Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:"

Transkript

1 Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A, und ugeket pop. zu Länge l. Wäesto λ A T l Wäeleitfäikeit Dieses wid zweckäßige po ineitsfläce definiet: j u K Wäeleitzal Fluss de teiscen negiewäesto Bei Tanspot de Wäe duc den Köpe: s gibt Widestand, bedingt duc die ittlee feie Weglänge. Die Wäeleitzal folgt aus den ikoskopiscen igenscaften. Die Wäeleitzal nun genaue untesucen: inige Wete fü die Wäeleitfäigkeit λ von untesciedlicen Mateialien nde 9.Nov.09 75

2 Winteseeste 009 / 00 FK In de kinetiscen Gasteoie findet an fü die Wäeleitzal i Gas: K C v l ittlee feie Weglänge ittlee Teilcengescwindigkeit Wäekapazität po Voluen Dieses gebnis läßt sic auf Festköpe übetagen, it C: Wäekapazität de Pononen v: deen Gescwindigkeit l: deen ittlee feie Weglänge ittlee feie Weglänge von Pononen, beecnet aus de Gleicung oben. Dabei wude v 5k/sec angenoen, eine typ. Scallgescwindigkeit in Festköpen [aus: Kittel] De ittlee Teilcenfluss in x-rictung: De ittlee Teilcenfluss in x-rictung: Φ n v x in Teilcen bewegt sic aus einen waen Gebiet T+ T zu eine kälteen Gebiet it T: Wäetanspot c T Dazwiscen liegt die ittlee feie Weglänge l. Also: T l v x Wäetanspot po Teilcen c v x τ Wäetanspot aus de ittleen Teilcenfluss beide Rictungen j nc v übe dei Rictungen geittelt: v ist konstant, also: u τ u n v c τ j x j u C v Fü Pononenwäeleitung gilt also die bekannte Gleicung aus de kinetiscen Gasteoie nu it den Gößen entspecend angepasst. l x τ it lcτ, Cnc, 76

3 Winteseeste 009 / 00 FK Woduc ist die ittlee feie Weglänge de Pononen gegeben? --Steuung an Kistallfelen --Steuung an andeen Pononen Letztee ist nu öglic, weil die Käfte zwiscen den Atoen nict nu ein aonisc sind. Wi untesucen die Steuung an andeen Pononen: Zuest ein expeientelles gebnis: "Die ittlee feie Weglänge ist bei oen Tepeatuen popotional zu /T." Veständlic: bei oen T: se viele Pononen sind angeegt, anegung ist popotional zu T, also ein Ponon kann it vielen andeen in WW teten, die Anzal de WW-Pozesse ist pop T, also ittlee feie Weglänge pop zu /T. Dieses eict abe nict zu Veständnis, das es eine ittlee feie Weglänge gibt! s uß Pozesse geben, die die Pononenveteilung in ein lokales teisces Gleicgewict bingen, nu so kann die xistenz de ittleen feien Weglänge vestanden weden. Dieses ist analog zu Wäeleitung in eine Ro: Wäeleitung duc Gasteilcen in eine Ro zu Beispiel bei elativ niedigen Duck: Teilcen von links nac ects: --elastisce Steuung und keine Reibung an Wand Wäe von links nac ects, / ist dafü nict wictig. Wäeleitung duc Gasteilcen in eine Ro nun it öee Duck:, so dass viel Stösse efolgen Die Teilcen wanden nict von links nac ects. -- kein eale Massentanspot! nac jede Stoß wanden die Stoßpatne etwas nac ects, wenn deen Scwepunktsgescwindigkeit göße als Ducscnitt sind. Wäe von links nac ects, / ist dafü se wictig. 77

4 Winteseeste 009 / 00 FK Zuück zu den Pononen: Gittescwingungen beiten sic von de Quelle e aus: one Ändeung des gesaten Pononenipulses wid ein Fluss übe die gesate Kistalllänge öglic. Solce Pozesse: "Noalpozesse" v K + K K Wäe get "widestandslos" von links nac ects. Bei U-Pozessen wid de gesate Pononenipuls geändet Diese Pozesse "Uklapppozesse": v K + K K + G Wäe von links nac ects, alledings geindet duc die Pononensteuung it Uklapppozessen. Die ittlee feie Weglänge in den Gleicungen zuvo ist die Weglänge fü Uklapppozesse. Nun zu Wäeleitfäigkeit: Bei tiefen Tepeatuen neen die Uklapppozesse ab, da die beteiligten Pononen it K und K elativ kleine K-Betag Wete aben. Dait fällt die Wasceinlickeit fü die zeugung eines ezipoken Gittevektos G bei de Steuung de beiden Pononen aneinande. Mittlee feie Weglänge nit it fallende T zu....igendwann wid die ittl. Weglänge in die Göße de äußeen Abessungen vo Kistall koen! K CvD Beispiel:Wäeleitfäigkeit von oceine NaF 78

5 Winteseeste 009 / 00 FK Beispiel:Wäeleitfäigkeit von Sapi: blaue Rosapi aus Madagaska Witkistall: Al O. Sapie entalten als fabgebende Substanzen geingfügige Beiengungen von Fe + ode Ti + blau, Fe + gelb und gün, C + osa und/ode V 4+ violett, zusaen it Co und isen oange. De fablose Leukosapi entält dagegen keine Beiengungen. ttp://www.sappo.de Sapi besitzt bei tiefen Tepeatuen eine se goße Wäeleitfäigkeit: Pononenwäeleitung! Zu Vegleic: Al O bei 0K: 00 W/c K Cu : 00 W /c K 79

6 Winteseeste 009 / 00 FK ttp://www.po-pysik.de/py/leadaticle.do?laid0878 in andee Atikel, de Nanoöen und die Wäeleitung ittels Pononen in de Anwendung besceibt: Pysik Jounal Mai 007, Seite 5 80

7 Winteseeste 009 / 00 FK Inalt de Volesung "infüung in die Festköpepysik" fü Novebe 009 ist geplant: Dynaik des Kistallgittes. Gittescwingungen in Kistallen. Quantisieung de Gittescwingungen: Pononen. Messung von Pononen: Pononenspektoskopie.4 Gitteanteil an de Wäekapazität.5 Wäeleitung und Wäeausdenung Volesungswoce Das feie lektonengas 4. Feie lektonen i Potentialkasten 4. Die Fei-Diac-Veteilung 4. Die Wäekapazität des lektonengases 4.4 lektisce Leitfäigkeit und Osces Gesetz 4.5 De Hall-ffekt 4.6 lektostatisce Absciung i Fei-Gas 7 Do.6.Nov

8 Winteseeste 009 / 00 FK 4 Das feie lektonengas 4. Feie lektonen i Potentialkasten Festköpeeigenscaften: äufig eict die "adiabatisce Näeung" also: Kenbewegungincl. Rupf-e - wid als zeitlic konst angenoen fü die feien lektonen, weil die feien lektonen viel kleinee Masse aben und sic dae viel scnelle bewegen. dann: Anegungszustände des lektonengases kann beecnet weden dies get nict fü Tanspotpänoene abe weitee Veeinfacung ist notwendig: Betacte nu ein e - in eine effektiven peiodiscen Potential eißt auc: "inelektonennäeung" iebei: keine e - -e - WW it beücksictigt, also nu ein se einfaces Modell! also: wi wissen, das wi die Peiodizität eigentlic it einbezieen üssen, das acen wi i näcsten Kapitel. Hie: lekton i Potentialkasten, de Pot.- Kasten ist oc stit auc nict wiklic: die Austittsabeit ist typ. ca.-5 ev Coulobpotential Pseudopotential 8

9 Winteseeste 009 / 00 FK stationäe Scödinge-Gleicung fü ein e - i Pot: Ψ + V Ψ Ψ Kastenpotential: V x, y, z V 0 0 const fü 0 x, y, V sonst z L die Zustände: Ψ Wi wissen aus de Pysik : Das lekton kann den Kasten nict velassen, da oe Pot.-Wand, also ist die Wellenfunktion 0 auf de Rand und außealb dazwiscen ist sie beliebig eine öglice Lsg ist: Ψ sin k x x sin k y y sin k z L k x + k y + k z π π π n x, k y n y, k z z, L L L + Z Ψ k x n n i z die Wete i k-rau: Da L se goß i Vegleic zu den atoaen Abständen ist, sind die n i ode k i wol disket in de Paxis also 8 quasi kontinuielic. Also, bei de Beecnung de Anzal de

10 Winteseeste 009 / 00 FK Also, bei de Beecnung de Anzal de Zustände düfen die Suen duc Integale esetzt weden. Die Zustände baucen wi nu i positiven Oktanten beecnen: dz ω 8 8 Voluen zwiscen zwei Voluen eines k 4 π k dk π / L Kuglescalen Punktes d k k k dk k dk dk d d k dk dz dz ω 4 π k 4 π k d 8 π / L k 8 π / L ω 4 π d 8 π / L 4 π / L d / d nun noc einen Fakto fü die beiden öglicen Spin- Ausictungen dazu, und wi ealten fü die Zustandsdicte po Voluen: D / / dz ω d π Man kann dieses gebnis auc ittels de Wellenfkt und peiodiscen Randbedingungen ealten, also it: Ψ x + L, y + L, z + L Ψ x, y, z Und laufenden Wellen als Lsg: Ψ / ik L e Da nun positive und negative Laufictungen elaubt sind, sind die öglicen k-wete: k ± π ± 4 π ± π 0,,,..., fü k y und k z genauso L L L x n x 84

11 Winteseeste 009 / 00 FK Wi scauen uns nun die Besetzung de Zustände an: Alle Zustände üssen so besetzt sein, das deen gesate negie de ittleen teiscen negie des Systes entspict. Also, it eine Besetzungswasceinlickeitsfunktion ft, ist die lektonendicte n: n 0 D f T, d Fü ein Gas aus klassiscen Teilcen wäe ft, die Boltzannveteilung. Hie: Feionen, es gilt das PP. Alle Teilcen besetzen die inen öglicen Zustände it niedigste negie, bei T0. Die obee Genzenegie zwiscen besetzten und unbesetzten Zuständen eißt Fei-negie. Fü das feie lektonengas i Potentialtopf ist die Fei-negie eine Kugelobefläce it Fei- Radius. Fü odifiziete Systee, also Kistall- Systee it weiteen inneen WW ist die Kugel odifiziet und kann zielic individuelle Gestalt anneen. F k F Fei-Radius ode gapisc: Hie wid äufig auc die Ukefunktion geplottet: nde 4.Nov.09 85

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

LOOPING. Berechnung der Ablösung für den Übergang in den Schiefen Wurf. r F N

LOOPING. Berechnung der Ablösung für den Übergang in den Schiefen Wurf. r F N De Looping one Reibung Ein Eiswüfel de Masse m, im olgenden kuz Köpe genannt, statet im Punkt S utsct die tangentiale Ebene inunte danac duc den etikalen Looping Reibung bleibt außen o, so dass nu konseatie

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Schalten der elektrischen Leitfähigkeit in Mikroemulsionen durch Photoisomerisierung von Solubilisaten

Schalten der elektrischen Leitfähigkeit in Mikroemulsionen durch Photoisomerisierung von Solubilisaten Scalten e elektiscen Leitfäigkeit in Mikoeulsionen uc Potoisoeisieung von Solubilisaten DISSERTATION zu Elangung es akaeiscen Gaes Dokto eu natualiu (D. e. nat.) vogelegt e Fakultät Mateatik un Natuwissenscaften

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

Modul 3.4 Geometrie: Kubus, Quader, Zylinder

Modul 3.4 Geometrie: Kubus, Quader, Zylinder Seite 1 1. Volumen Hie lenst du, Volumen von folgenden Köpen zu beecnen: De Begiff Volumen kennzeicnet nicts andees als den Inalt eines Köpes. Den Inalt eecnest du, indem du zunäcst die Gundfläce ausecnest

Mehr

Quantentheorie auf einer Folie

Quantentheorie auf einer Folie Quantenteoie auf eine Folie Wesentlice Elemente de Quantenmecanik sind: Die Enegie ist gequantelt (Potoeffekt). Plancksces Wikungsquantum. Lict und Mateie: Welle / Teilcendualismus (Vesuc am Doppelspalt,

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite von Hinweie: Etellen Sie in den Fällen, wo die Aufgabe keine Skizze entält, et eine Skizze Benutzen Sie die in de Aufgabe

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

4. Variable, Lebensdauer. Variable in imperativen Sprachen. Vorlesung Grundlagen der Programmiersprachen SS 2014 / Folie 401. Themen dieses Kapitels:

4. Variable, Lebensdauer. Variable in imperativen Sprachen. Vorlesung Grundlagen der Programmiersprachen SS 2014 / Folie 401. Themen dieses Kapitels: 4. Vaiable, Lebensdaue Temen dieses Kapitels: Vaiablenbegiff und Zuweisung untesciedlice Lebensdaue von Vaiablen Laufzeitkelle als Speicestuktu fü Vaiablen in Aufufen GPS-4-1 Volesung Gundlagen de Pogammiespacen

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kene und Teilchen Modene Expeimentalphysik III Volesung 16 MICHAEL FEINDT INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kenkaft KIT Univesität des Landes Baden-Wüttembeg und nationales Foschungszentum in de Helmholtz-Gemeinschaft

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice Hocscule STUDIENGANG ELEKTRO-UND INFORMATIONSTECHNIK Blatt von 3 Ascaffenbug Pof. D.-Ing. U. Boctle, Dipl.-Ing. Hans Hitzinge, Amin Hut Vesuc 4/5 Paktikum Scaltungstecnik I Vesion.0 vom 7.0.003 Vesucsumduck

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis Pi- Geometie Ditte Übungen us de eiligen Geometie zum pesönlicen Ncvollzug und zu Vetiefung. Von Fnz Delquis Aus den Quellen des eindücklicen Buces Vom ewig beginnenden Ende von Andes OttigeAmmnn, AnOA-

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

2. Welle-Teilchen Dualismus

2. Welle-Teilchen Dualismus 1. De-Boglie-Wellenlänge. Die Wellenfunktion. Welle-Teilcen Dualismus 3. Heissenbegsce Unscäfe-Relation 4. Scödingegleicung 5. Ewatungswete und Obsevablen 6. Potentiale 7. Tunneleffekt Matin zu Nedden

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g 3..00 Volesun - Bestimmun de Bennweite B G F F Aildunsleichun f ; f wid fest ewählt; wid so lane eändet, is Bild schaf auf Mattscheie escheint. ( ) ( ) ( ) ( ) f f. Methode ( ) ( ) f ± Die folenden Folien

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

WCOM2-Praktikum 4 Antenna Matching mit NWA

WCOM2-Praktikum 4 Antenna Matching mit NWA ZHAW WCOM2, FS2017, Rumc, 1 1. Einleitung WCOM2-Paktikum 4 Antenna Matching mit NWA In diesem Paktikum wid eine Monopol-Antenne auf die gewünschte Fequenz abgestimmt und an die 50Ω Zuleitung angepasst.

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

11.11 Das elektrische Potential

11.11 Das elektrische Potential . Das elektische Potential Wie wi im voigen Abschnitt gesehen haben kann eine Pobeladung q in jedem Punkt P eines elektischen Feldes eine feldezeugenden Ladung Q eindeutig eine entielle negie zugeodnet

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Musterlösung Probeklausur

Musterlösung Probeklausur WALTER SCHTTKY INSTITUT Lehstuhl fü Halbleitetechnologie Pof. D.-Ing. M.-C. Aann Mustösung Pobeklausu WERKSTE DER ELEKTRTECHNIK WS 9 / Aufgabe : Ladungstägedichten ( Punkte) Das Lithiu-Ato (Li) hat die

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN Spezialgebiet in Physik Maco Masse BG Bluenstasse 2003 Inhaltsvezeichnis 1.Kenfusion 1 1.1. Allgeeines 1 1.2. Veschelzung 1 1.3. Theonukleae Reaktion 1 2.Die

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

3 Ebene elektromagnetische Wellen

3 Ebene elektromagnetische Wellen 3 bene elekomagneisce Wellen nscaulice Besceibung 6 3 bene elekomagneisce Wellen In diesem bscni weden ebene elekomagneisce Wellen in omogenen Medien beandel. Dabei sollen die fü die Besceibung elekomagneisce

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben:

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben: Facoccule Aalen Studiengang Witcaftingenieuween Pyik II D. Haan SS 005 Klauu a. uli 005 Folgende bitte deutlic ceiben Nae Vonae Gebuttag Matikelnue Sie aben fü die Klauu 90 Minuten Zeit. Löungen zälen

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax:

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax: KUNDENASSBLATT Vemesse: Datum: Bootstyp: Segelnumme: Revie: Kundenadesse Name: Staße: PLZ/Ot: Tel. (piv.): Tel. (gesch.): obilnumme: Fax: E-ail: WICHTIG Bitte beachten! Seh geehte Kunde, bitte eschecken

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten Näcster Abscnitt => Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropisce Bewegung Druckkoordinaten Matematisce Herleitung der Coriolisbescleunigung Darstellung eines beliebigen

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen:

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen: X. Kenphysik. ukleonen und Kenkaft Kene sind stak gebundene Systeme aus fabneutalen ukleonen: Impuls de ukleonen aufgund Unschäfeelationen elativ goß (s. späte). Bild feie ukleonen in einem effektiven

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr