v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

Größe: px
Ab Seite anzeigen:

Download "v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr"

Transkript

1 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) = 3: Lemma: Ist K e Krer ud X ; Y Ubestmmte, so glt X m Polyomrg K[ X ; Y] de Idettt: ( X + Y) = X 6 6 Y ; wobe fr K + K + + K 2 K - m al steht. Ist char K = 2 P, so st also e Elemet vo Z/ Z K m K + K + + K Idukto ach Lemma: Se 2 N; = r, 2 P, 2 N. Da gelte ( mod ) r ( mod ) ; ( mod ). ( mod ), falls = ; 6 6. I K[ X ; Y] glt: ( X + Y) = X + Y, falls K e Krer der Charakterstk st;. Bereche K[ X] : ( X + ) = ( ( X + ) ) r = ( + X ) r = ( + X ) r = + r ( ) 5. 2 : ( X + ) = + X + 2 K o e z et everglech = r X X + K, d. h. r ( mod ). X r + 2 X 2 +

2 v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr = ergbt: ( ) ( mod ) ( + X) Lemma: Ist H G Utergrue ud N 4 N G ( H), so glt: #f H G j H kojugert zu Hg = [ G : N] G oerert auf X = f Utergrue H G X X vo G g durch Kojugato ( g; H ) g H g Bah vo H st de Mege aller H, de kojugert sd zu H, de Fxgrue st N. Wede de Bahglechug a:. De #fh G j H kojugert zu Hg = # G # N = [ G : N] ( 5. 5) Stuato: # ( G) = = r, 2 P ; 2 N a = a ( G) 4 Zahl der Utergrue vo G der Ordug. X 4 f T j T G ; ord( T) = g, #( X) = ( =Azahl der Telmege vo G mt Ordug ) G oerert auf X durch Lksmultlkato: Zerlege X =S X Bahe uter G. G X X ( g; T) g T. Jede der Bahe X hat ee Gre #( X ) = r mt 6 Se T 2 X, G T 4 Fxgrue vo T G = f g 2 G j g T = Tg. Ist t 2 T, so glt: G T t T, mt adere Worte: S T = G T t j Zerlegug Lksebeklasse modulo G T. j 2 J Da st: = #( T) = #( G T ) #( J) 2

3 #( X ) = # ( G) # ( G T) = # ( G) # ( T) #( J) = r =. Ist X ee der Bahe, de ee Utergrue H ethlt ( d. h. H 2 X ), so st #( X ) = r Es st G H = f g 2 G j g H = H g = H. Also #( X ) = # ( G) = = r = r # ( G H ) # ( H). Ist umgekehrt #( X ) = r, so ethlt X geau ee Utergrue H. a) Se T 2 X mt 2 T ( e derartges T exstert: Ist S 2 X ; s 2 S, so st auch 2 s S = : T 2 X ). b) Se H 4 G T = f g 2 G j g T = Tg : Es st #( H) = # ( G) = = # ( X ) r = #( T). Wege H = H 2 T T st also H = T, da #( H) = #( T) : c) Es st X = f g H j g 2 G g = f Hg[ f g Hj g H g der Utergrue H 2 X. kee G ru e; d a 2 H. Des zegt de Edeutgket v. Aus ( ) ud ( ) : v. Abzhle vo #( X) =P #( X ) ergbt: = #( X) = r a P ( G) + r a ( G) = r 5. 3 : a ( G) = #fbahe X vo G auf X mt #( X ) = rg P > X B ah m t # ( X ) = r m t > #( X ) r ( mod ), sbesodere a. Ab jetzt setze wr voraus: st maxmaler -Teler vo, d. h. j ; + - ( = : k ) v. Se S ee Utergrue der Ordug vo G ( exstert ach ( v) ). S het -Sylow- Grue vo G. Ist H ee Utergrue vo G mt #( H) = ( 6 ), so st H kojugert zu eer Utergrue vo S. S lege der Bah X X uter G, d. h. S 2 X = f gs g 2 G g X. #( X ) = r ( mod ) : Wege ( ) hat de -Grue H auf X ee Fxukt g S, d. h. H g S = g S: Weter st HgS = gs, g H g S = S, g H g S: Folgerug: 3

4 Alle -Sylow-Grue S vo G sd zu S kojugert ud daher auch somorh. v. Es st a ( G) # ( S y low G rue vog ) ( mod ) ud a ( G) j r: Se S -Sylow-Grue, N 4 N G ( S) : Nach st a ( G) = [ G : N] = Teler vo [ G: S] : Satz: (Zusammefassug) G edlche Grue, #( G) = = r, k. 9 Utergrue H vo G mt #( H) =. Solche Utergrue hete -Sylow-Grue vo G.. Ist H Utergrue vo G mt #( H) = ( 6 ), so st H kojugert zu eer Utergrue eer -Sylow-Grue. Isbesodere sd alle -Sylow-Grue vo G kojugert.. a ( G) ( = : Zahl der -Sylow-Grue) erfllt: a ( G) ( mod ) ud a ( G) j r v. 8 6 st a ( G) ( mod ). Bemerkug: Bewes ursrglch vo Sylow ( 87 ) ( ), ( ), ( ) Frobeus ( v). User Bewes vo Weladt ( 954) Korollar: Ist 2 P e Teler vo, so 9 g 2 G mt ord( g) = : Korollar: Bezechuge we De folgede Bedguge sd quvalet:. Jede -Sylow-Grue G st ormal. a a( G) =. 9 ormale -Sylow-Grue vo G v. 9! -Sylow-Grue vo G v. De Elemete vo -Potezordug G blde ee Grue. 4

5 5. 9. Besel:. #( G) = 35 = 5 7. Da st G abelsch, C 3 5 a 5 ( G) ; a 7 ( G) =. Also sd de Sylow-Grue 2 S 5 ; S 7 wohlbestmmt ud ormal. Also [ S 5 ; S 7 ] S 5 \ S 7 = f g. Also kommutere S 5 ; S 7 elemetwese, also st S 5 S C ch : R es t sat C 7 C 3 5 :. #( G) = 45 = Dasselbe Argumet we ( ) lefert: G st abelsch, also st C 9 C ch : R est s at z C 4 5, oder C 3 C 3 C 5.. Se 2 < 2 P; D 2 de Dedergrue. Es st ( G) =. Fr 2 D 2 f ; g st 2-Sylow-Grue. a 2 ( D 2 ) =. v. G = S 4 = Sym( f ; 2; 3; 4g ), = 4! = 24 = a 2 3( G) ( mod 2), a 2 3( G) j 3 a 2 3( G) = 3 a 3 ( G) ( mod 3) ; a 3 ( G) j 8 a 3 ( G) = 4 Elemete der Ordug: Ty # 2 ( a b) 6 ( a b) ( c d) 3 3 ( a b c) 8 4 ( a b c d) 6 24 Ee Utergrue der Ordug 8 st ord ( ) = 4; ord( ) = 2, = v. G = GL( r; Z/ Z), 2 P, = #( G) =! ( r ) ( r ) : S alt e r * 2 2 : S alt e 3 : S alt e = ( r ) ( r ) ( ) r ( r ) 2. ( 2 3 4) ; ( 3) = : We seht ee -Sylow-Grue vo G aus? r = : r r t e S alt e Mt de folgede Bedguge st U( r; Z/ Z) ee -Sylow-Grue. Ererug: Ist K e Krer, so st: + h glt: 2 =, d. h.. C st de zyklsche G ru e mt Elemete 2. Achtug, her st cht de symmetrsche G ru e S gemet. 5

6 B( r; K) 4 U( r; K) 4 T( r; K) 4 8< : B@ CA 8< : B@ CA 8< : B@ CA v. = 3; r = 2; G = GL( 2; Z/3 Z) ; #( G) = = 8 6 = 48. 9= ; = Grue der verterbare obere Dreecksmatrze 9= ; = 9= ; = Grue der strkte obere Dreecksmatrze Grue der verterbare Dagoalmatrze Wr kee ee 3-Sylow-Grue, was st mt 2-Sylow-Grue? z. B. st H = h ; ee 2-Sylow-Grue mt = 2 ord( ) = 8; ord( ) = 2, = 3. v. G = S 5 = Sym( f ; 2; 3; 4; 5g ) ; = 2 = Ty # 2 ( a b) 5 2 = ( a b) ( c d) 5 3 = 5 3 ( a b c) 2 = 2 = = ( a b c d) 3 5 ( a b c d e) 24 6 ( a b c) ( d e) 2 2 a 2 3( G) = 5; a 3 ( G) = ; a 5 ( G) = 6, =, Beobachtug: Sd ; 2 S ; = ( a a 2 a k ) ( b b 2 b l ) So st = = ( ( a ) ( a 2 ) ( a k ) ) ( ( b ) ( b 2 ) ( b l ) ) ( folgt aus ). 5.. Proosto: Zwe Elemete ; vo S sd geau da kojugert, we se deselbe Zyklusstruktur bestze, d. h. gleche Azahl vo Zykle gegebeer Lge. Isbesodere glt: #( Kojugatosklasse vo S ) = #( Parttoe vo ) = : ( ) 5.. Klee Grue: Zahl der Isomorheklasse vo Grue der Ordug : 6

7 abelsche Grue ( ) cht abelsche Grue ( ) Azahl der Grue G = f g 2 C 2 3 C 3 4 C 4 ; C 2 C C 5 6 C C 2 C 3 D S GL( 2; Z/2 Z) 2 7 C 7 8 C 8 ; C 4 C 2 ; C 2 C 2 C 2 D 8 ; Q 5 9 C 9 ; C 3 C 3 2 C 2 C 5 D 2 5 = D 2 C 2 C 4 C 3 ; C 2 C 2 C 3 A 4 S 4 ; D 2 ;???? 5 3 C 3 4 C 2 C 7 D 2 7 = D C C 3 C 5 6!!! Bemerkuge: ( Z/ Z), we 2 P Q = f ; ; j; k g mt 2 = j 2 = k 2 =, Fr = 2 sehe Aufgabe j = j = k Proosto: Gegebe se ee Grue G mt zwe Utergrue H E G ud L G. Da sd quvalet:. De Komosto L G G/ H st e Isomorhsmus. De Produktabbldug ': L H G ( l ; h) l h = l h st bjektv. 3. De Produktabbldug ': H L G st bjektv. ( h ; l) h l = h l Sd dese Bedguge erfllt, so exstert e Homomorhsmus : L Aut( H) mt: 8l 2 L ; h 2 H st l h l = ( l) ( h) I desem Fall schrebe wr G = L H, ud ee des das semdrekte Produkt 4 vo L ud H vermttels : ( ) ) ( ) : Ist '( l ; h) = '( l ; h ), so ( l) = ( ') ( l ; h) = ( ') ( l ; h ) = ( l) l = l, also auch h = h. d. h. ' jektv. Surjektvtt: dto. 3. ' st m allgemee ke H omomorhsmus 4. Das semdrekte P rodukt gbt ee M glchket, grere G rue mthlfe vo kleere G ru e zu beschreb e. 7

8 ( ) ) ( ) : Zu jedem g 2 G: 9! l 2 L mt g l ( mod H). Lege dese Voraussetzuge vor, so st fr jedes l 2 L: '( l) : H H h l h l e Automorhsmus. Weter st ( l l ) = ( l) ( l ), l ; l 2 L, de 8h 2 H st ( l l ) ( h) = l l h ( l l ) = l l h l l = ( l) ( ( l ) ( h) ) = ( ( l) ( l ) ) ( h). = ( l ) ( h) Also st : l ( l) e Homomorhsmus vo L ach Aut( H) : Sd ur L; H ud gegebe, so lsst sch G beschrebe als mt der Multlkato: ( l h) ( l h ) = l h l h = l l ( l G = L H = L H = f ( l ; h) j l 2 L ; h 2 Hg = h l ) h = l l ( l ) ( h) h ; d: h: ( l ; h) ( l ; h ) 4 l l ; ( l ) ( h) h Besel: (fr semdrekte Produkte). D 2 = C 2 C : C 2 Aut( C ) x ( ). K Krer: B( ; K) = T( ; K) U( ; K) B = T U. ; q 2 P; < q ; #( G) = q. Da st ee q-sylow-grue H ormal, jede -Sylow- Grue L rojzert somorh auf G/ H. Da st G = L H. 8

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Definitionen und Aussagen zu Ringen

Definitionen und Aussagen zu Ringen Deftoe ud Aussage zu Rge Mchael Hortma, 1142002 Währed wr es be Gruppe mt ur eer Operato zu tu habe, kee wr zb vo de gaze Zahle das Zusammespel zweer Operatoe, Addto ud Multplkato, wobe charakterstsch

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Ein paar einfache q-analoga des binomischen Lehrsatzes

Ein paar einfache q-analoga des binomischen Lehrsatzes E paar efache -Aaloga des bosche Lehrsatzes Joha Cgler Sowet r beat st, gbt es ee allgeee Utersuchuge darüber, we sch das Reurrezverhalte vo Boalsue ädert, we a de Boaloeffzete durch ersetzt U ee erste

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen Vorlesugscharts Vorlesug 5. Egeschafte vo Zufallsvarable Reproduktvtät Approxmatoe Zetraler Grezwertsatz Sete vo Chart : Uabhäggket vo Zufallsvarable Zwe Zufallsvarable X ud Y mt hre Realsatoe { x, x,...,

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

3. Irreduzible Polynome und Kreisteilungspolynome

3. Irreduzible Polynome und Kreisteilungspolynome 3. Irreduzble Polyome ud Krestelugspolyome 23 3. Irreduzble Polyome ud Krestelugspolyome Aus dem letzte Kaptel wsse wr, dass wr zur Berechug des Grades eer algebrasche Körpererweterug Mmalpolyome beötge:

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008 KOMINORIK Doa Logofătu Hochschule Müche, FK 7 4 ud prl 8 Was st Kombator? espele für Frage ud ufgabe aus der Kombator. Was mache wr heute? (Dsusso). Przp der Iluso ud Eluso. Schubfachprzp. Permutatoe 4.

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Die Methode des 2.Moments

Die Methode des 2.Moments De Methode des 2.Momets Chrstoph Schmdt July 13, 2004 1 Eletug De Varaz eer Zufallsvarable st hre mttlere quadratsche Abwechug vo hrem Erwartugswert. V ar[x] = E[(X EX) 2 ] = E[X 2 ] E[X] 2 Der Term E[X

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

DIE VAPNIK-CHERVONENKIS THEORIE. Inhaltsverzeichnis

DIE VAPNIK-CHERVONENKIS THEORIE. Inhaltsverzeichnis DIE VAPNIK-CHERVONENKIS THEORIE MATHIS KLEPPER, MICHAEL SAß Ihaltsverzechs Tel Vapk-Chervoeks Theore Tel I 2 Eführug 2 2 Glveko-Catell 5 3 Vapk-Chervoeks-Theore 0 Tel 2 Vapk-Chervoeks Theore Tel II 2 4

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Mathematische Modellierung Lösungen zum 1. Übungsblatt

Mathematische Modellierung Lösungen zum 1. Übungsblatt Mathematsche Modellerug Lösuge zum Klaus G. Blümel Lars Hoege 6. Oktober 005 Aufgabe 1 a) Der Raumhalt vo eem Kubkmeter etsprcht gerade 1000 Lter, d.h. 1 m 3 = 1000 l. Reche zuächst 1 m 3 cm 3 um. E Meter

Mehr

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe.

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe. Deftoe ud Aussge über Rehe Bchräume ud Hlberträume E vollstädger ormerter Vektorrum (sehe Bemerkuge zur Alyss) heßt Bchrum Stmmt de Norm vo eem Sklrprodukt v = , so sprcht m vo eem Hlbertrum ZB sd

Mehr

(0) = 0 mit Mittelwert μi

(0) = 0 mit Mittelwert μi Semarvortrag vo Xaotog Guo am 26. Ma 29 5. Da dvduelle Romodell 5. Eletug Geamtchadeumme (olletve Romodell) - N : de Azahl Ezelchde,ZV N S = X - X : de Schadehhe,ZV X t detch vertelt - N, X, X,... tochatch

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble.

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble. . Zfallsbewegg d Boalvertelg Statstsche Betrachtgswese bezeht sch stets af e Eseble. Eseble: Gesathet eer sehr große Zahl N detscher Systee. Wahrschelchket für das Etrete ees Eregsses A: Brchtel der Systee,

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

Homologie und der Rang des Steinberg-Moduls in endlichen Geometrien

Homologie und der Rang des Steinberg-Moduls in endlichen Geometrien Homologe ud der ag des Steberg-Moduls edlche Geometre Dr Gert Hllebradt 990 INHALTSVEZEICHNIS Eletug Allgemee geometrsche Grudlage 7 Homologe ud Kohomologe edlche Geometre 7 3 De Steberg-Modul der sphärsche

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Matheatsches Isttut der Uverstät zu Köl Dr. L. Galat WSe 016/017 Motag, 19.09.016 Blatt 6-10 Übuge zu Vorkurs Matheatk Aufgabe 0. (1 Es gbt 6 5 4 3 7893600 Möglchkete. 1 ( Uter Aahe vo Glechvertelug ergbt

Mehr

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt:

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt: Her de ausführlche Lösuge (e auch cht druckref ): ufgabeblatt 5: ufgabe : Zege Se für ollkoee Kokurrez auf de Faktorarkt: a) e ollstädger Kokurrez auf de Güterarkt rd jeder Faktor t see Wertgrezrodukt

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

11 Stetige Funktionen

11 Stetige Funktionen $Id: stetg.tex,v 1.16 2014/02/03 11:42:42 hk Exp $ 11 Stetge Fuktoe 11.3 Egeschafte reeller stetger Fuktoe I desem Abschtt beschäftge wr us mt auf R deferte, reellwertge stetge Fuktoe. Für derartge Fuktoe

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Rekurrente Markovketten

Rekurrente Markovketten Rekurrete Markovkette Im vorge Vortrag wurde der Begrff der Rekurrez eer Markovkette egeführt. Dese woe wr jetzt geauer utersuche. Im Fogede se mmer {X N 0 } ee homogee Markovkette. Defto. () Ee Zufasvarabe

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Kapitel 6: Regression

Kapitel 6: Regression udwg-maxmlas-uverstät Müche Isttut für Iformatk ehr- ud Forschugsehet für Datebaksysteme Skrpt zur Vorlesug Kowledge Dscovery Databases m Sommersemester 05 Kaptel 6: Regresso Vorlesug: PD Dr. Arthur Zmek

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap )

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap ) Vorkurs, Tel Lehrbuch: Sydsaeter / Hammod, Mathematk für Wrtschaftswsseschaftler, Pearso Studum, ISBN 978-3-873-73-9 Skrpt vo Sevtap Kestel Ihalt () Eführug: Zahle, Fuktoe Potezfukto, Expoetalfukto (Lehrbuch

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Eführg de dgtle glverrbetg Prof. Dr. tef Wezerl. Afgbebltt. Egeschfte dsreter stee. Erläter e de Begrffe Lertät Zetvrz pecherfrehet Ksltät d tbltät Lertät: E ste wrd ls ler bezechet, we für ds ste ds perpostosprzp

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

i-ter Standard-Einheitsvektor, i-te Ecke des Standdard-Simplex, vgl j-te Seiten-Abbildung des q-dimensionalen Standard-Simplex, vgl. 3.1.

i-ter Standard-Einheitsvektor, i-te Ecke des Standdard-Simplex, vgl j-te Seiten-Abbildung des q-dimensionalen Standard-Simplex, vgl. 3.1. Eführug de algebrasche Topologe B Herzog Sommersemester 6 Bezechuge Es Kategore der Mege, vgl 4 Ab Kategore der abelsche Gruppe, vgl 4 B -dmesoale abgeschlossee Vollkugel, vgl 4 B -dmesoale offee Vollkugel,

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Konzentrationsmessung

Konzentrationsmessung Kozetrtosmessug We telt sch de gesmte Merkmlssumme uf de ezele uf? Auftelug der Gesmtbevölkerug Gemede verschedeer Größeklsse Auftelug des gesmte Steuerufkommes uf de ezele Steuersubekte Auftelug der gesmte

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Ein polynomialer Algorithmus für minimale Kreisbasen

Ein polynomialer Algorithmus für minimale Kreisbasen E polyomler Algorthmus für mmle Kresbse Überblck:. Motvto. Deftoe 2. Algorthmus für ee Kresbss mmler Läge, Lufzet O(m³) 3. Läge eer kürzeste Kresbss 4. Algorthmus für ee suboptmle Kresbss der Läge O(²);

Mehr

MATHEMATIK I. 1.Fachsemester Studiengang: Medientechnologie Priv. Doz. Dr. Thomas Böhme

MATHEMATIK I. 1.Fachsemester Studiengang: Medientechnologie Priv. Doz. Dr. Thomas Böhme MATHEMATIK I.Fachsemester Studegag: Medetechologe Prv. Doz. Dr. Thomas Böhme t.boehme@mathematk.tu-lmeau.de Tel. (69) 3630 www.mathematk.tu-lmeau.de/~tboehme/ sc-rppt by mumm < Ihaltsverzechs > Sete Deckblatt

Mehr

9. Berechnungen aus der Thermodynamik

9. Berechnungen aus der Thermodynamik 9. Berechuge aus der Thermodyamk 9. Wärmeübergag durch ebe Platte T T x δ dx Bld 9- Wärmeletug durch e Wadelemet Wedet ma de Glechug ach Fourer für de Wärmeletug auf ee Schcht der Wad mt der Dcke dx a,

Mehr

Karl Schwalen 1.12 (Stand 11.14) Prime Restklassengruppen Aufbau und Eigenschaften

Karl Schwalen 1.12 (Stand 11.14) Prime Restklassengruppen Aufbau und Eigenschaften Karl Schwale.2 (Stad.4) Prme Restlassegrue ufbau ud Egeschafte Wetere ufsätze des Verfassers uter htt://www.rmath.homeage.t-ole.de Vorleged hadelt es sch um e Komedum elemetarer ussage mt Bezug zu de rme

Mehr

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält.

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält. Parameterschätzuge Fachhochschule Jea Uversty of Appled Sceces Jea Oft st der Vertelugstyp eer Zufallsgröße X bekat, ur de Parameter sd ubekat. Da erfolgt hre Schätzug aus eer Stchprobe. Ma uterschedet

Mehr

Deskriptive Statistik

Deskriptive Statistik Elemet Deskrptve Statstk KAD 0.09. Grudgesamthet (Populato): Gesamthet der Idvdue (Elemete), dere Egeschafte be der Stude utersucht werde solle. De gesamte Mege der teresserede Date. N = uedlch Stchprobe:

Mehr