= g = 50u. n = 1 a 3 = = = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

Größe: px
Ab Seite anzeigen:

Download "= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also"

Transkript

1 Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht zu tiefen Temperaturen eine Wärmekapazität von 5 J K 1 cm a) Wie groß ist das Atomgewicht? b) Wie groß ist die Kantenlänge der kubischen Einheitszelle? c) Wie groß ist die Phononenfrequenz ω an der Brillouinzonengrenze in (1,1,1)-Richtung? (es sei angenommen, dass die Phononendispersion der der linearen Kette entspricht, ω = ω 0 sin(kl) ) a) Es ist (spezifische Wärmekapazität, pro Volumen!): c = nk B = k B ρ also b) Es ist = k Bρ c = g = 50u n = 1 a = ρ a = ρ = = 2.02Å c) Die Brillouinzonengrenze in (1,1,1)-Richtung liegt bei k G = 2 a Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also d.h. und damit l = sin(k G l) = 1 k G l = π 2 π 2k G = 1 2 a Die Schallgruppengeschwindigkeit bei kleinen k ist v = d dk ω(k) = ω 0l cos(k G l) ω 0 l (gilt genauso für die Phasengeschwindigkeit). Damit ist die Phononenfrequenz an der Brillouinzonengrenze ω(k G ) = ω 0 sin(k G l) = v l = 2 v a = /s

2 Aufgabe 2 Das Diamantgitter besteht aus zwei fcc-gittern, die um einen Vektor (1/4,1/4,1/4) a gegeneinander verschoben sind (a: Kantenlänge der kubischen Einheitszelle). a) wie groß ist der Füllfaktor des Materials (d.h. wenn man die Atome durch Kugeln ersetzt, deren Radius so groß ist, dass sich Kugeln berühren, aber sich keine durchdringen, wie groß ist dann das relative Volumen der Kugeln?) b) wie groß sind die Ebenenabstände in (1,1,1)-Richtung? (es gibt zwei verschiedene! Es sollen hier durch sämtliche Atome des Gitters Ebenen senkrecht zur (1,1,1)-Richtung gelegt werden c) führt man ein Beugungsexperiment an einem solchen Gitter durch, sieht man dann mehr oder weniger Reflexe als bei einem einfachen fcc-gitter? (einfache Erklärung geben!) a) Kugelradius: r = 8 a Es gibt 8 Kugeln pro Einheitszelle; damit ist der Füllfaktor: f = 1 a 84π r = π 16 = 0.4 b) Im fcc-gitter ist der Ebenenabstand der (1,1,1)-Ebene: d = a Der Abstand der gegeneinander verschobenen fcc-gitter und damit ein Ebenenabstand ist: Der zweite Ebenenabstand ist damit: d 1 = 4 a = 0.4a d 2 = d d 1 = ( 1 4 )a = a 4 = 0.144a c) Die beiden verschobenen fcc-gitter ergeben identische Beugungsmuster, allerdings mit unterschiedlichen Phasen der Beugungsreflexe. Damit kann es zu destruktiver Interferenz kommen: es gibt weniger Reflexe.

3 Aufgabe Ein fcc Kristall mit einer Kantenlänge a=5å der kubischen Einheitszelle wird mit Röntgenlicht der Wellenlänge λ=4å bestrahlt. a) Nennen Sie alle reziproken Gittervektoren, die (bei entsprechender Orientierung des Kristalls) zur elastischen Beugung beitragen können. b) Wählen Sie einen dieser Vektoren aus, und geben Sie ein Paar von Wellenvektoren und an, welches für dieses die Beugungsbedingung erfüllt. c) Unter welchem Ablenkwinkel findet Beugung an den (1,1,1)-Ebenen statt? a) Es gilt G 2 k also a h2 + k 2 + l 2 2 λ h 2 + k 2 + l 2 4( a λ )2 = 6.25 Das reziproke Gitter des fcc-gitters ist ein bcc-gitter (nur gerade oder ungerade Indizes); damit gilt die Bedingung für G a = (0, 0, 0), (2, 0, 0), ( 2, 0, 0), (0, 2, 0), (0, 2, 0), (0, 0, 2), (0, 0, 2), (1, 1, 1), ( 1, 1, 1), (1, 1, 1), (1, 1, 1), ( 1, 1, 1), ( 1, 1, 1), (1, 1, 1), ( 1, 1, 1) b) Für G = a (2, 0, 0) ist z.b. möglich (es muss k = /λ gelten!): k = a ( 1, (a/λ) 2 1, 0) ; k = a (1, (a/λ) 2 1, 0) (hier gab es einen Fehler in der Lösung der Testklausur, das bitte ich zu entschuldigen) c) Es ist θ = 2 arcsin( λ h2 + k 2a 2 + l 2 ) = 87.7 Aufgabe 4 Wir betrachten die elektronische Bandstruktur eines fcc-gitters mit Kantenlänge a der kubischen Einheitszelle bei verschwindender Wechselwirkung zwischen Elektronen und Gitter (also freie Elektronen). Zu Erinnerung: die Bandstruktur sind die Energien der Blochfunktionen, aufgetragen gegen den Blochindex k. a) berechnen Sie die Energien der drei niedrigsten Zustände am Ursprung des k-raums (dem Γ-Punkt). Es sind drei verschiedene Energien gemeint. b) Wie hoch ist die Entartung dieser Zustände? c) Wie groß ist die Energie des untersten Zustands an der Brillouinzonengrenze in (1,1,1)- Richtung?

4 a),b) Es ist Am Γ-Punkt also einfach ( k 2 + G 2 ) G 2 Damit ergibt sich (nur Vektoren des bcc-gitters sind erlaubt!): c) Die Brillouinzonengrenze liegt bei G Energie Entartung (0, 0, 0) 0 1 a (1, 1, 1) h 2 ( a a )2 8 (2, 0, 0) h 2 ( a a )2 4 6 kg = a (1 2, 1 2, 1 2 ) Die Energie ist damit Aufgabe 5 k 2 G = h2 ( a )2 4 Natrium hat bei Raumtemperatur eine Elektronendichte von 2.5*10 28 m ; kühlt man es auf 100 K ab, steigt die Dichte aufgrund der thermischen Kontraktion auf etwa 2.64*10 28 m a) wie groß ist das chemische Potential bei beiden Temperaturen? (die thermische Verschmierung der Fermi-Dirac-Verteilungs sei vernachlässigt, d.h. man verwendet die gleichen Formeln für das chemische Potential wie für die Fermi-Energie) b) wie groß ist die Gesamtenergie aller Valenzelektronen in 1 cm bei beiden Temperaturen? (auch hier sei angenommen, bis zum chemischen Potential seien alle Zustände besetzt, darüber unbesetzt) c) wie groß ist die maximale Gruppen-Geschwindigkeit der Elektronen bei beiden Temperaturen? (dito) a) Mit E F = h2 k 2 F = h2 (π2 n) 2/ ergibt sich µ = J =.14 ev für 00 K und µ = J =.2 ev für 100 K b) Mit E tot = 5 NE F = 5 nv E F erhält man E tot = ev= 765 J für 00 K und E tot = ev= 8186 J c) Es ist v max = h m k F = h m (π2 n) 1/ und damit v=1.05*10 6 m/s für 00 K und v=1.06*10 6 m/s für 100 K.

5 Aufgabe 6 Wir betrachten einen fiktiven Halbleiter mit einer direkten Bandlücke von 1 ev, nichtentartetem Valenz- und Leitungsband (also jeweils nur ein Band), und einer effektiven Masse der Elektronen von 0.5 me und der Löcher von 0.1 m e. a) Wie groß ist die kinetische Energie eines Elektronzustands im Leitungsband und eines Lochzustands im Valenzband mit einem Wellenvektor von k=1*10 9 m 1? b) Wieviele Zustände pro cm gibt es in dem Halbleiter innerhalb eines Energieintervalls von 0.1 ev im Valenz- und Leitungsband? (d.h. zwischen der Unterkante des Leitungsbands EL und EL+0.1 ev, bzw. zwischen EV und EV-0.1 ev) c) Liegt bei diesem Halbleiter bei endlicher Temperatur das chemische Potential näher am Valenzband oder näher am Leitungsband? (kurze Begründung, keine Formel) a) Es ist k2 und damit E=1.2*10 20 J = ev für das Elektron und E=6*10 20 J = 0.75 ev für das Loch b) Die Zustandsdichte ist D(E) = V Herleitung war nicht nötig, nur zur Ergänzung: ρ(k) = 2 4πk2 (/L) D(E) = ρ(k(e)) dk de = 2 π 2 h E 4π E (/L) h 2 h E Damit ist die Zahl der Zustände im Leitungsband (V=1cm = 10 6 m ): N = Im Valenzband: N = EL + E E L = EV E V E = D(E E L )de = V D(E V E)dE = V π 2 h π 2 h E 0 E 0 EdE = V π 2 h 2 E/2 EdE = V π 2 h 2 E/2 c) Die Zustandsdichte im Valenzband ist kleiner, daher muss der Wendepunkt der Fermi-Dirac- Verteilung (das chemische Potential) näher am Valenzband liegen, um zu gewährleisten, dass die Zahl der Löcher im Valenzband der Zahl der Elektronen im Leitungsband entspricht.

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Bandstrukturen - leicht gemacht

Bandstrukturen - leicht gemacht Bandstrukturen - leicht gemacht Eva Haas Stephanie Rošker Juni 2009 Projekt Festkörperphysik Inhaltsverzeichnis 1 Bandstrukturen 3 2 Energiebänder 3 3 Brillouin-Zonen - eine Übersicht 7 4 Beispiele 8 4.1

Mehr

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse 4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich

Mehr

Bandstrukturen II: NFE-Ansatz

Bandstrukturen II: NFE-Ansatz Bandstrukturen II: NFE-Ansatz Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs, 4.2011 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen Der metallische Zustand, Dichtestpackung von Kugeln, hexagonal-, kubischdichte Packung, Oktaeder-, Tetraederlücken, kubisch-innenzentrierte

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 01/13 Christoph Wölper Universität Duisburg-Essen Koordinationszahlen Ionenradien # dichteste Packung mit 1 Nachbarn -> in Ionengittern weniger

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

Grundlagen der Chemie Metalle

Grundlagen der Chemie Metalle Metalle Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Metalle 75% aller chemischen Elemente sind Metalle. Typische

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Grundlagen der Chemie

Grundlagen der Chemie 1 Die Metallbindung Hartstoffe 75% aller chemischen Elemente sind. Typische Eigenschaften: 1. Die Absorption für sichtbares Licht ist hoch. Hieraus folgt das große Spiegelreflexionsvermögen. Das ist die

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

P3 - Widerstandsmessung

P3 - Widerstandsmessung 64 P3 - Widerstandsmessung 1. Der spezifische Widerstand Der spezifische Widerstand von Materialien ist ihre Eigenschaft auf ein angelegtes elektrisches Feld E mit einer von Material abhängigen elektrischen

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Chemische Bindungsanalyse in Festkörpern

Chemische Bindungsanalyse in Festkörpern Fakultät Mathematik und Naturwissenschaften Fachrichtung Chemie und Lebensmittel Chemie Professur AC2 Dr. Alexey I. Baranov Chemische Bindungsanalyse in Festkörpern Sommersemester 2015 Bindung in Orbitaldarstellung:

Mehr

7.4 Elektrische Leitfähigkeit in Festkörpern

7.4 Elektrische Leitfähigkeit in Festkörpern V7_4Leit_Fest-1.DOC 1 7.4 Elektrische Leitfähigkeit in Festkörpern Die entscheidende Eigenschaft elektrisch interessanter Festkörper ist ihr kristalliner Aufbau. In der Naturwissenschaft steht kristallin,

Mehr

Graphen. Kristin Kliemt, Carsten Neumann

Graphen. Kristin Kliemt, Carsten Neumann Graphen Kristin Kliemt, Carsten Neumann 18.01.2012 1 Gliederung Kohlenstoffmodifikationen (Diamant, Graphit, Graphen) Stabilität und Struktur Dispersionsrelation Eigenschaften und Herstellung von Graphen

Mehr

Bericht zum Versuch Hall-Effekt

Bericht zum Versuch Hall-Effekt Bericht zum Versuch Hall-Effekt Michael Goerz, Anton Haase 20. September 2005 GP II Tutor: K. Lenz 1 Einführung Hall-Effekt Als Hall-Effekt bezeichnet man das Auftreten einer Spannung in einem stromdurchflossenen

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

A. Erhaltungssätze der Mechanik (20 Punkte)

A. Erhaltungssätze der Mechanik (20 Punkte) Prof. Dr. F. Melchert Prof. Dr. G. von Oppen Dr. S. Kröger Dipl.-Phys. Th. Ludwig Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: A. Erhaltungssätze

Mehr

Studienarbeit. Name, Vorname Betreuer Studiengang Elektrotechnik Dr. Nakhmedov. Studienrichtung 30.09.2003 Mikroelektronik

Studienarbeit. Name, Vorname Betreuer Studiengang Elektrotechnik Dr. Nakhmedov. Studienrichtung 30.09.2003 Mikroelektronik Studienarbeit Quantenmechanische ab initio Simulation mit ABINIT am Beispiel von Si und SiO 2 Strukturen zur Bestimmung von Strukturparametern, Elektronendichten und Bandstrukturen. Name, Vorname Betreuer

Mehr

Halbleitergrundlagen

Halbleitergrundlagen Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

Versuchsvorbereitung P1-51

Versuchsvorbereitung P1-51 Versuchsvorbereitung P1-51 Tobias Volkenandt 22. Januar 2006 Im Versuch zu TRANSISTOREN soll weniger die Physik dieses Bauteils erläutern, sondern eher Einblicke in die Anwendung von Transistoren bieten.

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

Fortsetzung der Erkundungen im Periodensystem

Fortsetzung der Erkundungen im Periodensystem Fortsetzung der Erkundungen im Periodensystem Wiederholung Für die chemischen Eigenschaften der Elemente sind die Elektronen der äußersten Schale verantwortlich Valenzorbitale Valenz- oder Außenelektronen

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K Bild 1.2 Das ideale Silizium-Gitter (Diamantgitterstruktur). Die großen Kugeln sind die Atomrümpfe; die kleinen Kugeln stellen die Valenzelektronen dar, von denen je zwei eine Elektronenpaarbrücke zwischen

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Eigenleitung von Germanium

Eigenleitung von Germanium Eigenleitung von Germanium Fortgeschrittenen Praktikum I Zusammenfassung In diesem Versuch wird an einem undotierten Halbleiter die Temperaturabhängigkeit der elektrischen Leitfähigkeit bestimmt. Im Gegensatz

Mehr

Kennlinien von Halbleiterdioden

Kennlinien von Halbleiterdioden ELS-27-1 Kennlinien von Halbleiterdioden 1 Vorbereitung Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre Bohrsches Atommodell Lit.: HAMMER 8.4.2.1-8.4.2.3 Grundlagen der Halbleiterphysik

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor:

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Prof. Dr. Sophie Kröger Prof. Dr. Gebhard von Oppen Priv. Doz. Dr. Frank Melchert Dr. Thorsten Ludwig Cand.-Phys. Andreas Kochan A. Kräfte und Bewegungsgleichungen (19 Punkte) 1. Was besagen die drei Newtonschen

Mehr

5. Freie Elektronen. 5.1. Das klassische Drude-Modell. 5.1.1. Freies Elektronengas

5. Freie Elektronen. 5.1. Das klassische Drude-Modell. 5.1.1. Freies Elektronengas Prof. Dieter Suter Festkörperphysik WS 05 / 06 5.1. Das klassische Drude-Modell 5.1.1. Freies Elektronengas 5. Freie Elektronen In diesem Kapitel soll in erster Linie der Versuch unternommen werden, das

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

3.1. Aufgaben zur Elektrostatik

3.1. Aufgaben zur Elektrostatik 3.1. Aufgaben zur Elektrostatik Aufgabe 1 a) Wie lassen sich elektrische Ladungen nachweisen? b) Wie kann man positive und negative elektrische Ladungen unterscheiden? c) In welcher Einheit gibt man elektrische

Mehr

5 Freie Elektronen. 5.1 Klassische Beschreibung. 5.1.1 Metalle und ihre Eigenschaften. 5.1.2 Das Drude-Modell. Abbildung 5.1: Metallische Bindung.

5 Freie Elektronen. 5.1 Klassische Beschreibung. 5.1.1 Metalle und ihre Eigenschaften. 5.1.2 Das Drude-Modell. Abbildung 5.1: Metallische Bindung. 5. Klassische Beschreibung 5.. Metalle und ihre Eigenschaften Elektrische Leitfähigkeit Metallglanz 9+ 9+ 9+ 9+ 8-8- 8-8- 9+ 9+ 9+ 9+ 8-8- 8-8- Wärmeleitfähigkeit Pyrit (FeS) Abbildung 5.: Metallische

Mehr

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Versuch 1.6: Franck-Hertz-Versuch

Versuch 1.6: Franck-Hertz-Versuch Physikalisches Praktikum für Fortgeschrittene TU Darmstadt Abteilung A: Angewandte Physik Versuch 1.6: Franck-Hertz-Versuch Stefan A. Gärtner Durchgeführt mit: Christian Klose Betreut von: Dr. Rainer Spehr

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Vorbereitung: Eigenschaften elektrischer Bauelemente

Vorbereitung: Eigenschaften elektrischer Bauelemente Vorbereitung: Eigenschaften elektrischer Bauelemente Marcel Köpke & Axel Müller 15.06.2012 Inhaltsverzeichnis 1 Grundlagen 3 2 Aufgaben 7 2.1 Temperaturabhängigkeit............................ 7 2.2 Kennlinien....................................

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Technische Universität Chemnitz Institut für Physik Physikalisches Praktikum: Computergestütztes Messen Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Ort: Neues Physikgebäude,

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

Auswahlregeln UV/VIS-Spektroskopie

Auswahlregeln UV/VIS-Spektroskopie Auswahlregeln UV/VIS-Spektroskopie H H H H Ethen: π-π*übergang erlaubt? π LUMO π HOMO hν zunächst Punktgruppe bestimmen Symmetrieoperationen σ xz σ yz C 2 (x) C 2 (z) σ xy i C 2 (y) 3 Spiegelebenen i,

Mehr

Warum gibt es Isolatoren?

Warum gibt es Isolatoren? Warum gibt es Isolatoren? Florian Gebhard arbeitsgruppe vielteilchentheorie fachbereich physik philipps-universität marburg Gliederung Florian Gebhard : Warum gibt es Isolatoren? p. 2/40 Gliederung I.

Mehr

Bandabstand von Germanium

Bandabstand von Germanium von Germanium Stichworte: Leitfähigkeit, Bändermodell der Halbleiter, Eigenleitung, Störstellenleitung, Dotierung Einführung und Themenstellung Sehr reine, undotierte Halbleiter verhalten sich bei sehr

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

2. Experimenteller Teil

2. Experimenteller Teil 2. Experimenteller Teil Zur Ermittlung der Probenreinheit verwendete Spektroskopiearten Soll die Wechselwirkung eines Adsorbats mit einer Einkristalloberfläche untersucht werden, muß die Probenreinheit

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

2. Symmetrie und Struktur

2. Symmetrie und Struktur Prof. Dieter Suter Festkörperphysik WS 05 / 06 2.1. Ordnung in Festkörpern 2.1.1. Atomtheorie 2. Symmetrie und Struktur Die griechischen Philosophen stellten als erste die Frage, ob es möglich sei, einen

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

Formelsammlung Baugruppen

Formelsammlung Baugruppen Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in

Mehr

II. Festk orperphysik

II. Festk orperphysik II. Festkörperphysik Festkörperphysik Inhalt 1 Struktur von Festkörpern 2 Gitterschwingungen 3 Metalle 4 Elektronenzustände 5 Halbleiter 6 Bändermodell 7 Magnetismus 8 Supraleitung Einführung in die Struktur

Mehr

Abbildung 1: Die Einheitszelle ist rot markiert - sie enthält zwei Atome. Die hcp (hexagonal closly packed) hat eine zweiatomige Basis.

Abbildung 1: Die Einheitszelle ist rot markiert - sie enthält zwei Atome. Die hcp (hexagonal closly packed) hat eine zweiatomige Basis. Prof. Dr. Sehuber-Unke Biokompatibe Nanomateriaien Lösungen zu Batt Aufgabe 7: Hexagonaes Gitter Abbidung : Die Einheitszee ist rot markiert - sie enthät zwei Atome a) Bestimmung der Koordinaten der Basisatome

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Ionenbindung, Koordinationspolyeder, ionische Strukturen, NaCl, CsCl, ZnS, Elementarzelle, Gitter, Gitterkonstanten, 7 Kristallsysteme, Ionenradien, Gitterenergie

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Numerische Berechnung der elektronischen Subbandstruktur in Quantum-Wells bei der Simulation von Laserdioden

Numerische Berechnung der elektronischen Subbandstruktur in Quantum-Wells bei der Simulation von Laserdioden Numerische Berechnung der elektronischen Subbandstruktur in Quantum-Wells bei der Simulation von Laserdioden Diplomarbeit (einschließlich Belegarbeit) Kersten Schmidt Gaststudent an der ETH Zürich Student

Mehr

4.2 Wärmeleitung 4.2.1. Isolatoren 180

4.2 Wärmeleitung 4.2.1. Isolatoren 180 4. Wärmeleitung 4..1. Isolatoren 180 4. Wärmeleitung 4..1 Isolatoren Allgemein gilt für die Wärmeleitfähigkeit (vgl. Kap. 3..5): 1 κ = Cvl 3 dabei ist: C: Wärmekapazität v: Teilchengeschwindigkeit ( Schallgeschwindigkeit

Mehr

Präparation. 1) Spaltung: Materialien: Alkalihalogenide (NaCl, KBr) Erdalkali (CaF 2. ) Oxide (MgO) Halbleiter (GaAs) Brechen Glas Bruchflächen amorph

Präparation. 1) Spaltung: Materialien: Alkalihalogenide (NaCl, KBr) Erdalkali (CaF 2. ) Oxide (MgO) Halbleiter (GaAs) Brechen Glas Bruchflächen amorph Oberflächenphysik 19.2. Vacuum technique [vapour pressure, Langmuir, pumps] 26.2. Structure, relaxations and reconstructions 4. 3. Diffractionsmethods: LEED, He atom scattering, grazing X-ray, ions 11.

Mehr

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Alexander Komarek, Sebastian Bleikamp, Martin Valldor Raum 326 im II. Physikalischen Institut der Universität zu Köln 1 Einleitung

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

3 Grundlagen der Halbleitertechnik

3 Grundlagen der Halbleitertechnik 12 3 Grundlagen der Halbleitertechnik Um die Funktionsweise von Halbleitern verstehen zu können, ist ein gewisses Grundverständnis vom Aufbau der Elemente, insbesondere vom Atomaufbau erforderlich. Hierbei

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

5. Kapitel Die De-Broglie-Wellenlänge

5. Kapitel Die De-Broglie-Wellenlänge 5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment

Mehr

2 Symmetrie und Struktur

2 Symmetrie und Struktur 2. Ordnung in Festkörpern 2.. Atomtheorie Die griechischen Philosophen stellten als erste die Frage, ob es möglich sei, einen bestimmten Körper beliebig oft zu teilen. Demokrit von Abdera beantwortete

Mehr

Einführung in die Kristallographie

Einführung in die Kristallographie Einführung in die Kristallographie Gerhard Heide Institut für Mineralogie Professur für Allgemeine und Angewandte Mineralogie Brennhausgasse 14 03731-39-2665 oder -2628 gerhard.heide@mineral.tu-freiberg.de

Mehr

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)

Mehr

W6+W7 Temperaturkennlinie eines {NTC,PTC}-Widerstandes

W6+W7 Temperaturkennlinie eines {NTC,PTC}-Widerstandes W6+W7 Temperaturkennlinie eines {NTC,PTC}-Widerstandes 20. November 2010 Marcel Lauhoff - Informatik BA Matnr: xxxxxxx xxx@xxxx.xx 1 Einleitung 2 2 Theoretische Grundlagen 3 2.1 Das Bändermodell der Festkörper...............................

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... ...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt

Mehr

Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005

Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005 Hilfe!... Eine modulierte Struktur Ein Erfahrungsbericht. Internes Seminar, 15.11.2005 Typisches Phasendiagramm A I -Zn/Cd: Das System Na Zn Quelle: Massalski NaZn 13 -Struktur Cd(1) Cd(1) d K(1) a Cd(2)

Mehr

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik Strahlungsquellen Laser-Messtechnik Thermische Strahlungsquellen [typ. kont.; f(t)] Fluoreszenz / Lumineszenzstrahler [typ. Linienspektrum; Energieniv.] Laser Gasentladungslampen, Leuchtstoffröhren Halbleiter-Dioden

Mehr

Elektronen im periodischen Potential

Elektronen im periodischen Potential Elektronen im periodischen Potential Blochfunktionen / Blochelektronen Elektronenwellen unterscheiden sich von ebenen Wellen durch eine gitterperiodische Modulation. Diese Bloch-Wellen werden in einem

Mehr

Übung zum Elektronikpraktikum Lösung 1 - Diode

Übung zum Elektronikpraktikum Lösung 1 - Diode Universität Göttingen Sommersemester 2010 Prof. Dr. Arnulf Quadt aum D1.119 aquadt@uni-goettingen.de Übung zum Elektronikpraktikum Lösung 1 - Diode 13. September - 1. Oktober 2010 1. Können die Elektronen

Mehr