v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr"

Transkript

1 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) = 3: Lemma: Ist K e Krer ud X ; Y Ubestmmte, so glt X m Polyomrg K[ X ; Y] de Idettt: ( X + Y) = X 6 6 Y ; wobe fr K + K + + K 2 K - m al steht. Ist char K = 2 P, so st also e Elemet vo Z/ Z K m K + K + + K Idukto ach Lemma: Se 2 N; = r, 2 P, 2 N. Da gelte ( mod ) r ( mod ) ; ( mod ). ( mod ), falls = ; 6 6. I K[ X ; Y] glt: ( X + Y) = X + Y, falls K e Krer der Charakterstk st;. Bereche K[ X] : ( X + ) = ( ( X + ) ) r = ( + X ) r = ( + X ) r = + r ( ) 5. 2 : ( X + ) = + X + 2 K o e z et everglech = r X X + K, d. h. r ( mod ). X r + 2 X 2 +

2 v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr = ergbt: ( ) ( mod ) ( + X) Lemma: Ist H G Utergrue ud N 4 N G ( H), so glt: #f H G j H kojugert zu Hg = [ G : N] G oerert auf X = f Utergrue H G X X vo G g durch Kojugato ( g; H ) g H g Bah vo H st de Mege aller H, de kojugert sd zu H, de Fxgrue st N. Wede de Bahglechug a:. De #fh G j H kojugert zu Hg = # G # N = [ G : N] ( 5. 5) Stuato: # ( G) = = r, 2 P ; 2 N a = a ( G) 4 Zahl der Utergrue vo G der Ordug. X 4 f T j T G ; ord( T) = g, #( X) = ( =Azahl der Telmege vo G mt Ordug ) G oerert auf X durch Lksmultlkato: Zerlege X =S X Bahe uter G. G X X ( g; T) g T. Jede der Bahe X hat ee Gre #( X ) = r mt 6 Se T 2 X, G T 4 Fxgrue vo T G = f g 2 G j g T = Tg. Ist t 2 T, so glt: G T t T, mt adere Worte: S T = G T t j Zerlegug Lksebeklasse modulo G T. j 2 J Da st: = #( T) = #( G T ) #( J) 2

3 #( X ) = # ( G) # ( G T) = # ( G) # ( T) #( J) = r =. Ist X ee der Bahe, de ee Utergrue H ethlt ( d. h. H 2 X ), so st #( X ) = r Es st G H = f g 2 G j g H = H g = H. Also #( X ) = # ( G) = = r = r # ( G H ) # ( H). Ist umgekehrt #( X ) = r, so ethlt X geau ee Utergrue H. a) Se T 2 X mt 2 T ( e derartges T exstert: Ist S 2 X ; s 2 S, so st auch 2 s S = : T 2 X ). b) Se H 4 G T = f g 2 G j g T = Tg : Es st #( H) = # ( G) = = # ( X ) r = #( T). Wege H = H 2 T T st also H = T, da #( H) = #( T) : c) Es st X = f g H j g 2 G g = f Hg[ f g Hj g H g der Utergrue H 2 X. kee G ru e; d a 2 H. Des zegt de Edeutgket v. Aus ( ) ud ( ) : v. Abzhle vo #( X) =P #( X ) ergbt: = #( X) = r a P ( G) + r a ( G) = r 5. 3 : a ( G) = #fbahe X vo G auf X mt #( X ) = rg P > X B ah m t # ( X ) = r m t > #( X ) r ( mod ), sbesodere a. Ab jetzt setze wr voraus: st maxmaler -Teler vo, d. h. j ; + - ( = : k ) v. Se S ee Utergrue der Ordug vo G ( exstert ach ( v) ). S het -Sylow- Grue vo G. Ist H ee Utergrue vo G mt #( H) = ( 6 ), so st H kojugert zu eer Utergrue vo S. S lege der Bah X X uter G, d. h. S 2 X = f gs g 2 G g X. #( X ) = r ( mod ) : Wege ( ) hat de -Grue H auf X ee Fxukt g S, d. h. H g S = g S: Weter st HgS = gs, g H g S = S, g H g S: Folgerug: 3

4 Alle -Sylow-Grue S vo G sd zu S kojugert ud daher auch somorh. v. Es st a ( G) # ( S y low G rue vog ) ( mod ) ud a ( G) j r: Se S -Sylow-Grue, N 4 N G ( S) : Nach st a ( G) = [ G : N] = Teler vo [ G: S] : Satz: (Zusammefassug) G edlche Grue, #( G) = = r, k. 9 Utergrue H vo G mt #( H) =. Solche Utergrue hete -Sylow-Grue vo G.. Ist H Utergrue vo G mt #( H) = ( 6 ), so st H kojugert zu eer Utergrue eer -Sylow-Grue. Isbesodere sd alle -Sylow-Grue vo G kojugert.. a ( G) ( = : Zahl der -Sylow-Grue) erfllt: a ( G) ( mod ) ud a ( G) j r v. 8 6 st a ( G) ( mod ). Bemerkug: Bewes ursrglch vo Sylow ( 87 ) ( ), ( ), ( ) Frobeus ( v). User Bewes vo Weladt ( 954) Korollar: Ist 2 P e Teler vo, so 9 g 2 G mt ord( g) = : Korollar: Bezechuge we De folgede Bedguge sd quvalet:. Jede -Sylow-Grue G st ormal. a a( G) =. 9 ormale -Sylow-Grue vo G v. 9! -Sylow-Grue vo G v. De Elemete vo -Potezordug G blde ee Grue. 4

5 5. 9. Besel:. #( G) = 35 = 5 7. Da st G abelsch, C 3 5 a 5 ( G) ; a 7 ( G) =. Also sd de Sylow-Grue 2 S 5 ; S 7 wohlbestmmt ud ormal. Also [ S 5 ; S 7 ] S 5 \ S 7 = f g. Also kommutere S 5 ; S 7 elemetwese, also st S 5 S C ch : R es t sat C 7 C 3 5 :. #( G) = 45 = Dasselbe Argumet we ( ) lefert: G st abelsch, also st C 9 C ch : R est s at z C 4 5, oder C 3 C 3 C 5.. Se 2 < 2 P; D 2 de Dedergrue. Es st ( G) =. Fr 2 D 2 f ; g st 2-Sylow-Grue. a 2 ( D 2 ) =. v. G = S 4 = Sym( f ; 2; 3; 4g ), = 4! = 24 = a 2 3( G) ( mod 2), a 2 3( G) j 3 a 2 3( G) = 3 a 3 ( G) ( mod 3) ; a 3 ( G) j 8 a 3 ( G) = 4 Elemete der Ordug: Ty # 2 ( a b) 6 ( a b) ( c d) 3 3 ( a b c) 8 4 ( a b c d) 6 24 Ee Utergrue der Ordug 8 st ord ( ) = 4; ord( ) = 2, = v. G = GL( r; Z/ Z), 2 P, = #( G) =! ( r ) ( r ) : S alt e r * 2 2 : S alt e 3 : S alt e = ( r ) ( r ) ( ) r ( r ) 2. ( 2 3 4) ; ( 3) = : We seht ee -Sylow-Grue vo G aus? r = : r r t e S alt e Mt de folgede Bedguge st U( r; Z/ Z) ee -Sylow-Grue. Ererug: Ist K e Krer, so st: + h glt: 2 =, d. h.. C st de zyklsche G ru e mt Elemete 2. Achtug, her st cht de symmetrsche G ru e S gemet. 5

6 B( r; K) 4 U( r; K) 4 T( r; K) 4 8< : CA 8< : CA 8< : CA v. = 3; r = 2; G = GL( 2; Z/3 Z) ; #( G) = = 8 6 = 48. 9= ; = Grue der verterbare obere Dreecksmatrze 9= ; = 9= ; = Grue der strkte obere Dreecksmatrze Grue der verterbare Dagoalmatrze Wr kee ee 3-Sylow-Grue, was st mt 2-Sylow-Grue? z. B. st H = h ; ee 2-Sylow-Grue mt = 2 ord( ) = 8; ord( ) = 2, = 3. v. G = S 5 = Sym( f ; 2; 3; 4; 5g ) ; = 2 = Ty # 2 ( a b) 5 2 = ( a b) ( c d) 5 3 = 5 3 ( a b c) 2 = 2 = = ( a b c d) 3 5 ( a b c d e) 24 6 ( a b c) ( d e) 2 2 a 2 3( G) = 5; a 3 ( G) = ; a 5 ( G) = 6, =, Beobachtug: Sd ; 2 S ; = ( a a 2 a k ) ( b b 2 b l ) So st = = ( ( a ) ( a 2 ) ( a k ) ) ( ( b ) ( b 2 ) ( b l ) ) ( folgt aus ). 5.. Proosto: Zwe Elemete ; vo S sd geau da kojugert, we se deselbe Zyklusstruktur bestze, d. h. gleche Azahl vo Zykle gegebeer Lge. Isbesodere glt: #( Kojugatosklasse vo S ) = #( Parttoe vo ) = : ( ) 5.. Klee Grue: Zahl der Isomorheklasse vo Grue der Ordug : 6

7 abelsche Grue ( ) cht abelsche Grue ( ) Azahl der Grue G = f g 2 C 2 3 C 3 4 C 4 ; C 2 C C 5 6 C C 2 C 3 D S GL( 2; Z/2 Z) 2 7 C 7 8 C 8 ; C 4 C 2 ; C 2 C 2 C 2 D 8 ; Q 5 9 C 9 ; C 3 C 3 2 C 2 C 5 D 2 5 = D 2 C 2 C 4 C 3 ; C 2 C 2 C 3 A 4 S 4 ; D 2 ;???? 5 3 C 3 4 C 2 C 7 D 2 7 = D C C 3 C 5 6!!! Bemerkuge: ( Z/ Z), we 2 P Q = f ; ; j; k g mt 2 = j 2 = k 2 =, Fr = 2 sehe Aufgabe j = j = k Proosto: Gegebe se ee Grue G mt zwe Utergrue H E G ud L G. Da sd quvalet:. De Komosto L G G/ H st e Isomorhsmus. De Produktabbldug ': L H G ( l ; h) l h = l h st bjektv. 3. De Produktabbldug ': H L G st bjektv. ( h ; l) h l = h l Sd dese Bedguge erfllt, so exstert e Homomorhsmus : L Aut( H) mt: 8l 2 L ; h 2 H st l h l = ( l) ( h) I desem Fall schrebe wr G = L H, ud ee des das semdrekte Produkt 4 vo L ud H vermttels : ( ) ) ( ) : Ist '( l ; h) = '( l ; h ), so ( l) = ( ') ( l ; h) = ( ') ( l ; h ) = ( l) l = l, also auch h = h. d. h. ' jektv. Surjektvtt: dto. 3. ' st m allgemee ke H omomorhsmus 4. Das semdrekte P rodukt gbt ee M glchket, grere G rue mthlfe vo kleere G ru e zu beschreb e. 7

8 ( ) ) ( ) : Zu jedem g 2 G: 9! l 2 L mt g l ( mod H). Lege dese Voraussetzuge vor, so st fr jedes l 2 L: '( l) : H H h l h l e Automorhsmus. Weter st ( l l ) = ( l) ( l ), l ; l 2 L, de 8h 2 H st ( l l ) ( h) = l l h ( l l ) = l l h l l = ( l) ( ( l ) ( h) ) = ( ( l) ( l ) ) ( h). = ( l ) ( h) Also st : l ( l) e Homomorhsmus vo L ach Aut( H) : Sd ur L; H ud gegebe, so lsst sch G beschrebe als mt der Multlkato: ( l h) ( l h ) = l h l h = l l ( l G = L H = L H = f ( l ; h) j l 2 L ; h 2 Hg = h l ) h = l l ( l ) ( h) h ; d: h: ( l ; h) ( l ; h ) 4 l l ; ( l ) ( h) h Besel: (fr semdrekte Produkte). D 2 = C 2 C : C 2 Aut( C ) x ( ). K Krer: B( ; K) = T( ; K) U( ; K) B = T U. ; q 2 P; < q ; #( G) = q. Da st ee q-sylow-grue H ormal, jede -Sylow- Grue L rojzert somorh auf G/ H. Da st G = L H. 8

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

3. Irreduzible Polynome und Kreisteilungspolynome

3. Irreduzible Polynome und Kreisteilungspolynome 3. Irreduzble Polyome ud Krestelugspolyome 23 3. Irreduzble Polyome ud Krestelugspolyome Aus dem letzte Kaptel wsse wr, dass wr zur Berechug des Grades eer algebrasche Körpererweterug Mmalpolyome beötge:

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008 KOMINORIK Doa Logofătu Hochschule Müche, FK 7 4 ud prl 8 Was st Kombator? espele für Frage ud ufgabe aus der Kombator. Was mache wr heute? (Dsusso). Przp der Iluso ud Eluso. Schubfachprzp. Permutatoe 4.

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap )

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap ) Vorkurs, Tel Lehrbuch: Sydsaeter / Hammod, Mathematk für Wrtschaftswsseschaftler, Pearso Studum, ISBN 978-3-873-73-9 Skrpt vo Sevtap Kestel Ihalt () Eführug: Zahle, Fuktoe Potezfukto, Expoetalfukto (Lehrbuch

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Karl Schwalen 1.12 (Stand 11.14) Prime Restklassengruppen Aufbau und Eigenschaften

Karl Schwalen 1.12 (Stand 11.14) Prime Restklassengruppen Aufbau und Eigenschaften Karl Schwale.2 (Stad.4) Prme Restlassegrue ufbau ud Egeschafte Wetere ufsätze des Verfassers uter htt://www.rmath.homeage.t-ole.de Vorleged hadelt es sch um e Komedum elemetarer ussage mt Bezug zu de rme

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Eführg de dgtle glverrbetg Prof. Dr. tef Wezerl. Afgbebltt. Egeschfte dsreter stee. Erläter e de Begrffe Lertät Zetvrz pecherfrehet Ksltät d tbltät Lertät: E ste wrd ls ler bezechet, we für ds ste ds perpostosprzp

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann Jhrgg, Het, Otober, ISSN 99-88 IAL Übuge t Lösuge zur Mthet ür Wrtschtsort Ulrch Ho Techcl Reports d Worg Ppers Leuph Uverstät Lüeburg Hrsg der Schrtrehe INAL: Ulrch Ho Schrhorststrße, D-5 Lüeburg Übuge

Mehr

Ausarbeitung UNENDLICHKEIT DER PRIMZAHLEN

Ausarbeitung UNENDLICHKEIT DER PRIMZAHLEN Phls-Uverstät Marburg Isttut für Mathemat SE: Klasssche Probleme Letug: Bejam Schwarz Referet: Ies Davd WS 09/0 Ausarbetug UEDLICHKEIT DER PRIMZAHLE Ihaltsverzechs EILEITUG... BEWEIS VO EUKLID... 3 BEWEIS

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Vorlesung Zahlentheorie - Wintersemester 1996/97

Vorlesung Zahlentheorie - Wintersemester 1996/97 Wolfgag Frauholz Zahletheore 0. Vorbemerkuge Wtersemester 996/97 0.0 Fragestelluge der Zahletheore De addtve Struktur der Mege der gaze Zahle st verhältsmäßg efach, da ( ZZ, + ) ee Gruppe darstellt. De

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

$Id: reihen.tex,v /12/09 12:26:25 hk Exp $

$Id: reihen.tex,v /12/09 12:26:25 hk Exp $ $Id: rehe.tex,v 1.30 2016/12/09 12:26:25 h Exp $ 5 Rehe 5.3 Absolute Kovergez Am Ede der letzte Stzug hatte wr de Begrff eer absolut overgete Rehe egeführt, des war ee Rehe be der de aus de Beträge der

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Deskriptive Statistik behaftet.

Deskriptive Statistik behaftet. De Statstk beschäftgt sch mt Masseerscheuge, be dee de dahterstehede Ezeleregsse mest zufällg sd. Statstk beutzt de Methode der Wahrschelchketsrechug. Fudametalregel: Statstsche Aussage bezehe sch e auf

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Induktive Statistik. Statistik-Kurs

Induktive Statistik. Statistik-Kurs Idukve Sask Deskrve Sask Sask-Kurs Idukve Sask Im Allgemee dee Idexzahle dazu Aussage über Grue verschedeer aber ählcher Merkmale zu mache. I de Wrschafswsseschafe werde m Idexzahle Verhälsse zwsche eem

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Uverstät Lepzg Isttut für Iforatk Dr. Moka Meler Ihalt Zahle ud hre Darstellug... -. Addtossystee... -. Postossystee... -.3 Dezal- ud Dualsyste... -3.3. Dezalsyste... -3.3. Dualsyste... -4.4 Wetere Bespele

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetg.tex,v 1.7 2011/02/04 14:24:12 hk Exp $ $Id: dffb.tex,v 1.3 2011/02/04 14:37:22 hk Exp hk $ 13 Stetge Fuktoe 13.3 Egeschafte reeller stetger Fuktoe Am Ede der letzte Stzug hatte wr de sogeate

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Vorlesung Reaktionskinetik

Vorlesung Reaktionskinetik Karlsruher Isttut für Techologe Isttut für Physkalsche Cheme Vorlesug Reaktosketk Sommersemester 3 Prof Dr M Olzma Texterfassug: Isabelle Weber Grudbegrffe Gegestad der Reaktosketk Physkalsche Cheme reaktver

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Man nennt nun ein Vektorfeld auf G stetig, differenzierbar, etc., wenn die Koeffizientenfunktionen X i sämtlich stetig, differenzierbar, etc. sind.

Man nennt nun ein Vektorfeld auf G stetig, differenzierbar, etc., wenn die Koeffizientenfunktionen X i sämtlich stetig, differenzierbar, etc. sind. Wederholug: Tagetalraum, Vektoreld Ist G R ud G, so detzere wr de Tagetalraum T mt eer de Pukt verschobee Kope des R. Geometrsch deke wr us de Vektore T mt hrem Fußpukt agehetet. Für zwe Pukte y sd de

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

4. Interpolation und Approximation

4. Interpolation und Approximation Uwelt-Caus Brefeld Nuershe Matheat der Fahhohshule Trer Prof. Dr.-Ig. T. Preußler. Iterolato ud Aroato I allgeee geht a davo aus, dass Bezehuge zwshe Varable ees hsalshe Probles aaltsh beshrebe werde a.

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen Probleme mt mehrere Zele Bespel (Dkelbach) E Reseder muss sch vor Ort vo ver Hotels für ees etschede. Dabe verfolgt er folgede Zele: - Bestmöglche Ruhe - Qualtät des Frühstücks - Sauberes Bad - Scherer

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Güter Lettl WS 2017/2018 1. Grudbegriffe der Megelehre ud der Logik 1.1 Naive Megelehre [Sch-St 4.1] Defiitio eier Mege ach Georg Cator (1845 1918):,,Eie Mege M ist eie Zusammefassug

Mehr