Thermische Isolierung mit Hilfe von Vakuum Thermische Isolierung 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1"

Transkript

1 Thermische Isolierung mit Hilfe von Vakuum Thermische Isolierung 1

2 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt) halten will? Warum baut man in modernen Gebäuden Fenster mit Doppelverglasung ein und was hat das mit der Einsparung von Energie zu tun? und was haben die beiden Fragen überhaupt gemeinsam? Die physikalisch-technische Gemeinsamkeit: es soll der Transport (man kann auch sagen Verlust) von Wärme verhindert werden entweder vom heißen Getränk oder der Wohnung an die kältere Umgebung Thermische Isolierung 2

3 Wärmetransport Wärmetransportprozesse Wärmeleitung Wärmeströmung (Konvektion) Wärmestrahlung Wärmeübergang stoffgebunden, kein Stofftransport stoffgebunden, Stofftransport nicht stoffgebunden Grenzflächeneffekt Q Wärmemenge [Q] = J, Ws Q/t Wärmestrom [Q/t] = J/s, W Änderung der Wärmemenge Q ist i.a. mit Temperaturänderung T verbunden Thermische Isolierung 3

4 Wärmeleitung Wärmeleitgesetz: Q t T A x auf 2 Weisen anwendbar: heißes Medium (z.b. kochendes Wasser) T = 100 C 2 (1) vorgegebene Temperaturdifferenz T sich einstellender Wärmestrom Q/t (2) vorgegebener Wärmestrom Q/t Wandfläche (A) sich einstellende Temperaturdifferenz T T 2 T > T 2 1 Q T x wärmeleitende Trennwand kaltes Medium (z.b. Wasser mit Eis) T = 0 C 1 T 1 bestimmende Materialgröße Wärmeleitfähigkeit, [] = W/(mK) Analogie zur Elektrizitätslehre: Q t I T U x A Thermische Isolierung 4

5 Wärmeleitung in Schichtmaterialien T 2 Wandfläche A T > T > T >T 2 I/II II/III 1 x I Q x II x III geschichtete Trennwand:,, I II III T 1 W Q t A T x x A Q T W t Wärmewiderstand, [ W ] = K/W beschreibbar wie eihenschaltung von Widerständen im Gleichstromkreis Q t W,ges T T i Ti i Q t W,i Größter (Wärme)-Widerstand bestimmt (Wärme)-Strom, der fließen kann! Q t W,ges i W, i T ges W,ges T2 T W, ges Thermische Isolierung 5

6 Wärmeleitung - Beispiele Material (20 C) Ag Cu Au Al Edelstahl (V2A) Luft, N 2 (0 C, p 0 ) He (0 C, p 0 ) Asbest Glas Eis Wasser in W/(mK) ,02 0,14 0,08 0,8 2 0,6 Bsp.: Fenster, Dicke 24 mm, Fläche 1 m 2, Temperaturdifferenz 20 C Q/t (Al) = 200 kw Q/t (Stahl) = 13 kw Q/t (Glas) = 0,67 kw Q/t (Luft) = 0,017 kw mehr als 4 Größenordnungen Unterschied Genau genommen hängt noch von der Temperatur ab Thermische Isolierung 6

7 Wärmeleitung in Schichtmaterialien Beispiel Fenster Bsp.: Fenster mit 24 mm Dicke, 1 m 2 Fläche, Temperaturdifferenz 20 C Vollglas Q/t = 0,67 kw= 670 W Wir behalten die Gesamtdicke bei, unterteilen aber in Glas/Luft/Glas i in W/Km W,i in mk/w T i in C W,i xi A i 4 mm Glas 0,8 5 0,12 W,ges i W, i Q t T ges W,ges 16 mm Luft 0, ,8 4 mm Glas 0, Thermische Isolierung 7 0,8 5 W,ges = 810 mk/w Q/t = 25 W

8 Kinetische Gastheorie - Grundzüge Ziel: Beschreibung makroskopischer Größen (z.b. Druck) mit mechanischen Bewegungsvorgängen der Gasmoleküle (z.b. Impuls) Idealisierungen: -Moleküle = vollelastische Kugeln mit Masse m, Geschwindigkeit v -bewegen sich unabhängig - keine Wechselwirkung untereinander, solange kein Stoß -Stöße elastisch (klass. Mechanik) Bewegungsgrößen sind Mittelwerte der Molekülgesamtheit ideales Gasgesetz: p nkt n T 2 > T 1 Temperatur: Maß für ungeordnete Bewegung der Moleküle N / V (Teilchen pro Volumen) 8kT v m p Gasdruck, V Volumen, N Teilchenzahl, n Teilchendichte, k Boltzmann-Konstante Thermische Isolierung 8

9 Mittlere freie Weglänge Frage: Welchen Weg legt ein Molekül im Mittel zwischen zwei Stößen mit einem anderen Molekül zurück? geometrischer Wirkungsquerschnitt: Bewegung eines Moleküls in Gas (v Gas =0) um Strecke x überstrichenes Volumen: 2 2 r r r r r2 1 V x r r 1 r 2 r+ 1 r 2 Stoß: in V Mittelpunkt gerade eines anderen Gasmoleküls (n=n/v=1/v) 1 n x 1 mittlere freie Weglänge: l l : x 1 2 n n kt bewegte Gasmoleküle 2 p mittlere freie Weglänge in mm N 2, 10 C x = 16 mm l > d l < d Druck p in Pa Normaldruck Thermische Isolierung 9

10 Wärmeleitfähigkeit von Gasen in W/(K m) N 2, 10 C m sk C 13 m,v p mt l Stoß p in Pa 10 5 Druckabsenkung: l x;l Stoß ~ 1 const (1) weniger Moleküle zum Wärmetransport (2) größere Transportlänge l x;l Stoß ~ p (1) weniger Moleküle zum Wärmetransport (2) Transportlänge konstant l x p const Thermische Isolierung 10

11 Wärmeleitung bei Vakuumisolierung Beispiel Fenster Bsp.: Fenster mit 24 mm Dicke, 1 m 2 Fläche, Temperaturdifferenz 20 C Vollglas Q/t = 670 W Bsp.: Fenster mit 24 mm Dicke, 1 m 2 Fläche, Temperaturdifferenz 20 C 4 mm Glas + 16 mm Luft + 4 mm Luft Q/t = 25 W( W = 810 mk/w) Wir ersetzen nur die Luft durch Vakuum (Feinvakuum, p = 0.1 Pa) 4 mm Glas 16 mm Vakuum 4 mm Glas i in W/Km 0,8 0,0015 0,8 W,i in mk/w T i in C 0, ,98 0,0094 W,ges = mk/w Q/t = 1,9 W Thermische Isolierung 11

12 Zusammenfassung Durch thermische Isolierung soll Transport von Wärme (Energie) von Stoff hoher zu niedriger Temperatur vermindert werden. Ein Transportmechanismus: Wärmeleitung geschichtete Materialien sind als eihenschaltung von Wärmewiderständen beschreibbar. Der größte Widerstand bestimmt den Wärmestrom. Gas: generell schlechter Wärmeleiter, kann durch Verdünnung (mittlere freie Weglänge größer als Gefäßdimensionen) weiter deutlich verringert werden. Vorteil: auch Strömung unterbunden. Anwendung: Vakuumisolierfenster, Isolierkannen funktionieren nach genau dem gleichen Prinzip Thermische Isolierung 12

13 Zusatz 1: Isolierkanne heißes Wasser innere, heiße Stahlwand Vakuum äußere, kühle Stahlwand Luft kalte Stahlschutzhülle x Stahl = 2x0,4 mm (Widerstand vernachlässigt), x = 4 mm, h innen = 160 mm, r 30 mm A 0,03 m 2, T = 40 C W = 2670 K/W (Vakuum); 200 K/W (Luft) Q/t = 0,45 W (Vakuum); 6 W (Luft) Temperatur in C echn. Vakuum echn. Luft Kanne 1 Kanne 2 Kanne 2 modif Zeit in min Thermische Isolierung 13

