Grundzüge der Vektoranalysis

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Grundzüge der Vektoranalysis"

Transkript

1 KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green Satz von Stokes Zirkulation und Wirbelstärke Satz von Stokes Satz von Gauß Satz von Gauß Fluss und Ergiebigkeit/Divergenz Vektorpotential Zusammenfassung Zunächst beweisen wir den Satz von Green noch einmal für ein Rechteck, daraus kann man dann auf den allgemeinen Satz schließen. 7. Satz von Green Mit dem Satz von Green wird ein Zusammenhang zwischen einem Flächenintegral über einen ebenen Bereich und dem Kurvenintegral über die Randkurve des Bereichs dargestellt. Dazu wird der Begriff der Orientierung einer geschlossenen Kurve benötigt. 2

2 Definition 47: Der Rand des ebenen regulären Bereichs B heißt positiv orientiert, wenn beim Durchlaufen der Randkurve der Bereich B zur Linken liegt. Es sei vx, y v x, y, v 2 x, y T ein auf dem Rechteck R : {x, y : a x b, c y d} definiertes stetig differenzierbares Vektorfeld. Dann besitzt das Rechteck die Randkurve γ γ γ 2 γ 3 γ 4, mit den Parametrisierungen positive Orientierung!: γ 3 t γ t b + a t d t c, t [a, b], γ 2 t, t [a, b], γ 4 t b a t c + d t, t [c, d],, t [c, d]. Damit ist γ t, γ 2 t, γ 3 t, γ 4 t. Wir berechnen nun das Kurvenintegral 2. Art über den Rand γ des Rechtecks: 4 v d x v d x γ j γ j b d b d v x, c dx + v 2 b, y dy v x, d dx v 2 a, y dy a c a c b d v x, c v x, d dx + v 2 b, y v 2 a, y dy a c b d v x, y d b v 2 x, y dy dx + dx dy a c c a x v 2 x, y v x, y dx dy, R x 2

3 also insgesamt R v d x R v 2 x, y x v x, y dx dy. Wenn man ein Gebiet durch achsenparallele Rechtecke approximiert, beweist man auf diese Weise den Satz 36 Satz von Green.: Sei D R 2 ein Gebiet und B D ein Bereich, dessen Rand aus endlich vielen positiv orientierten Kurven besteht, und v : D R 2 ein stetig differenzierbares Vektorfeld. Dann gilt B v d x B v 2 x, y x v x, y dx dy. 7.2 Satz von Stokes 7.2. Zirkulation und Wirbelstärke Die Grundlage für die Betrachtungen bildet jetzt der dreidimensionale Raum. Definition 48: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und γ eine geschlossene, reguläre, orientierte Kurve in M. Das Kurvenintegral 2. Art Z : v d x heißt Zirkulation von v längs der Kurve γ. γ 22

4 Es sei A ein reguläres räumliches Flächenstück mit der Randkurve A. Als mittlere Wirbelstärke von v bezüglich A bezeichnet man v d x. OA A Durch Zusammenziehen der Fläche A auf einen Punkt erhält man die Wirbelstärke, oder genauer Definition 49 Wirbelstärke.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und x M. Der Grenzwert W n x : lim v d x OA, x A OA A heißt Wirbelstärke von v bezüglich der Richtung n in x. Dabei werden mit A M ebene, einfach zusammenhängende und stückweise glatt berandete Flächenstücke bezeichnet, die die gleiche Normale n haben. Nehmen wir an, dass die Fläche A parallel zur x-y-ebene liegt, so hat der Rand A die Gestalt: A : γt : xt yt z, a t b, γb γa. 23

