Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion"

Transkript

1 Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 0 ärmetransport durch ärmeleitung und Konvektion in einem Doppelrohrwärmeaustauscher Betreuer: olfgang Rüth Tel: ) Michael Jusek Tel: )

2 Symbolverzeichnis A [m 2 ] Fläche c [mol m -3 ] Konzentration c p [J kg - K - ] spezifische ärmekapazität d [m] Durchmesser k [ m -2 K - ] ärmedurchgangskoeffizient l [m] Länge m [kg s - ] Massenstrom n [mol s - ] Stoffmengenstrom Q [] ärmestrom T [K], [ C] Temperatur ΔT m [K] mittlere logarithmische Temperaturdifferenz V [m 3 s - ] Volumenstrom w [m s - ] Geschwindigkeit α [ m -2 K - ] ärmeübergangskoeffizient β [m s - ] Stoffübergangskoeffizient γ [m m - K - ] thermischer Ausdehnungskoeffizient Δ Differenz δ [m] Dicke η [Pa s] dynamische Viskosität λ [ m - K - ] ärmeleitfähigkeit ν [m 2 s - ] kinematische Viskosität ρ [kg m -3 ] Dichte ρ c [kg m -3 ] Massenkonzentration Dimensionslose Kennzahlen Nu [ - ] Nusselt-Zahl Re [ - ] Reynolds-Zahl Pr [ - ] Prandtl-Zahl Gr [ - ] Grashof-Zahl Indizes and λ Grenzschicht der ärmeübertragung d Diffusionsgrenzschicht a, b Seite a und Seite b des ärmeübertragers äqu Äquivalenz

3 Einleitung Es werden grundsätzlich drei Arten des ärmetransportes unterschieden:. ärmetransport durch Leitung in festen oder in unbewegten flüssigen und unbewegten gasförmigen Stoffen, d. h. lediglich durch thermische Molekularbewegung. 2. ärmetransport durch freie oder erzwungene Konvektion (Mitführung) durch bewegte flüssige oder gasförmige Stoffe. 3. ärmetransport durch Strahlung, der sich ohne Mitwirkung von Materie vollzieht. In der Heiz- und Kühltechnik sind prinzipiell alle drei Arten des ärmetransportes zu berücksichtigen. Bei "direkter" Beheizung, also unmittelbarer Energiezufuhr, ist die Strahlung mit einem großen Anteil an der ärmeübertragung beteiligt. Bei der "indirekten" Beheizung und Kühlung durch stoffliche ärmeträger, die im Bereich von tieferen Temperaturen bis etwa 300 C maßgebend ist, wird die ärme überwiegend durch Leitung und Konvektion übertragen. Bei Isolationsproblemen kann aber der Strahlungsverlust auch bei tiefen Temperaturen entscheidend ins Gewicht fallen. Beim Doppelrohrwärmeaustauscher kann man die ärmeübertragung durch Strahlung unter den gewählten Versuchsbedingungen vernachlässigen. Die ärme wird damit vor allem durch Leitung und Konvektion übertragen. Grundlagen Strömen zwei Flüssigkeiten verschiedener Temperatur entlang einer and (Abb..), so wird ärme von der heißeren Flüssigkeit auf die kältere durch die and übertragen. Einen derartigen Vorgang bezeichnet man als ärmedurchgang. Der ärmedurchgang wird in drei Abschnitte unterteilt:. ärmeübergang von der heißeren Flüssigkeit auf die and.. ärmeleitung durch die and. 3. ärmeübergang von der and auf die kältere Flüssigkeit. ärmeleitung erden die beiden Oberflächen A einer ebenen and (Abb..), deren Dicke betragen möge, auf verschiedener Temperatur T bzw. T' gehalten, so ist die ärmemenge, die in der Zeiteinheit durch die Fläche A strömt, nach dem Fourierschen Gesetz: Q A ( T ' T ). () Die Konstante wird als ärmeleitfähigkeit bezeichnet und ist - im Gegensatz zu dem 2

4 im folgenden Abschnitt definierten ärmeübergangskoeffizienten - eine Stoffkonstante. Die Größe Q wird ärmestrom genannt. λ' λ λ T' T' T T δ δ' λ δ λ Abb.. ärmedurchgang durch eine ebene and mit turbulenter Flüssigkeitsströmung. Die durchgezogene Linie T nach T' gibt den wahren Temperaturverlauf an und die gestrichelte Linie den nach Gl. berechneten. ärmeübergang Der ärmeübergang zwischen einer and und einer Flüssigkeit ist ein komplizierter Vorgang, der von den verschiedensten Einflußgrößen, vor allem aber von dem Strömungszustand der Flüssigkeit, abhängt. Um eine formal einfache Beziehung zu erhalten wird angenommen, dass zwischen der Temperatur der andoberfläche T' w und der mittleren Temperatur der Flüssigkeit T' ein Temperatursprung besteht, was nur bei turbulenter Strömung in guter Näherung zutrifft. Der ärmestrom Q ' pro Flächeneinheit wird dieser Temperaturdifferenz proportional gesetzt, wobei man für ärmeübergang von der Flüssigkeit auf die and Q A T ' T ' ). (2) ( erhält. Der Proportionalitätsfaktor α wird ärmeübergangskoeffizient genannt. Entsprechend gilt für den ärmeübergang von der and auf die zweite Flüssigkeit Q A( T T ). (3) 3

5 ärmedurchgang erden aus Gl. (), (2) und (3), T w und T w eliminiert, so erhalten wir für den stationären Zustand (Q = Q = Q ) die Beziehung Q A ( T ' T ) A k ( T ' T ), (4) d. h. den ärmestrom, der durch die Fläche A von einer Flüssigkeit mit der Temperatur T' auf eine zweite Flüssigkeit der Temperatur T übergeht. Die Konstante der Gleichung (4) k (5) bezeichnet man als ärmedurchgangskoeffizient. Seine Dimension ist gleich der des ärmeübergangskoeffizienten. Anwendung der Ähnlichkeitstheorie auf den ärmeübergang Etwas vereinfacht kann man sich den ärmeübergang von einer and auf eine strömende Flüssigkeit etwa folgendermaßen vorstellen: Die ärmeübertragung kommt durch Leitung und vor allem durch Konvektion zustande. Der Anteil der Konvektion hängt vom Strömungszustand der Flüssigkeit ab, der laminar oder turbulent sein kann. Bei laminarer Strömung kann man sich die Strömung aus Schichten bzw. Stromröhren aufgebaut denken. Die ärme wird lediglich durch Leitung quer zur Strömungsrichtung von der and auf die Flüssigkeit übertragen. Von einer Konvektion kann man nur insofern sprechen, als die durch Leitung von der and an die Flüssigkeit übertragene ärme durch die strömende Flüssigkeit so weit abgeführt werden muß, daß das gewählte Temperaturgefälle aufrechterhalten wird. Bei turbulenter Strömung bildet sich an der and ein laminar strömender (hydrodynamischer) Grenzfilm aus, während weiter außen in der Flüssigkeit starke Mischbewegungen auftreten. Der ärmetransport durch die Grenzschicht erfolgt durch ärmeleitung. Der weitere Transport in das Innere der Flüssigkeit erfolgt durch die infolge der Turbulenz auftretenden Mischbewegungen. Da die Mischbewegungen sehr intensiv Diese Beziehung bzw. (5) gilt nur für ebene ände. Bei einem Doppelrohrwärmeaustauscher wäre strenggenommen noch die Krümmung der ände zu berücksichtigen, wodurch A' A wird 4

6 sind, wird innerhalb des turbulenten Kerns annähernd konstante Temperatur herrschen, während in der Grenzschicht ein Temperaturabfall auftritt. Folglich wird der ärmeübergang von der and auf die Flüssigkeit vor allem von der Dicke und ärmeleitfähigkeit des laminaren Grenzfilms abhängen. Gehen wir einen Schritt weiter und rechnen so, als ob der gesamte iderstand gegen den ärmeübergang in der laminaren Grenzschicht liegt, so erhalten wir und durch Vergleich von Gl. (6) und (3) Q A ( T T ) (6) (7) Die Dicke der mittels Gl. (7) berechneten Grenzschicht ist im Prinzip nicht - also keinesfalls zwangsläufig - gleich der Dicke der hydrodynamischen Grenzschicht oder der sog. Diffusionsgrenzschicht d (vgl. Aufg. 2), da Gl. (7) unter der Voraussetzung abgeleitet wurde, daß der gesamte iderstand gegen die ärmeübertragung allein in der Grenzschicht liegen soll und damit die unbekannten Akkommodationskoeffizienten and - Grenzschicht, Grenzschicht - Flüssigkeit der den Impuls übertragenden Moleküle durch die" Dicke der Grenzschicht" mit erfaßt werden. Um die Ähnlichkeitslehre auf den ärmeübergang anwenden zu können, stellen wir zunächst eine allgemeine Funktion sämtlicher physikalischer Größen auf, von denen wir glauben, daß sie den Vorgang beeinflussen: Nach den obigen Ausführungen wird der ärmeübergangskoeffizient bei turbulenter Strömung vor allem von der ärmeleitfähigkeit des Mediums und von seiner Viskosität, die die Dicke der Grenzschicht beeinflußt, bestimmt. Da ferner erzwungene Konvektion eine Rolle spielt, wird auch von der Dichte, der spezifischen ärmekapazität c p und von der mittleren Geschwindigkeit w der Flüssigkeit abhängen. wird ferner, wenn es sich um einen Doppelrohrwärmeaustauscher handelt, eine Funktion des Rohrdurchmessers oder einer entsprechenden Abmessung d und in geringem Maße auch eine Funktion der Länge l des Austauschers sein. ir erhalten somit die allgemeine Funktion =F(d,,,,w,c p,l). Auf Grund der Ähnlichkeitstheorie läßt sich diese Funktion in Form von Produkten mit der Dimension darstellen: d wd cp l F,,, 0 (8) d Die ersten drei Kenngrößen sind unter dem Namen 5

7 Nusselt-Zahl Reynolds-Zahl d Nu, wd wd Re bzw. und cp cp Prandtl-Zahl Pr bzw. mit = kinematische Viskosität [m 2 s - ] bekannt. Über die die Kenngrößen verbindenden Funktionen kann die Ähnlichkeitstheorie keine Aussage machen. Experimentelle Untersuchungen an Doppelrohrwärmeaustauschern zeigten, daß sich die Meßwerte durch die Hausen-Beziehung 2 3 d Nu 0,6 (Re 25) Pr (9) l im Bereich 2300 < Re < 0 4 wiedergeben lassen. Für Re > 0 4 und Re < 2300 gelten die Beziehungen mit C, m, n und p als empirische Konstanten. p m n l Nu C Re Pr. (0) d Die Gültigkeit dieser Beziehung (0) ist nicht auf Doppelrohrwärmeaustauscher beschränkt, sondern kann auch auf andere ärmeübergangsprobleme angewendet werden. Die Exponenten und die Konstanten sind jeweils experimentell zu bestimmen oder einer Tabelle zu entnehmen. Bei laminarer Strömung von Flüssigkeiten in Rohren gilt beispielsweise: C m n p Heizung 5,0 0,23 0,23-0,5 Kühlung,5 0,23 0,23-0,5 für Re < 2300, Pr = 2,5 bis 4000 und d/l = 00 bis 400. Um den ärmeübergang bei freier Strömung in Gasen oder Flüssigkeiten zu beschreiben, wird häufig die Beziehung 6

8 Nu C Pr n Gr n () 3 d g verwendet. Gr ist die Grashof-Zahl Gr 2 mit = thermischer Ausdehnungskoeffizient, welcher die die freie Konvektion berücksichtigt. Mittlere Temperaturdifferenz im ärmeaustauscher Die ärmedurchgangskoeffizienten sind für die Berechnung von ärmeaustauschern wesentlich, da bei Kenntnis von k mittels Gl. (4) die Austauschfläche A für einen gegebenen ärmestrom berechnet werden kann. Bei Anwendung der Gl. (4) auf Doppelrohrwärmeaustauscher ist jedoch zu beachten, daß sich die Temperaturen der durchströmenden Flüssigkeiten in der Längsrichtung des ärmeaustauschers ändern; infolgedessen wird die in Gl. (4) eingehende Temperaturdifferenz ebenfalls für jeden Querschnitt des Austauschers verschieden sein. Behält man die Form von Gl. (4) bei, sind entsprechende Mittelwerte für T und T' bzw. für deren Differenz einzusetzen. Sei T m. der entsprechende Mittelwert der Temperaturdifferenz, so erhalten wir für den ärmestrom Q A k. (2) T m, die sog. mittlere logarithmische Temperaturdifferenz, ergibt sich zu T m Ta Tb Tm. (3) Ta ln T b Es bedeuten T a die Temperaturdifferenz zwischen den Flüssigkeiten an einem Ende des Kühlers und T b die entsprechende Differenz am anderen Ende. Für Berechnungen ist für T a die größere und T b die kleinere Temperaturdifferenz in Gl. (3) einzusetzen. Bei der Ermittlung der logarithmischen Temperaturdifferenz T m ist es gleichgültig, ob der Kühler im Gleichstrom oder im Gegenstrom gefahren wird. Stofftransport Neben dem ärmetransport sei auf den Stofftransport kurz eingegangen, da beide Prozesse in vielfacher Hinsicht ähnlich sind, was ihre theoretische wie experimentelle Behandlung wesentlich erleichtert. 7

9 ir unterscheiden:. Stofftransport in festen oder unbewegten flüssigen und unbewegten gasförmigen Phasen, der durch molekulare Diffusion zustande kommt und das Analogon zur ärmeleitung darstellt. Der Vorgang kann entweder durch das. bzw. 2. Ficksche Gesetz oder aber, wenn die Rückdiffusion zu berücksichtigen ist, durch das Stefansche Diffusionsgesetz beschrieben werden. 2. Stofftransport durch freie oder erzwungene Konvektion durch bewegte flüssige oder gasförmige Stoffe, der das Analogon zum konvektiven ärmetransport ist. Ein dem ärmetransport durch Strahlung analoger Vorgang existiert nicht. Der Stofftransport von einer Phasengrenzfläche in das Innere der fluiden Phase oder umgekehrt wird analog zum ärmeübergang Stoffübergang genannt. Ein Beispiel ist der Stoffübergang von einer Salzoberfläche in asser beim Lösen von Salzen. Der Stoffübergang ist ebenso wie der ärmeübergang ein sehr komplizierter Vorgang, der von den verschiedensten Größen, vor allem vom Strömungszustand der Flüssigkeit abhängt. Man kann analog zum ärmeübergangskoeffizienten einen Stoffübergangskoeffizienten ß mittels der Beziehung m A ) bzw. n A( c ) (4) ( c, c,2 c2 mit m = Massenstrom [kg s - ], A = Fläche [m 2 ], ( c, - c,2 ) = treibende Massenkonzentrationsdifferenz und (c - c 2 ) = treibende Stoffmengenkonzentrationsdifferenz. eitere Überlegungen s. Aufg. 2 und 9 bzw. Aufg. 35. Der Stofftransport von einer fluiden Phase durch eine Phasengrenzfläche in eine zweite fluide Phase wird als Stoffdurchgang bezeichnet. Der Stoffdurchgang spielt bei den Grundoperationen Rektifikation, Extraktion, Absorption und im begasten Rührkessel eine Rolle. Der Stoffdurchgang von einer fluiden Phase in eine zweite fluide Phase ist wesentlich komplizierter als der ärmedurchgang beim ärmeaustauscher, da keine feste Phasengrenze vorhanden ist. eitere Überlegungen s. Aufg. 35. eiterführende Literatur Patat/Kirchner, Praktikum der Technischen Chemie, 4. Auflage, Verlag. de Gruyter, Berlin-New York 986, S