14 Zusatz 2: Prinzip der Wärmeströmung T 2 > T 1 erwärmtes Fluid steigt auf (Auftrieb) Dichte des Fluids verringert sich kaltes Fluid erwärmt sich langsame Moleküle nehmen Energie durch Stöße mit der heißen Wand auf Gas Flüssigkeit schnelle Moleküle geben Energie durch Stöße mit der kalten Wand and diese ab warmes Fluid kühlt ab Dichte des Fluids vergrößert sich abgekühltes Fluid sinkt ab effektiv: Wärmetransport von heißer auf kalte Wand Thermische Isolierung 14

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr

Thermodynamik Wärmeempfindung

Thermodynamik Wärmeempfindung Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

TUD. 4.1.4 Wärmeleitung und Phasenübergang. Temperatur T1 unter 0 C Eis, Temperaturprofil. Wasser, Temperatur knapp über 0 C

TUD. 4.1.4 Wärmeleitung und Phasenübergang. Temperatur T1 unter 0 C Eis, Temperaturprofil. Wasser, Temperatur knapp über 0 C 4.1.4 Wärmeleitung und Phasenübergang Temperatur T1 unter 0 C Eis, Temperaturprofil Wasser, Temperatur knapp über 0 C Wenn zusätzliches Wasser gefriert, muß Schmelzwärme durch die Eisschicht nach außen

Mehr

Kryotechnik Fortbildung am GSI

Kryotechnik Fortbildung am GSI Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Karlsruher Fenster,- und Fassaden-Kongress. Akademie für Glas- Fenster und Fassadentechnik Karlsruhe Prof. Klaus Layer Ulrich Tochtermann ö.b.u.v.

Karlsruher Fenster,- und Fassaden-Kongress. Akademie für Glas- Fenster und Fassadentechnik Karlsruhe Prof. Klaus Layer Ulrich Tochtermann ö.b.u.v. Karlsruher Fenster,- und Fassaden-Kongress Akademie für Glas- Fenster und Fassadentechnik Karlsruhe Prof. Klaus Layer Ulrich Tochtermann ö.b.u.v. SV Wärmedurchgangskoeffizient Energieeffizienz Warum soll

Mehr

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D 3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Wärmetauscher. Produktinformation Seite 1 von 6

Wärmetauscher. Produktinformation Seite 1 von 6 Produktinformation Seite 1 von 6 Unsere keramischen werden im Bereich der regenerativen Nachverbrennung erfolgreich eingesetzt. Sie sind die Alternative zu konventionellen Füllungen mit keramischem Schüttmaterial.

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK. KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.CH EINLEITUNG In Halbleitern entstehen Verluste, die in Form von Wärme

Mehr

5.4 Thermische Anforderungen

5.4 Thermische Anforderungen 5.4 Thermische Anforderungen 133 5.4 Thermische Anforderungen Bild 5-32 Testzentrum zur Wintererprobung in Arjeplog, Schweden (Foto: Bosch) Extreme Temperaturen im Fahrzeug können z. B. durch kalte Winternächte

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik DI(FH) Joachim MATHÄ Ingenieurbüro für Energietechnik UID: ATU 57242326 7423 PINKAFELD Tuchmachergasse 32 Tel.: 03357/43042 Fax DW 4 +43 664 3263091 e-mail: ibmathae@kabelplus.at Gegenstand: Gutachtennummer:

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Referat Kühlkörper Projektlabor SS 2002

Referat Kühlkörper Projektlabor SS 2002 Inhaltsverzeichnis Referat Kühlkörper prolab SS 2002 Referat Kühlkörper Projektlabor SS 2002 1 Wärmeübertragung...2 1.1 Allgemeines...2 1.2 Konvektion...2 1.2.1 Eigenkonvektion...2 1.2.2 Fremdkonvektion...2

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Theorie - Begriffe. Gleichgewichtszustand. Stationäre Temperaturverteilung. Wärmemenge. Thermoelement

Theorie - Begriffe. Gleichgewichtszustand. Stationäre Temperaturverteilung. Wärmemenge. Thermoelement Theorie - Begriffe Gleichgewichtszustand Ein Gleichgewichtszustand ist ein Zustand in dem sich der betrachtete Parameter eines Systems nicht ändert, aber es können dennoch permanent Vorgänge stattfinden(dynamisches

Mehr

Aufgabe und Verwendungszweck eines Kühlkörpers

Aufgabe und Verwendungszweck eines Kühlkörpers Technische Grundlagen Aufgabe und Verwendungszweck eines Kühlkörpers An der Sperrschicht von Halbleiterbauelementen und Widerständen setzt sich die elektrische Verlustleistung (Pv) in Wärme (Q) um und

Mehr

Thermische Simulation und Kühlung von Leiterplatten

Thermische Simulation und Kühlung von Leiterplatten Thermische Simulation und Kühlung von Leiterplatten In modernen Leistungselektronik Anwendungen wie z.b. Schaltnetzteilen müssen auf engstem Raum mehrere Leistungs-Halbleiter montiert werden. Die steigende

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 1 Mechanik Akustik Wärmelehre 27., unveränderte Auflage mit 655 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten.

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten. Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov Raum E143, Tel. 888-5875, email: dyakonov@physik.uni-wuerzburg.de 10 Wärmelehre/Thermodynamik Lehre der Energie,

Mehr

Versuch W6 für Nebenfächler Wärmeleitung

Versuch W6 für Nebenfächler Wärmeleitung Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich.

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich. 6. Wärmetransportphänomene 10_Thermodynamik_Waermetransport_BAneu.doc - 1/11 Wärmetransport tritt in einem System immer dann auf, wenn es Orte mit unterschiedlicher Temperatur gibt, d.h., wenn es sich

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität W10 Wärmeleitung Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität dieser Größen nachgewiesen. 1. Theoretische Grundlagen 1.1 Wärmeleitung Mikroskopisch

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB für das Edelstahlanschlusselement FFS 340 HB Darmstadt 12.03.07 Autor: Tanja Schulz Inhalt 1 Aufgabenstellung 1 2 Balkonbefestigung FFS 340 HB 1 3 Vereinfachungen und Randbedingungen 3 4 χ - Wert Berechnung

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

AlN-Massivkühldose zur Kühlung von GTOs und Dioden

AlN-Massivkühldose zur Kühlung von GTOs und Dioden Eine Gemeinschaftsentwicklung der ADtranz GmbH ( land ) und der ANCeram GmbH & Co. KG 1. Technische Beschreibung Die flache Massivkühldose mit geläppten Halbleiter-Auflageflächen wird aus gut wärmeleitender

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Inhaltsverzeichnis. Seite 2

Inhaltsverzeichnis. Seite 2 Inhaltsverzeichnis 1 Einleitung... 1 2 Konstruktionsbeschreibung...1 3 Berechnungsgrundlagen...2 4 Randbedingungen für die Berechnung... 4 5 Berechnungsergebnisse...4 6 Ergebnisinterpretation... 5 7 Zusammenfassung...

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Wärmedämmungsexperiment 1

Wärmedämmungsexperiment 1 Wärmedämmungsexperiment 1 Ziel dieses Experiments ist die Messung der Wärmeleitfähigkeit verschiedener Materialien durch Umwandlung der übertragenen Wärmeenergie in Bewegung. Die Menge der Wärmeenergie

Mehr

7 Wärme und Energie(energía (la) térmica)

7 Wärme und Energie(energía (la) térmica) 7 Wärme und Energie Hofer 1 7 Wärme und Energie(energía (la) térmica) Die Thermodynamik beschreibt die Übergänge zwischen den Aggregatzuständen. Die Thermodynamik ist weiters eine wichtige Hilfe bei Konstruktion

Mehr

Musso: Physik I Teil 20 Therm. Eigenschaften Seite 1

Musso: Physik I Teil 20 Therm. Eigenschaften Seite 1 Musso: Physik I Teil 0 Therm. Eigenschaften Seite 1 Tipler-Mosca THERMODYNAMIK 0. Thermische Eigenschaften und Vorgänge (Thermal properties and processes) 0.1 Thermische Ausdehnung (Thermal expansion)

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Thermische Dimensionierung

Thermische Dimensionierung Thermische Dimensionierung 5 In Geräten fällt durch Verlustleistung oft in erheblichem Maße Wärmeenergie an. Sie führt zu thermischen Belastungen mit negativem Einfluss auf die Funktion und Zuverlässigkeit.