5 A sei positive orientiert, dann gilt A v d x b a b a v γt γt dt v γtẋt + v 2 γtẏt dt v dx + v 2 dy Satz von Green A v 2,x v,y x dx dy OA v 2,x v,y x OA n rot v x, A mit einem geeingeten x A nach dem Mittelwertsatz der Integralrechnung, und da A parallel zur x-y-ebene ist, ist n e z. D.h. Satz 37 Berechnung der Wirbelstärke.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und x M. Die Wirbelstärke von v bezüglich der Richtung n in x ergibt sich aus W n n rot v x. Definition 5: Man nennt rot v das zu v gehörende Wirbelfeld. Ist die Roation eines Vektorfeldes gleich Null, d.h. rot v, so nennt man das Vektorfeld wirbelfrei Satz von Stokes Es sei S ein reguläres Flächenstück, dessen Rand S eine reguläre, geschlossene Kurve ist. Zerlegt man nun S in endlich viele Maschen S j mit S S S 2 S n, wobei S i S j, i j, nur aus endlich vielen regulären Kurvenstücken bestehen soll. Für hinreichend kleine Maschen gilt dann S v d x n n v d x rot v x j n OS j. j S j j 24

6 Eine unendliche Verfeinerung der Maschenzerlegung führt dann auf den Satz 38 Satz von Stokes.: Es sei v : M R 3 ein stetig differenzierbares Vektorfeld, M R 3, offen, und S ein reguläres Flächenstück in M. Dann gilt S v d x S rot v d O. Verbal bedeutet der Satz von Stokes, dass die Zirkulation entlang einer Kurve, die ein Flächenstück berandet, gleich dem Integral über alle Normalkomponenten der Wirbelstärke auf dem Flächenstück ist. 7.3 Satz von Gauß Der Satz von Gauß stellt einen Zusammenhang zwischen dem Flussintegral Oberflächenintegral 2. Art durch eine geschlossene Oberfläche und einem Integral über das eingeschlossene Volumen her. 25

7 7.3. Satz von Gauß Der Quader hat die im Bild angegebenen Seiten und Normalenvektoren. Sei nun D R 3 ein Gebiet und Q D und v : D R 3 ein stetiges differenzierbares Vektorfeld mit der Komponentendarstellung v v v 2 v 3 v e v e 2. v e 3 Nach dem Hauptsatz der Differential- und Integralrechnung gilt b2 [ b3 v d O + v d O S2 S Analog erhält man a 2 b2 a 2 a 3 [ b3 Q a 3 ] v b, y, z v a, y, z dz dy b ] a x v x, y, z dv. S4 v d O + S3 v d O und S6 v d O + S5 v d O x v x, y, z dx Q Q v 2x, y, z dv z v 3x, y, z dv. dz dy 26

8 Durch Summation der letzten drei Gleichungen erhält man 6 d O Q v j Q Q v d O S j x v x, y, z + v 2x, y, z + z v 3x, y, z dv div v dv. Satz 39 Satz von Gauß.: Sei B ein regulärer Bereich, die Normale n zeige in den Randpunkten von B aus B heraus man spricht in diesem Fall von der äußeren Normalen. Dann gilt B div v dv B v d O B v ndo Fluss und Ergiebigkeit/Divergenz Seien D R 3 ein Gebiet und v : D R 3 ein stetig differenzierbares Vektorfeld. Weiterhin sei für x D und r > die Kugel B r x : {y R 3 : x y r} in D enthalten. Es sei S r x B r x der Rand die Oberfläche der Kugel. Wir betrachten nun den Fluss S r x v d O betrachtet, erhält man die Differenz zwischen dem pro Zeiteinheit aus B r x heraus fließendem und dem hinein fließenden Volumen Netto-Bilanz. Dividiert man den Fluss durch das Volumen des Bilanzgebietes B r x, so erhält man die mittlere Ergiebigkeit bezüglich B r x : v d O. VB r x Zieht man die Kugel nun auf einen Punkt zusammen, so erhält man die Ergiebigkeit in einem Punkt. Nach dem Mittelwertsatz existiert ein x B r x mit S r x v d O B r x S r x Da die Funktion Skalarfeld div v stetig ist, folgt div v x lim r VB r x div dv div v x VB r x. S r x v d O. 27