10 Versuchsdurchführung Aufgabenstellung. Vergleich des ärmedurchgangs in einem Doppelrohrwärmeaustauscher bei Gegenstrom. 2. Berechnung und experimentelle Bestimmung der ärmedurchgangskoeffizienten bei verschiedenen Strömungsgeschwindigkeiten. 3. Experimentelle Bestimmung des ärmestroms Q [] mit Hilfe eines Meßumformers und anschließender Vergleich mit den berechneten erten. Der Durchfluß V, die Temperaturen T warm und T kalt und die Temperaturdifferenz T werden ebenfalls am ärmezähler abgelesen. Apparatebeschreibung Als ärmeaustauscher dient ein Doppelrohrwärmeaustauscher aus Messing mit folgenden Abmessungen: Länge: 2000 mm, Innendurchmesser des äußeren Rohres: 0 mm, Außendurchmesser des inneren Rohres: 8 mm, Innendurchmesser des inneren Rohres: 6 mm. armes asser konstanter Temperatur wird aus einem Thermostaten mittels seiner Umlaufpumpe durch das Innenrohr des ärmeaustauschers und anschließend zurück in den Thermostaten gepumpt. Durch den Ringraum wird in gleicher eise kaltes asser von einem zweiten Thermostaten gepumpt. Heiß- und Kaltwasserdurchsatz können mit Hilfe von Strömungsmessern gemessen und konstant gehalten werden. In die 4 Zu- bzw. Abflußleitungen des Kühlers sind Thermometer eingebaut. Ausführung der Messungen asser von 40 C wird aus dem Thermostaten durch das Innenrohr des Austauschers gepumpt, während durch den Mantelraum im Gegenstrom Kaltwasser (23 C) geschickt wird. Der Durchsatz des Kühlwassers wird auf etwa 70 l/h eingestellt und während aller Messungen konstant gehalten. Der Durchsatz des Heißwassers wird auf etwa 65 l/h eingeregelt, was dem Maximalwert entspricht. Die jeweiligen Ein- und Austrittstemperaturen des arm- und Kaltwassers werden an den Thermometern nach Einstellung des Beharrungszustandes abgelesen (ca. 0 min). Eine weitere Messung wird bei einem Durchsatz des Heißwassers von etwa 45 l/h durchgeführt. 9

11 Auswertung der Messungen Aus den abgelesenen T-erten ist zu berechnen:. T m nach Gleichung (3) (Diese Berechnung wird durch eine Tabelle im ärmeatlas erleichtert). 2. Aus Temperaturabfall bzw.anstieg, Durchsatz und spezifischer ärmekapazität c p = 4,8 0³ J kg - K - wird für alle Versuche der übertragene ärmestrom Q berechnet. Q = V c p (T - T 2 ). Durch Vergleich von Q arm und Q Kalt kann man auf Verluste schließen. 3. k- erte nach Gleichung (2). (Zur Berechnung von A für das Rohr ist ein mittlerer Durchmesser von 7 mm einzusetzen). 4. Für den Versuch mit der höchsten Durchflußmenge ist weiter zu berechnen: a. i -ert nach Gl. (9) (Heißwasser-and) b. a -ert nach Gl.(9) (and-kühlwasser) ( bei der Berechnung von d h ist der benetzte Umfang einzusetzen, d.h. nicht nur der Innenumfang des Außenrohres). c. mit i und a sowie dem -ert für das Rohrmaterial kann nun nach Gl. (5) der k-ert berechnet werden. Messing = 99,3 /(m K) Diese Berechnung wird zweckmäßig mit dem ärmeatlas durchgeführt. Die Größe d äqu wird im ärmeatlas als d h bezeichnet. Auf Bezugstemperaturen achten. Prüfen, ob die Strömung laminar oder turbulent ist, dann auf die Verwendung des richtigen Nomogramms achten. 5. Vergleich des unter 3, erhaltenen k-ertes mit dem theoretischen. Bitte geben Sie bei allen Gleichungen zu den Zahlenwerten auch die Dimension an, da erfahrungsgemäß häufig Fehler durch Verwendung verschiedener Einheiten entstehen. Zur Berechnung der Nu-Zahl wird die Beziehung von Hausen Gl.(9) verwendet. Im ärmeatlas (99) wird zur Berechnung der Nu-Zahl eine Beziehung von Gnielinski mit den entsprechenden Nomogrammen verwendet. Zur Anwendung kommen folgende Nomogramme: Db, Gb2 oder Gb7, Gc3. 0

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 2010 Versuch 05 Wärmeübergang in Gaswirbelschichten Betreuer: Michael Jusek (jusek@dechema.de, Tel: +49-69-7564-339) Symbolverzeichnis

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Institut für Technische Chemie Technische Universität Clausthal Technisch-chemisches Praktikum TCB Versuch: Stofftransport in einer Blasensäule Einleitung Bei der technischen Gasreinigung und trennung

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Versuchsanleitung und Betriebsanweisung

Versuchsanleitung und Betriebsanweisung Ruhr-Universität Bochum Lehrstuhl für Technische Chemie www.techem.rub.de Fortgeschrittenen - Praktikum "Technische Chemie" Versuchsanleitung und Betriebsanweisung SS 2006 F5 Wärmeübergang Betreuer: Dr.

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden:

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: 6 ärmeübertragung Bei der ärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: ärmeleitung ärmeübergang / onvektion ärmestrahlung Der ärmetransport durch Leitung oder onvektion benötigt

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Thermodynamik Wärmeempfindung

Thermodynamik Wärmeempfindung Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für

Mehr

Versuch 1.1. Wärmetransport

Versuch 1.1. Wärmetransport Versuch.. Wärmetransport Versuch. Seite .. Wärmetransport durch Leitung und Konvektion in Wärmeübertragern..0. Verzeichnis der verwendeten Symbole a a * c p d d h h k l m n f n k Kanalbreite (Mikrowärmeübertrager)

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Institut für Technische Chemie Technische Universität Clausthal Technisch-chemisches Praktikum TCB Versuch: Filtration Einleitung Ein in einer Flüssigkeit suspendierter Feststoff kann durch Filtrieren

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Versuch: Siedediagramm eines binären Gemisches

Versuch: Siedediagramm eines binären Gemisches Versuch: Siedediagramm eines binären Gemisches Aufgaben - Kalibriermessungen Bestimmen Sie experimentell den Brechungsindex einer gegebenen Mischung bei unterschiedlicher Zusammensetzung. - Theoretische

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten W1 Thermische Ausdehnung ie Volumenausdehnung von Flüssigkeiten und die Längenänderung von festen Körpern in Abhängigkeit von der Temperatur sollen nachgewiesen. 1. Theoretische Grundlagen 1.1 Allgemeines

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele Arbeitsblatt zur Ventilberechnung Berechnungsbeisiele Inhalt Seite Ventilberechnung bei Flüssigkeiten Ventilberechnung bei Wasserdamf 5 Ventilberechnung bei Gas und Damf 7 Ventilberechnung bei Luft 9 Durchfluss

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 03 Stoffübergang im begasten Rührkessel

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 03 Stoffübergang im begasten Rührkessel Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 03 Stoffübergang im begasten Rührkessel Betreuer: Dr. Aneta Pashkova (pashkova@dechema.de, Tel: +49-69-7564-404) Michael

Mehr

Versuchsprotokoll - Michelson Interferometer

Versuchsprotokoll - Michelson Interferometer Versuchsprotokoll im Fach Physik LK Radkovsky August 2008 Versuchsprotokoll - Michelson Interferometer Sebastian Schutzbach Jörg Gruber Felix Cromm - 1/6 - Einleitung: Nachdem wir das Interferenzphänomen

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s)

Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s) 6 Sieden 1 Verdampfung von Flüssigkeiten Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s) Wärmeübergang beim Sieden hängt ab von - Heizflächenbeschaffenheit (Material, Rauhigkeit,

Mehr

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK. KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.CH EINLEITUNG In Halbleitern entstehen Verluste, die in Form von Wärme

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Tropfenkonturanalyse

Tropfenkonturanalyse Phasen und Grenzflächen Tropfenkonturanalyse Abstract Mit Hilfe der Tropfenkonturanalyse kann die Oberflächenspannung einer Flüssigkeit ermittelt werden. Wird die Oberflächenspannung von Tensidlösungen

Mehr

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler.

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler. Projektor Aufgabe Ein Diaprojektor, dessen Objektiv eine Brennweite von 90mm hat, soll in unterschiedlichen Räumen eingesetzt werden. Im kleinsten Raum ist die Projektionsfläche nur 1m vom Standort des

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

WÄRMEÜBERTRAGUNG. Mag. Dipl.-Ing. Katharina Danzberger

WÄRMEÜBERTRAGUNG. Mag. Dipl.-Ing. Katharina Danzberger WÄREÜBERTRAGUNG ag. Dipl.-Ing. Katharina Danzberger 1. Voraussetzungen Für die Durchführung dieses Übungsbeispiels sind folgende theoretische Grundlagen erforderlich: a. Kenntnis der Gesetzmäßigkeiten

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Laborbericht Temperaturmessung

Laborbericht Temperaturmessung Laborbericht Temperaturmessung Gruppe IV SS 2001 Labortermin: 14.05.01 Versuchsleiter: Herr Tetau Betreuender Professor: Prof. Dr. H. Krisch Versuchsteilnehmer: Matthias Heiser Matr. Nr.: 1530330 Marco