Mehr

Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen

Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen In aller Kürze Hast du schon mal einen Heißluftballon am Himmel beobachtet? Wie kommt es eigentlich, dass er fliegen kann?

Mehr

24 Ausbreitung der Wärme

24 Ausbreitung der Wärme 334 24 Ausbreitung der Wärme 2. Wo liegt der Taupunkt für diesen Fall? In der Tabelle findet man ihn bei 11 oe (in der Mitte zwischen 9,4 und 10,7 g1m 3 ). 3. Ein Küchenraum der Abmessungen 2, 50 rnx 2,96

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Seite 1 Themengebiet: Mechanik 1 Literatur D. Meschede, Gerthsen Physik, Springer, Berlin M. Wutz, H. Adam, W. Walcher, Theorie und Praxis der technik, Vieweg 2 Grundlagen Historisch gesehen bezeichnet

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

HEIZEN / KÜHLEN. Bodenkonvektoren

HEIZEN / KÜHLEN. Bodenkonvektoren HEIZEN / KÜHLEN Bodenkonvektoren Ob in öffentlichen Gebäuden, Geschäftsobjekten oder in der Gemütlichkeit des eigenen Heimes: Bodenkonvektoren sind stets eine stilvolle und platzsparende Lösung. Angenehme

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Elektrizität aus Wärme Thermoelektrizität

Elektrizität aus Wärme Thermoelektrizität Elektrizität aus Wärme Thermoelektrizität Studienwoche Physik 2012 Manfred Sigrist Peltier - Effekt elektrischer Strom Kälte/Wärme Jean Peltier 1785-1845 Thermoelement Batterie elektrischer Strom Seebeck

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Praktikum Materialwissenschaft II. Wärmeleitung

Praktikum Materialwissenschaft II. Wärmeleitung Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: a.schwoebel@gmail.com Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis

Mehr

Einführung in Werkstoffkunde Zustandsdiagramme

Einführung in Werkstoffkunde Zustandsdiagramme Einführung in Werkstoffkunde Dr.-Ing. Norbert Hort norbert.hort@gkss.de Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Inhalte Über mich Einführung Aufbau von Werkstoffen Physikalische

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik Inhalt dieses Vorlesungsteils - ROADMAP GR UN DL AG EN MW-VT TRIKA OR T PROLOG APPLIKA TIONEN TE CH NI K 41 Einsatz von Mikrowellenenergie in der Verfahrenstechnik W ÄR M ET RA NS P ÄR M UN G+ DIELEK ER

Mehr

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion (Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle

Mehr

9 Physik I (3-stündig)

9 Physik I (3-stündig) Physik I (3-stündig) In dieser Jahrgangsstufe nimmt die Sicherheit der Schüler beim Experimentieren stetig zu, sie vertiefen die experimentelle Methode zur physikalischen Erkenntnisgewinnung. Sowohl in

Mehr

Behaglichkeit durch Wärmedämmung. Austrotherm Bauphysik

Behaglichkeit durch Wärmedämmung. Austrotherm Bauphysik Austrotherm Bauphysik Behaglichkeit durch Wärmedämmung Ω Wärmedämmung von Baustoffen Ω Grundlagen zur Wärmeleitfähigkeit Ω Raumklima und Wärmespeicherung Das lässt keinen kalt. www.austrotherm.com Wärmedämmung

Mehr

Thermodynamik Wärmestrom

Thermodynamik Wärmestrom Folie 1/11 Werden zwei Körper mit unterschiedlichen Temperaturen in thermischen Kontakt miteinander gebracht, so strömt Wärme immer vom Körper mit der höheren Temperatur auf den Körper mit der niedrigen

Mehr