9 Man bezeichnet deshalb die Divergenz eines Vektorfeldes auch als Quelldichte. Ist die Quelldichte Ergiebigkeit eines Vektorfeldes v gleich Null div v, dann nennt man v auch quellenfrei. 7.4 Vektorpotential Wie man leicht nachrechnet ist, rot grad f für alle skalaren Funktionen f. D.h. insbesondere, dass Potential- bzw. Gradientenfelder wirbelfrei sind. Analog stellt man fest, dass div rot v, d.h. Rotationsfelder sind quellfrei. Gibt es also zum vorgegebenen Vektorfeld v ein Vektorfeld w mit v rot w, so muss notwendigerweise die Bedingung div v gelten. Diese Überlegungen führen auf den Begriff des Vektorpotentials: Definition 5 Vektorpotential.: Sei v D R 3, D R 3, gegeben. Existiert ein einmal stetig differenrzierbares Vektorfeld d.h. jede Komponente ist einmal stetig differenzierbar w : R 3 R 3, mit v rot w, so heißt w Vektorpotential von v. Satz 4 Existenz eines Vektorpotentials.: Sei v D R 3, D R 3, ein differenzierbares Vektorfeld. Ist D eine offene konvexe Menge, dann ist die Bedingung div v notwendig und hinreichend für die Existenz eines Vektorpotentials w mit v rot w. Anstelle der Konvexität von D genügt es zu fordern, dass D einfach zusammenhängend ist. Bemerkung 32: Offensichtlich ist das Vektorpotential nicht eindeutig bestimmt, da je- 28

10 des Potential- bzw. Gradientenfeld grad f die Beziehung v rot w rot w + grad f erfüllt. xy Beispiel 7: Für das ganz auf R 3 definierte Vektorfeld vx, y, z xz gilt zy div v und folglich existiert ein Vektorpotential w. Die Berechnung des Vektorpotentials ist trickreich. Da v rot w gelten muss, stehen die Gleichungen xy w 3 w 2 z, xz w z w 3 x, zy w 2 x w zur Verfügung. Wir wählen w 3 c 3 const. Damit ergibt sich xy w 2 z, xz w z, zy w 2 x w und die erste Gleichung nach z integriert ergibt w 2 xyz + Cx, y. Analog erhält man durch Integration der zweiten Gleichung nach z w x z2 2 + Dx, y. Unter Berücksichtigung dieser beiden Ergebnisse erhält man für die dritte Gleichung zy w 2 x w yz + Cx, y x Dx, y Cx, y x Dx, y. Diese letzte Beziehung ist insbesondere für Cx, y c 2, Dx, y c erfüllt und ergibt 29

11 das Vektorpotential w x z2 2 + c xyz + c 2 c 3. Genauso gut hätte man aber auch wie folgt rechnen können: Cx, y Dx, y dy, x was Dx, y sin y + c ergibt für Cx, y x cos y + c 2. Beispiel 8: Es soll der Fluss des Vektorfeldes vx, y, z xy, xz, zy T durch die Fläche S {x, y, z z : z x 2 + y 2, x 2 + y 2 } S ist ein Paraboloidmantel berechnet werden. Hierfür stehen uns nun 2 Möglichkeiten zur Verfügung:. direkter Weg. Parametrisierung von S : Φr, ϕ Die Tangentenvektoren sind Φ r cos ϕ sin ϕ 2r r cos ϕ r sin ϕ r 2, r [, ], ϕ [, 2π]. und Φ ϕ r sin ϕ r cos ϕ. Damit ergibt sich für das Vektorprodukt Φ r Φ ϕ e x e y e z cos ϕ sin ϕ 2r r sin ϕ r cos ϕ 2r 2 cos ϕ 2r 2 sin ϕ r und damit ergibt sich der Fluss r 2 cos ϕ sin ϕ 2r 2 cos ϕ 2π F v d O r 3 cos ϕ 2r 2 sin ϕ dϕ dr S r 3 sin ϕ r 2π 2r 4 cos 2 ϕ sin ϕ 2r 5 cos ϕ sin ϕ r 4 sin ϕ dϕ dr, 22

12 und die Auswertung der Integrale ergibt F. 2. Wir erinnern uns, dass das Vektorfeld v ein Vektorpotential w x z2 2, xyz, T. Mit Hilfe des Satzes von Stokes erhält man v d O rot w d O w d x. S S Als Parametrisierung des Randes S {x, y, z T S : z x 2 + y 2 } nimmt man Φr, ϕ Damit ergibt sich für den Fluss F 2π 2π 2π cos ϕ sin ϕ, S ϕ [, 2π]. cos ϕ 2 2 sin ϕ cos ϕ sin ϕ cos ϕ dϕ 2 2 cos ϕ sin ϕ cos2 ϕ sin ϕ dϕ 2 2 cos ϕ + cos2 ϕ d cos ϕ. 7.5 Zusammenfassung In der folgenden Tabelle ist abschließend die Bedeutung der Integralsätze für die Berechnung eines Arbeits- und eines Flussintegrals abhängig von den Eigenschaften des zu integrierenden Vektorfelds bzw. der zu durchlaufenden Kurve bzw. der zu durchfließenden Fläche dargestellt. 22

13 Zusammenfassung: Vektoranalysis Spezieller Integrand v Spezielles Integrationsgebiet γ v d x Arbeitsintegral längs der Kurve γ Kurve von γa nach γb Ist rot v, d.h. das Vektorfeld v ist wirbelfrei im einfach zusammenhängenden Gebiet, dann ist Die Oberfläche O wird von der geschlossenen Kurve S γ berandet, positiver Umlaufsinn, dann gilt der Satz von Stokes: S v d x S rot v d O 222 S v d O Fluss über die Fläche S Oberflächenintegral 2. Art v grad f und nach dem. Hauptsatz für Kurvenintegrale gilt grad f d x f γb f γa. γ Ist das Vektorfeld v quellenfrei, d.h. div v, im einfach zusammenhängenden Gebiet, dann ist v rot w. S rot w d O S w d x Der räumliche Bereich B wird von der geschlossenen Oberfläche O berandet, d.h. B O. B v d O div v dv Satz von Gauß B 7 Grundzüge der Vektoranalysis Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 8 Grundzüge der Vektornlysis. Stz von Green Mit dem Stz von Green wird ein Zusmmenhng zwishen einem Flhintegrl uber einen ebenen Bereih und dem Kurvenintegrl uber die Rndkurve des Bereihs drgestellt.

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

Musterlösungen zu Serie 10

Musterlösungen zu Serie 10 D-ERDW, D-HEST, D-USYS athematik II FS 3 Dr. Ana Cannas da Silva usterlösungen zu Serie. a) Die Ellipse E wird z.b. durch y 4 γ(t) 3 sin t, t 2 π, t (4, 3 sin t) parametrisiert. E Daher ist F d s E 48

Mehr

Der allgemeine Satz von Stokes...

Der allgemeine Satz von Stokes... Der allgemeine Satz von Stokes...... in der Sprache der Differentialformen. dω Differentialformen... sind - vereinfacht gesagt - orientierte Differentiale. k-form im R n a i1,...,i k (x) dx i1... dx ik,

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Ferienkurs Analysis 3

Ferienkurs Analysis 3 Ferienkurs Analysis 3 Vektoranalysis Zensen Carla, Heger aniel, Kössel Fabian, Ried Tobias 21. ärz 21 Inhaltsverzeichnis 1 Untermannigfaltigkeiten des R n 3 1.1 Charakterisierung von Untermannigfaltigkeiten...............

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Oberflächenintegrale

Oberflächenintegrale KAPITEL Oberflächenintegrale. Integration über Flächen im Raum.................. 36.2 Flächeninhalt.............................. 366.3 Oberflächenintegrale. und 2. Art.................. 369 Lernziele

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras 9.4.4 April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Scheinklausur zur HM3 (vertieft) für LRT und MaWi

Scheinklausur zur HM3 (vertieft) für LRT und MaWi Scheinklausur zur HM (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Name des Tutors: Es gelten die üblichen Klausurbedingungen. Bitte beachten

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

) sei stückweise stetige differenzierbare Kurve in

) sei stückweise stetige differenzierbare Kurve in . Integration.. urvenintegrale. Art Neben urvenintegralen. Art [9..] existieren auch urvenintegrale. Art. Def.. ( () = (), (), () x t x t x t x t Parameterdarstellung und v( x) v ( x) v ( x) v ( x) v:

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

3 Die Integralsätze von Gauß und Stokes

3 Die Integralsätze von Gauß und Stokes 3 Die Integralsätze von Gauß und Stokes 3.1 Der Gaußsche Integralsatz 3.1 Definition. Es sei G R n (n N, n 2) ein beschränktes Gebiet und k N eine natürliche Zahl. G heißt C k glatt berandet, falls es

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom Übungsaufgaben 11. Übung WS 15/16: Woche vom 4. 1. - 8. 1. 2016 Integralsatz von Gauß 23.1, 23.3, 23.5 (a,g), 23.6 (a) Integralsatz von Stokes 23.7, 23.8 (a), 23.10 Zusatzaufgabe zu Gauß + Stokes in 2D

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (. Juli 6) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe 1: In der x-y-ebene seien die Mengen A {(x, y) : x } und

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel.

Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel. Übung vom 7.7.10 Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt 1 Formulierung des Satzes von Gauss (SvG). 2 Erinnerung an die Denition der Divergenz und intuitive

Mehr

Höhere Mathematik Vorlesung 7

Höhere Mathematik Vorlesung 7 Höhere Mathematik Vorlesung 7 Mai 2017 ii Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt. Albert Einstein 7 Flächenintegrale Flächen Reguläre Flächen: ei D R 2 regulär. Unter einer Fläche

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

55 Integralsätze in der Ebene

55 Integralsätze in der Ebene 262 IX. Integralsätze 55 Integralsätze in der Ebene 55.1 Wegintegrale skalarer Funktionen. a) Für einen Weg γ C 1 st ([a,b],rn ) und eine stetige Funktion f C((γ)) wird durch γ f ds := γ f(x)ds(x) := b

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2017/18 1. Integration von Funktionen in zwei Variablen 1.1. Integral auf Rechtecken Wir betrachten ein beschränktes Rechteck

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III WiSe 04/05 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter Vorder- und Rückseite

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Analysis im IR 2. Fakultät Grundlagen. Juli Parameterdarstellung von Kurven Integrationsaufgaben Vektoranalysis

Analysis im IR 2. Fakultät Grundlagen. Juli Parameterdarstellung von Kurven Integrationsaufgaben Vektoranalysis Analsis im IR 2 Fakultät Grundlagen Juli 25 Fakultät Grundlagen Analsis im IR 2 Übersicht Parameterdarstellung von Kurven Parameterdarstellung von Kurven Ebene Kurven Tangentenvektor 2 Kurvenlänge Sektorfläche

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen $Id: transform.tex,v.7 29//25 2::59 hk Exp $ $Id: kurven.tex,v.2 29//26 3:3:25 hk Exp hk $ 2 Koordinatentransformationen 2.5 Uneigentliche Rieman-Integrale Bisher haben wir das Rieman-Integral nur für

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Klausur Mathematik III für Bauingenieure

Klausur Mathematik III für Bauingenieure TU Dresden 9. Juli 5 Institut für Analysis Doz. Dr. N. Koksch Klausur Mathematik III für Bauingenieure Name: Vorname: Jahrgang: Matrikel-Nr.: Studiengang: Übungsgruppe: Aufgabe 4 5 6 Ges. Punkte max. 6

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Ferienkurs in Vektoranalysis

Ferienkurs in Vektoranalysis Zentrum athematik echnische Universität ünchen Dipl. ath. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Vektoranalysis Aufgabe. Sei U R n offen und f : U R m stetig differenzierbar. Zeige dass der Graph

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 76 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 12.11.28 2 / 76 Wiederholung Glatte Flächen Wiederholung Vektorprodukt Definition Flächeninhalt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Das Gauss-Integral e x2 dx TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (nalysis 3 http://www.ma.tum.de/hm/m924 2W/

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) 1 Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Kapitel 11: Vektoranalysis Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 10. Juni 2008) Felder Definition 11.1 Ein Skalarfeld

Mehr

Mathematik II für ET/IT und ITS im SS 2012

Mathematik II für ET/IT und ITS im SS 2012 Matrikelnummer: 8 Name: Vorname: 2 3 4 5 6 7 8 9 Bonus Gesamtpunktzahl Klausur Mathematik II für ET/IT und ITS im SS 22 Hinweise: Schreiben Sie auf das eckblatt der Klausur Ihren vollständigen Namen und

Mehr