Grundzüge der Vektoranalysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundzüge der Vektoranalysis"

Transkript

1 KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green Satz von Stokes Zirkulation und Wirbelstärke Satz von Stokes Satz von Gauß Satz von Gauß Fluss und Ergiebigkeit/Divergenz Vektorpotential Zusammenfassung Zunächst beweisen wir den Satz von Green noch einmal für ein Rechteck, daraus kann man dann auf den allgemeinen Satz schließen. 7. Satz von Green Mit dem Satz von Green wird ein Zusammenhang zwischen einem Flächenintegral über einen ebenen Bereich und dem Kurvenintegral über die Randkurve des Bereichs dargestellt. Dazu wird der Begriff der Orientierung einer geschlossenen Kurve benötigt. 2

2 Definition 47: Der Rand des ebenen regulären Bereichs B heißt positiv orientiert, wenn beim Durchlaufen der Randkurve der Bereich B zur Linken liegt. Es sei vx, y v x, y, v 2 x, y T ein auf dem Rechteck R : {x, y : a x b, c y d} definiertes stetig differenzierbares Vektorfeld. Dann besitzt das Rechteck die Randkurve γ γ γ 2 γ 3 γ 4, mit den Parametrisierungen positive Orientierung!: γ 3 t γ t b + a t d t c, t [a, b], γ 2 t, t [a, b], γ 4 t b a t c + d t, t [c, d],, t [c, d]. Damit ist γ t, γ 2 t, γ 3 t, γ 4 t. Wir berechnen nun das Kurvenintegral 2. Art über den Rand γ des Rechtecks: 4 v d x v d x γ j γ j b d b d v x, c dx + v 2 b, y dy v x, d dx v 2 a, y dy a c a c b d v x, c v x, d dx + v 2 b, y v 2 a, y dy a c b d v x, y d b v 2 x, y dy dx + dx dy a c c a x v 2 x, y v x, y dx dy, R x 2

3 also insgesamt R v d x R v 2 x, y x v x, y dx dy. Wenn man ein Gebiet durch achsenparallele Rechtecke approximiert, beweist man auf diese Weise den Satz 36 Satz von Green.: Sei D R 2 ein Gebiet und B D ein Bereich, dessen Rand aus endlich vielen positiv orientierten Kurven besteht, und v : D R 2 ein stetig differenzierbares Vektorfeld. Dann gilt B v d x B v 2 x, y x v x, y dx dy. 7.2 Satz von Stokes 7.2. Zirkulation und Wirbelstärke Die Grundlage für die Betrachtungen bildet jetzt der dreidimensionale Raum. Definition 48: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und γ eine geschlossene, reguläre, orientierte Kurve in M. Das Kurvenintegral 2. Art Z : v d x heißt Zirkulation von v längs der Kurve γ. γ 22

4 Es sei A ein reguläres räumliches Flächenstück mit der Randkurve A. Als mittlere Wirbelstärke von v bezüglich A bezeichnet man v d x. OA A Durch Zusammenziehen der Fläche A auf einen Punkt erhält man die Wirbelstärke, oder genauer Definition 49 Wirbelstärke.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und x M. Der Grenzwert W n x : lim v d x OA, x A OA A heißt Wirbelstärke von v bezüglich der Richtung n in x. Dabei werden mit A M ebene, einfach zusammenhängende und stückweise glatt berandete Flächenstücke bezeichnet, die die gleiche Normale n haben. Nehmen wir an, dass die Fläche A parallel zur x-y-ebene liegt, so hat der Rand A die Gestalt: A : γt : xt yt z, a t b, γb γa. 23

5 A sei positive orientiert, dann gilt A v d x b a b a v γt γt dt v γtẋt + v 2 γtẏt dt v dx + v 2 dy Satz von Green A v 2,x v,y x dx dy OA v 2,x v,y x OA n rot v x, A mit einem geeingeten x A nach dem Mittelwertsatz der Integralrechnung, und da A parallel zur x-y-ebene ist, ist n e z. D.h. Satz 37 Berechnung der Wirbelstärke.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und x M. Die Wirbelstärke von v bezüglich der Richtung n in x ergibt sich aus W n n rot v x. Definition 5: Man nennt rot v das zu v gehörende Wirbelfeld. Ist die Roation eines Vektorfeldes gleich Null, d.h. rot v, so nennt man das Vektorfeld wirbelfrei Satz von Stokes Es sei S ein reguläres Flächenstück, dessen Rand S eine reguläre, geschlossene Kurve ist. Zerlegt man nun S in endlich viele Maschen S j mit S S S 2 S n, wobei S i S j, i j, nur aus endlich vielen regulären Kurvenstücken bestehen soll. Für hinreichend kleine Maschen gilt dann S v d x n n v d x rot v x j n OS j. j S j j 24

6 Eine unendliche Verfeinerung der Maschenzerlegung führt dann auf den Satz 38 Satz von Stokes.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und S ein reguläres Flächenstück in M. Dann gilt S v d x S rot v d O. Verbal bedeutet der Satz von Stokes, dass die Zirkulation entlang einer Kurve, die ein Flächenstück berandet, gleich dem Integral über alle Normalkomponenten der Wirbelstärke auf dem Flächenstück ist. 7.3 Satz von Gauß Der Satz von Gauß stellt einen Zusammenhang zwischen dem Flussintegral Oberflächenintegral 2. Art durch eine geschlossene Oberfläche und einem Integral über das eingeschlossene Volumen her. 25

7 7.3. Satz von Gauß Der Quader hat die im Bild angegebenen Seiten und Normalenvektoren. Sei nun D R 3 ein Gebiet und Q D und v : D R 3 ein stetiges differenzierbares Vektorfeld mit der Komponentendarstellung v v v 2 v 3 v e v e 2. v e 3 Nach dem Hauptsatz der Differential- und Integralrechnung gilt b2 [ b3 v d O + v d O S2 S Analog erhält man a 2 b2 a 2 a 3 [ b3 Q a 3 ] v b, y, z v a, y, z dz dy b ] a x v x, y, z dv. S4 v d O + S3 v d O und S6 v d O + S5 v d O x v x, y, z dx Q Q v 2x, y, z dv z v 3x, y, z dv. dz dy 26

8 Durch Summation der letzten drei Gleichungen erhält man 6 d O Q v j Q Q v d O S j x v x, y, z + v 2x, y, z + z v 3x, y, z dv div v dv. Satz 39 Satz von Gauß.: Sei B ein regulärer Bereich, die Normale n zeige in den Randpunkten von B aus B heraus man spricht in diesem Fall von der äußeren Normalen. Dann gilt B div v dv B v d O B v ndo Fluss und Ergiebigkeit/Divergenz Seien D R 3 ein Gebiet und v : D R 3 ein stetig differenzierbares Vektorfeld. Weiterhin sei für x D und r > die Kugel B r x : {y R 3 : x y r} in D enthalten. Es sei S r x B r x der Rand die Oberfläche der Kugel. Wir betrachten nun den Fluss S r x v d O betrachtet, erhält man die Differenz zwischen dem pro Zeiteinheit aus B r x heraus fließendem und dem hinein fließenden Volumen Netto-Bilanz. Dividiert man den Fluss durch das Volumen des Bilanzgebietes B r x, so erhält man die mittlere Ergiebigkeit bezüglich B r x : v d O. VB r x Zieht man die Kugel nun auf einen Punkt zusammen, so erhält man die Ergiebigkeit in einem Punkt. Nach dem Mittelwertsatz existiert ein x B r x mit S r x v d O B r x S r x Da die Funktion Skalarfeld div v stetig ist, folgt div v x lim r VB r x div dv div v x VB r x. S r x v d O. 27

9 Man bezeichnet deshalb die Divergenz eines Vektorfeldes auch als Quelldichte. Ist die Quelldichte Ergiebigkeit eines Vektorfeldes v gleich Null div v, dann nennt man v auch quellenfrei. 7.4 Vektorpotential Wie man leicht nachrechnet ist, rot grad f für alle skalaren Funktionen f. D.h. insbesondere, dass Potential- bzw. Gradientenfelder wirbelfrei sind. Analog stellt man fest, dass div rot v, d.h. Rotationsfelder sind quellfrei. Gibt es also zum vorgegebenen Vektorfeld v ein Vektorfeld w mit v rot w, so muss notwendigerweise die Bedingung div v gelten. Diese Überlegungen führen auf den Begriff des Vektorpotentials: Definition 5 Vektorpotential.: Sei v D R 3, D R 3, gegeben. Existiert ein einmal stetig differenrzierbares Vektorfeld d.h. jede Komponente ist einmal stetig differenzierbar w : R 3 R 3, mit v rot w, so heißt w Vektorpotential von v. Satz 4 Existenz eines Vektorpotentials.: Sei v D R 3, D R 3, ein differenzierbares Vektorfeld. Ist D eine offene konvexe Menge, dann ist die Bedingung div v notwendig und hinreichend für die Existenz eines Vektorpotentials w mit v rot w. Anstelle der Konvexität von D genügt es zu fordern, dass D einfach zusammenhängend ist. Bemerkung 32: Offensichtlich ist das Vektorpotential nicht eindeutig bestimmt, da je- 28

10 des Potential- bzw. Gradientenfeld grad f die Beziehung v rot w rot w + grad f erfüllt. xy Beispiel 7: Für das ganz auf R 3 definierte Vektorfeld vx, y, z xz gilt zy div v und folglich existiert ein Vektorpotential w. Die Berechnung des Vektorpotentials ist trickreich. Da v rot w gelten muss, stehen die Gleichungen xy w 3 w 2 z, xz w z w 3 x, zy w 2 x w zur Verfügung. Wir wählen w 3 c 3 const. Damit ergibt sich xy w 2 z, xz w z, zy w 2 x w und die erste Gleichung nach z integriert ergibt w 2 xyz + Cx, y. Analog erhält man durch Integration der zweiten Gleichung nach z w x z2 2 + Dx, y. Unter Berücksichtigung dieser beiden Ergebnisse erhält man für die dritte Gleichung zy w 2 x w yz + Cx, y x Dx, y Cx, y x Dx, y. Diese letzte Beziehung ist insbesondere für Cx, y c 2, Dx, y c erfüllt und ergibt 29

11 das Vektorpotential w x z2 2 + c xyz + c 2 c 3. Genauso gut hätte man aber auch wie folgt rechnen können: Cx, y Dx, y dy, x was Dx, y sin y + c ergibt für Cx, y x cos y + c 2. Beispiel 8: Es soll der Fluss des Vektorfeldes vx, y, z xy, xz, zy T durch die Fläche S {x, y, z z : z x 2 + y 2, x 2 + y 2 } S ist ein Paraboloidmantel berechnet werden. Hierfür stehen uns nun 2 Möglichkeiten zur Verfügung:. direkter Weg. Parametrisierung von S : Φr, ϕ Die Tangentenvektoren sind Φ r cos ϕ sin ϕ 2r r cos ϕ r sin ϕ r 2, r [, ], ϕ [, 2π]. und Φ ϕ r sin ϕ r cos ϕ. Damit ergibt sich für das Vektorprodukt Φ r Φ ϕ e x e y e z cos ϕ sin ϕ 2r r sin ϕ r cos ϕ 2r 2 cos ϕ 2r 2 sin ϕ r und damit ergibt sich der Fluss r 2 cos ϕ sin ϕ 2r 2 cos ϕ 2π F v d O r 3 cos ϕ 2r 2 sin ϕ dϕ dr S r 3 sin ϕ r 2π 2r 4 cos 2 ϕ sin ϕ 2r 5 cos ϕ sin ϕ r 4 sin ϕ dϕ dr, 22

12 und die Auswertung der Integrale ergibt F. 2. Wir erinnern uns, dass das Vektorfeld v ein Vektorpotential w x z2 2, xyz, T. Mit Hilfe des Satzes von Stokes erhält man v d O rot w d O w d x. S S Als Parametrisierung des Randes S {x, y, z T S : z x 2 + y 2 } nimmt man Φr, ϕ Damit ergibt sich für den Fluss F 2π 2π 2π cos ϕ sin ϕ, S ϕ [, 2π]. cos ϕ 2 2 sin ϕ cos ϕ sin ϕ cos ϕ dϕ 2 2 cos ϕ sin ϕ cos2 ϕ sin ϕ dϕ 2 2 cos ϕ + cos2 ϕ d cos ϕ. 7.5 Zusammenfassung In der folgenden Tabelle ist abschließend die Bedeutung der Integralsätze für die Berechnung eines Arbeits- und eines Flussintegrals abhängig von den Eigenschaften des zu integrierenden Vektorfelds bzw. der zu durchlaufenden Kurve bzw. der zu durchfließenden Fläche dargestellt. 22

13 Zusammenfassung: Vektoranalysis Spezieller Integrand v Spezielles Integrationsgebiet γ v d x Arbeitsintegral längs der Kurve γ Kurve von γa nach γb Ist rot v, d.h. das Vektorfeld v ist wirbelfrei im einfach zusammenhängenden Gebiet, dann ist Die Oberfläche O wird von der geschlossenen Kurve S γ berandet, positiver Umlaufsinn, dann gilt der Satz von Stokes: S v d x S rot v d O 222 S v d O Fluss über die Fläche S Oberflächenintegral 2. Art v grad f und nach dem. Hauptsatz für Kurvenintegrale gilt grad f d x f γb f γa. γ Ist das Vektorfeld v quellenfrei, d.h. div v, im einfach zusammenhängenden Gebiet, dann ist v rot w. S rot w d O S w d x Der räumliche Bereich B wird von der geschlossenen Oberfläche O berandet, d.h. B O. B v d O div v dv Satz von Gauß B 7 Grundzüge der Vektoranalysis Satz von Stokes

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

8 Oberflächenintegrale

8 Oberflächenintegrale Mathematik für Physiker III, WS 22/23 reitag 8. $Id: flaechen.tex,v.6 23//8 6:4:9 hk Exp $ $Id: rot.tex,v.3 23//8 7:4:9 hk Exp hk $ 8 Oberflächenintegrale 8.2 lächenintegrale erster rt In der letzten Sitzung

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Armin Hoffmann Bernd Marx Werner Vogt Mathematik für Ingenieure 2 Vektoranalysis, Integraltransformationen, Differenzialgleichungen, Stochastik Theorie und Numerik ein Imprint von Pearson Education München

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt )

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt ) Aufgabe (glm. Konvergenz) (6+6 Punkte) Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. a) g n : R R, mit g n (x) = x + n (6 Punkte) b) f n : R R, mit f n (x) = arctan(nx)

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Weitere Aufgaben zu Mathematik C

Weitere Aufgaben zu Mathematik C Bergische Universität Wuppertal Fachbereich C PD Dr. Schuster Weitere Aufgaben zu Mathematik C A. Kurvenintegrale und Stammfunktionen. Das Vektorfeld F: R 3 R 3 sei gegeben durch F(x, y, z) = 2z(x + y)

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Vektoranalysis. Dennoch ist es nicht gestattet, das Material für eigene Vorlesungen und Vorträge zu verwenden! Dipl.-Ing. Thomas Tyczynski TU-Dresden

Vektoranalysis. Dennoch ist es nicht gestattet, das Material für eigene Vorlesungen und Vorträge zu verwenden! Dipl.-Ing. Thomas Tyczynski TU-Dresden Vektoranalysis Dieses Folienpaket ist ausschließlich als Begleit- und Orientierungsmaterial zu einer Vorlesung zu verstehen, die ansonsten frei gehalten und an der Tafel präsentiert wird. Sie ist daher

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Grundlagen und Praxis des Elektromagnetismus Nr

Grundlagen und Praxis des Elektromagnetismus Nr Reinhold-Würth-Hochschule Künzelsau Grundlagen und Praxis des Elektromagnetismus Nr. 33972 Prof. Dr.-Ing. Jürgen Ulm Institut für schnelle mechatronische Systeme (ISM) Steinbeis Transferzentrum Magnetische

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1.

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1. Florian Niederreiter Karolina Stoiber Ferienkurs Analysis für Physiker SS 15 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr D Castrigiano Dr M Prähofer Zentralübung 85 Oberfläche des Torus im R 4 TECHNICHE UNIVERITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis http://wwwmatumde/hm/ma924 2W/ Gegeben

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

52 Integralsätze im Raum

52 Integralsätze im Raum 254 VIII. Integralsätze 52 Integralsätze im Raum 52.1 Reguläre Flächenstücke. a) Eine Fläche im Raum R 3 wird durch zwei Variable parametrisiert. Dazu betrachten wir ein Gebiet W in R 2 und eine Abbildung

Mehr

Formelsammlung Elektrodynamik

Formelsammlung Elektrodynamik Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.

Mehr

Der Gaußsche Integralsatz ist im Grunde eine Binsenwahrheit. Wir wollen ihn am Beispiel strömender Flüssigkeiten formulieren:

Der Gaußsche Integralsatz ist im Grunde eine Binsenwahrheit. Wir wollen ihn am Beispiel strömender Flüssigkeiten formulieren: 3 Integralsätze»Alles fließt!«sagt Heraklit. Wir wollen diesen allumfassenden Ausspruch des griechischen Philosophen hier nicht ergründen, sondern ihn als Aufforderung verstehen, strömende Flüssigkeiten

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

6.2 Extremwertaufgaben mit Nebenbedingung

6.2 Extremwertaufgaben mit Nebenbedingung 6.. Extremwertaufgaben mit Nebenbedingung 87 6. Extremwertaufgaben mit Nebenbedingung Betrachten wir jetzt eine differenzierbare Funktion f:u R n R U offen in R n. Ist n = 3 und U eine glatte Fläche, dann

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Vorlesungsskript Mathematik II (Teil 3) für Mikrotechniker/Mechatroniker

Vorlesungsskript Mathematik II (Teil 3) für Mikrotechniker/Mechatroniker Vorlesungsskript Mathematik II (Teil 3) für Mikrotechniker/Mechatroniker Verfasserin: HSD Dr. Sybille Handrock TU Chemnitz Fakultät für Mathematik e-mail: handrock@mathematik.tu-chemnitz.de Sommersemester

Mehr