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN U. Heisel, G. Popov, T. Stehle, A. Draganov 1. Einleitung Die Arbeitsgenauigkeit und Leistungsfähigkeit von Werkzeugmaschinen hängt zum einen von

Mehr

Reaktorvergleich mittels Verweilzeitverteilung

Reaktorvergleich mittels Verweilzeitverteilung Reaktorvergleich mittels Verweilzeitverteilung Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Strömungsmesstechnik und Hydraulik

Strömungsmesstechnik und Hydraulik Strömungsmesstechnik und Hydraulik Daniel Braun Zürich Beispiele von Anwendungen der Strömungsmesstechnik in den Umweltingenieurwissenschaften Grundwasser und Hydromechanik Pumpversuche an Aquiferen Gemessen

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch 14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch Analog zu den Untersuchungen an LDPE in Kap. 6 war zu untersuchen, ob auch für die Hochtemperatur-Thermoplaste aus

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

WÄRMEMESSUNG MIT DURCHFLUSSMENGENMESSER, TEMPERATURSENSOREN UND LOXONE

WÄRMEMESSUNG MIT DURCHFLUSSMENGENMESSER, TEMPERATURSENSOREN UND LOXONE WÄRMEMESSUNG MIT DURCHFLUSSMENGENMESSER, TEMPERATURSENSOREN UND LOXONE INHALTSVERZEICHNIS Einleitung Anwendung Messaufbau Berechnung der Wärmemenge Loxone Konfiguration EINLEITUNG Dieses Dokument beschreibt

Mehr

Übungspraktikum 3 Physik II

Übungspraktikum 3 Physik II HOCHSCHULE BOCHUM Fachbereich Geodäsie Übungspraktikum 3 Physik II SS 2015 Thema: Wegzeitgesetze und Grundgesetz der Dynamik Übung 1: Bestimmung der und der Momentangeschwindigkeit eines Fahrzeugs auf

Mehr

Labor Messtechnik Versuch 1 Temperatur

Labor Messtechnik Versuch 1 Temperatur HS Kblenz Prf. Dr. Kröber Labr Messtechnik Versuch 1 emperatur Seite 1 vn 5 Versuch 1: emperaturmessung 1. Versuchsaufbau 1.1. Umfang des Versuches Im Versuch werden flgende hemenkreise behandelt: - emperaturfühler

Mehr

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung...3 1.2 Definitionen... 5 1.2.1 Wärmestrom und Wärmestromdichte... 5 1.2.2 Wärmeübergangszahl und Wärmedurchgangszahl...5

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Didaktik der Physik Demonstrationsexperimente WS 2006/07

Didaktik der Physik Demonstrationsexperimente WS 2006/07 Didaktik der Physik Demonstrationsexperimente WS 2006/07 Messung von Widerständen und ihre Fehler Anwendung: Körperwiderstand Hand-Hand Fröhlich Klaus 22. Dezember 2006 1. Allgemeines zu Widerständen 1.1

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Peltier-Effekt: Wärmepumpe

Peltier-Effekt: Wärmepumpe Peltier-Effekt: Wärmepumpe ENT Schlüsselworte Wärmepumpe, Leistungsziffer, Wirkungsgrad, Peltierelement, Elektrische Energie, Wärmeenergie Prinzip Fließt ein Gleichstrom durch ein Peltier-Element, dann

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Strömungsmessung durch erzwungene Konvektion Thermische Anemometrie

Strömungsmessung durch erzwungene Konvektion Thermische Anemometrie Strömungsmessung durch erzwungene Konvektion Thermische Anemometrie Konvektion bezeichnet die Wärmeübertragung von einer heißen Oberfläche an ein vorbeiströmendes Medium. Wird der Wärmetransport durch

Mehr

Mischen von Flüssigkeiten mit verschiedener Temperatur

Mischen von Flüssigkeiten mit verschiedener Temperatur V13 Thema: Wärme 1. Einleitung Ob bei der Regelung der Körpertemperatur, dem Heizen des Zimmers oder zahlreichen technischen Prozessen: Der Austausch von Wärme spielt eine wichtige Rolle. In diesem Versuch

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr