onensert z.b. ssermp n ener kten Fäche nn bet sch n eser Fäche en onenst n em s onenst nch unten

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol.

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol. Verbrennungsprozesse usgehend von desem enfchen Blnzmodell können nhnd der stöchometrschen Umsetzungen der enzelnen Komponenten enes Brennstoffs m Verbrennungsprozess Stoffblnzen erstellt werden, lso z.b.

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

2 Rohrleitungsnetzberechnung

2 Rohrleitungsnetzberechnung Vorlesungsskrpt Hydrulk II - Rohrletungsnetzberechnung. Krchhoffsche Regeln En Netz besteht us mehreren Rohsträngen, de n mehreren Punkten mtennder hydrulsch verbunden snd. (Sehe Abb. -) Abb. -: Rohrletungsnetz

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch egetmte zum uch etet vo Mg. Ev Swy u t We t we? Vebe e Sätze mt em chtge Nme. Fo Pu Nko Ko Vkto Emm... t e ckche ebe Mäche, eh gee cht.... ht ee Sptzme vo eem Refet übe Aute.... ht chefe Zähe u mu ee Zhpge

Mehr

Tirol singt! Didaktische Aufbereitung. Frühling In die Berg bin i gern. zum Lied. Stimmbildung. Tanzanleitung. Instrumentalbegleitung

Tirol singt! Didaktische Aufbereitung. Frühling In die Berg bin i gern. zum Lied. Stimmbildung. Tanzanleitung. Instrumentalbegleitung Trol sngt! Sommer 2015 Nr. 6 2015 2 Trol sngt! Frühlng 2015 Nr. 5 2015 1 ktsche ufberetung zum Led In de Berg bn gern Stmmbldung Tanzanletung Instrumentalbegletung Hörbespel Vdeo Hnwese Ledgut aus Trol

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Fehlerrechnung für Einsteiger Eine beispielorientierte Einführung für Studierende der TUHH

Fehlerrechnung für Einsteiger Eine beispielorientierte Einführung für Studierende der TUHH Fehlerrechnung für Ensteger Ene bespelorenterte Enführung für Studerende der TUHH. Messungen und Ungenugket Vele phsklsche Größen (z.b. ene Länge, Tepertur oder ene Msse) können durch Messungen drekt bestt

Mehr

Signaltransport in Koaxialkabeln

Signaltransport in Koaxialkabeln Sgnaltanspot n Koaxalkabeln Inhaltsvezechns SIGNALTRANSPORT IN KOAXIALKABELN... 1 SKRIPT... 1 1. VERWENDUNGSZWECK UND AUFBAU DES KOAXIALKABELS...1. ERSATZSCHALTBILD DES KOAXIALKABELS....1 Beechnung des

Mehr

d dt Q i dq dt I i vorzeichen = 0 oder I I 2. Vorgänge in elektrischen Netzwerken bei Gleichstrom Ladungserhaltungssatz I 2 I 1 I 3 I 4 I 5 I 6

d dt Q i dq dt I i vorzeichen = 0 oder I I 2. Vorgänge in elektrischen Netzwerken bei Gleichstrom Ladungserhaltungssatz I 2 I 1 I 3 I 4 I 5 I 6 . Vorgänge n elektrschen Netzwerken be Glechstrom. Der Knotenstz (. Krchhoff scher Stz) Ldungserhltungsstz 3 6 5 4 Knotenstz (. Krchhoff scher Stz) d dt Q konst. Q dq dt 0 0 vorzechen 0 oder . Kräfte uf

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2.

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2. INHSERZEIHNIS S IRKIHE ERHEN ER SOFFE HEEROGENE ZUSNSGEBIEE 3. Geche 3. afgehalt 3.3 Sezfche olue v 3. Ethale 3.5 Etoe.6 af/ga Geche, Feuchte uft 3 ÄREÜBERRGUNG 6 3. äeletug 6 3. äeübegag 7 3.3 äeübetagug

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Einige thermodynamische Relationen

Einige thermodynamische Relationen Pof. D. H.-H. Kohle, WS 005/06 PC Ktel A hemodynmsche eltonen A. A Enge themodynmsche eltonen Nchtg zu PC (olumenbhänggket von U, Gbbs-Helmholtz-Glechung) A. hemodynmsche Gundglechungen (Wedeholung von

Mehr

Grundpraktikum M5 Oberflächenspannung

Grundpraktikum M5 Oberflächenspannung Grundpraktkum M5 Oberflächenspannung Julen Kluge 21. Ma 2015 Student: Julen Kluge (564513) Partner: Emly Albert (564536) Betreuer: Dr. Mykhaylo Semtsv Raum: 314 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr