Differentialgeometrie von Kurven und Flächen

Größe: px
Ab Seite anzeigen:

Download "Differentialgeometrie von Kurven und Flächen"

Transkript

1 Differentialgeometrie von Kurven und Flächen Inhaltsverzeichnis:. Hilfsmittel Fritzsche 2. Parametrisierte Kurven Ballnus, Ebene Krümmung Ballnus, Raumkurven Stergiou, Globale Eigenschaften Nietz, Parametrisierte Flächen Kintscher, Erste Fundamentalform Kintscher oder Ding, Normalkrümmungen Brüder, Gauß sche Krümmung Brüder, Theorema egregium Lommerzheim, Geodätische Schächt, Kartenprojektionen Agzibüyük, und : Reserve-Termine 2 Flächen Vorträge Nr. 6 und 7 Ein parametrisiertes reguläres Flächenstück S R 3 differenzierbaren Abbildung ϕ : P R 3, so dass gilt: ist das Bild einer beliebig oft. P ist eine offene, zusammenhängende Menge im R 2, ϕ ist injektiv. 2. rg J ϕ u 2 für alle u P. 3. Ist u 0 P und u ν P eine Folge mit lim ν ϕu ν ϕu 0, so ist auch lim ν u ν u 0 vgl. dazu GK Analysis 2, Abschnitt.5. Dann ist S mit der Relativtopologie homöomorph zu P vgl. Lemma.5.7 in GK Analysis 2 und Proposition 4 in 2.2 in do Carmo. Eine reguläre Fläche ist eine Teilmenge S R 3, so dass es zu jedem x S eine offene Umgebung U Ux R 3 existiert, so dass S U ein parametrisiertes reguläres Flächenstück ist. Jedes Flächenstück S R 3 kann lokal als Niveaufläche f 0 mit einer Funktion f : U R, U R 3, und fx 0 dargestellt werden. Zwei verschiedene Parametrisierungen gehen durch differenzierbare Parametertransformationen auseinander hervor siehe do Carmo, Proposition in 2.3; im GK Analysis 2 wird das Gleiche für p-dimensionale Flächen im R n gemacht, im Abschnitt.5. Dadurch ist es möglich, differenzierbare Funktionen auf Flächen zu definieren. Ist ϕ : P S R 3 ein parametrisiertes Flächenstück, so heißt T ϕu S : Im Dϕu die Tangentialebene an S in ϕu. Jeder Tangentialvektor v T p S ist Tangentenvektor α 0 einer Kurve α : I S mit α0 p und umgekehrt. Ist F : S S 2 eine differenzierbare Abbildung und v α 0 T p S, so setzt man F,p v : F α 0.

2 Dadurch wird eine lineare Abbildung F,p : T p S T F p S 2 definiert, die Tangentialabbildung. Ist sie ein Isomorphismus, so ist F lokal nahe p ein Diffeomorphismus. In der Literatur gibt es für die Tangentialabbildung F,p noch andere Bezeichnungen, z.b. df p. Sei S R 3 eine reguläre Fläche. Die quadratische Form I p : T p S R mit I p v : v v euklidisches Skalarprodukt im R 3 heißt erste Fundamentalform auf S. Manchmal bezeichnet man auch das Skalarprodukt selbst mit I p. Eine Parametrisierung ϕ definiert eine Basis {ϕ u p, ϕ v p} des Tangentialraums u,v seien die beiden Parameter. Nach Gauß definiert man für u u, v P und p : ϕu S : Eu : ϕ u p ϕ u p I p ϕ u p, F u : ϕ u p ϕ v p, Gu : ϕ v p ϕ v p I p ϕ v p. Ist v α 0 T p S und schreibt man α ϕ a, a 2 mit einer differenzierbaren Kurve a, a 2 im R 2, so ist v a ϕ u + a 2ϕ v und I p v E a 2 + 2F a a 2 + G a 2 2. So kann man in lokalen Koordinaten rechnen. Es ist ϕ u ϕ v EG F 2. Diese Größe spielt eine wichtige Rolle bei der Berechnung des Flächeninhaltes eines Flächenstücks: Ist Q P und K : ϕq kompakt, so ist µk : ϕ u ϕ v du dv der Flächeninhalt von K. Q Die Wahl einer Parametrisierung ϕ induziert durch die Basis {ϕ u, ϕ v } und ihre Anordnung eine Orientierung der Tangentialräume. Die Fläche S heißt orientierbar, falls man S so mit Koordinaten überdecken kann, dass alle Kartenwechsel positive Funktionaldeterminante haben. Man kann zeigen, dass S genau dann orientierbar ist, wenn es auf S ein differenzierbares Einheitsnormalenfeld gibt. Das Möbiusband ist ein Beispiel einer nicht orientierbaren Fläche. Niveauflächen f 0 sind immer orientierbar. 2

3 3 Flächenkrümmung Vorträge Nr. 8, 9 und 0 Die ersten Ergebnisse gehen auf Euler zurück 760. Sei S eine Fläche, p S und N ein Normalenvektor zunächst willkürlich gewählt. Jeder Tangentialvektor v T p S spannt mit N eine Ebene Ev auf, die mit {v, N} orientiert wird. Der Schnitt Ev S ist Bild einer Kurve α v mit α v 0 p, und diese hat in Ev eine orientierte Krümmung κ N v, die Normalenkrümmung von S in p in Richtung v. Satz: Wenn die Normalenkrümmung v κ N v nicht konstant ist, gibt es genau zwei aufeinander senkrecht stehende Einheitsvektoren v, v 2 T p S, so dass κ : κ N v maximal und κ 2 κ N v 2 minimal ist. Man nennt κ, κ 2 die Hauptkrümmungen von S in p, und v, v 2 die Hauptkrümmungsrichtungen. Der Punkt p heißt elliptisch, falls κ, κ 2 das gleiche Vorzeichen besitzen, hyperbolisch, falls κ und κ 2 verschiedene Vorzeichen haben, parabolisch, falls genau eine der Hauptkrümmungen verschwindet und flach, falls κ κ 2 0 ist. Satz von Meusnier: Sei F eine Ebene, die v T p S enthält, und θ der Winkel zwischen F und der Normalenebene Ev. Ist κ θ die Krümmung der Kurve F S in p, so ist κ N v κ θ cos θ. Bemerkung: Die Größe κ θ cos θ nennt man auch die Normalkrümmung von F S in p. Dann kann der Satz von Meusnier auch folgendermaßen formuliert werden: Alle Kurven auf S durch p mit dem gleichen Tangentialvektor v in p haben die gleiche Normalkrümmung in p. Gauß entwickelte eine Flächentheorie, die sich auf die inneren Eigenschaften der Fl2ache konzentrierte 827. Im Folgenden Sei S stets eine orientierbare Fläche. Die Gauß-Abbildung N : S S 2 wird definiert durch Np : ϕ u ϕ v ϕ u ϕ v. Man kann zeigen, dass N eine differenzierbare Abbildung ist. Allerdings hängt N von den Koordinaten ab. Wenn man allerdings eine Orientierung auf S wählt, kann man ein differenzierbares Einheitsnormalenfeld auf S finden, und dann kann man die Parametrisierung ϕ immer so wählen, dass N in die Richtung des Einheitsnormalenfeldes zeigt und daher mit ihm übereinstimmt. Das Spannende an der Gaußabbildung ist die zugehörige Tangentialabbildung N,p : T p S T Np S 2. Weil einerseits T p S die Ebene durch den Nullpunkt ist, die auf Np senkrecht steht, und andererseits auch T Np S 2 die Ebene durch den Nullpunkt ist, die auf Np senkrecht steht, kann man die beiden miteinander identifizieren man beachte, dass Vektoren immer als Vektoren im Nullpunkt aufgefasst werden können, und das gilt auch für die Tangentialvektoren an eine Fläche. Also haben wir einen Endomorphismus N,p : T p S T p S, und für die Untersuchung von Endomorphismen gibt es in der linearen Algebra einen umfangreichen Apparat. Die Abbildung L : N,p : T p S T p S nennt man die Weingartenabbildung oder den Gestalt-Operator. Ist V ein reeller Vektorraum mit innerem Produkt...,..., so nennt man einen Endomorphismus L : V V selbstadjungiert, falls Lv, w v, Lw für alle v, w V gilt. 3

4 Satz: Die Weingartenabbildung L ist selbstadjungiert bezüglich der ersten Fundamentalform. Die quadratische Form II p : T p S R mit heißt zweite Fundamentalform auf S. II p v : I p Lv, v I p N,p v, v Für v T p S mit I p v ist II p v κ N v. Das erklärt, warum das Minuszeichen eingefügt wurde. Die Eigenwerte der zweiten Fundamentalform sind die Hauptkrümmungen, die zugehörigen Eigenvektoren sind die Hauptkrümmungsrichtungen unter den Eigenwerten und Eigenvektoren von II p versteht man die von L. Definition: K : detn,p heißt Gauß sche Krümmung, H : SpurN,p /2 heißt mittlere Krümmung von S in p. Sind κ, κ 2 die Hauptkrümmungen, so ist K κ κ 2 und H κ + κ 2 2 Versieht man T p S mit der Basis {ϕ u, ϕ v }, so kann man alle betrachteten Größen in lokalen Koordinaten bezüglich dieser Basis ausrechnen. Schreibt man N u a ϕ u + a 2 ϕ v und N v a 2 ϕ u + a 22 ϕ v, a a so wird N,p durch die Matrix 2 beschrieben. Weiter sei a 2 a 22 e : N u, ϕ u N, ϕ uu, f : N v, ϕ u N, ϕ uv N u, ϕ v und g : N v, ϕ v N, ϕ vv. Die Gleichungen kommen zustande, weil N, ϕ u N, ϕ v 0 ist; man differenziere dann einfach! Mit den in 2 eingeführten Größen E, F und G folgt dann: e f a a 2 E F f g a 2 a 22., und deshalb a a 2 e f a 2 a 22 EG F 2 f g und Ist Kp 0, so folgt außerdem: K eg f 2 EG F 2. G F F E µnu Kp lim, U p µu wobei U Umgebungen von p durchläuft und µ die Flächeninhaltsfunktion bezeichnet. Ein Diffeomorphismus F : S S 2 zwischen Flächen heißt eine Isometrie, falls für alle p S und alle v, w T p S gilt: I p v, w I F p F,p v, F,p w. 4

5 Ein herausragender Satz von Gauß lateinisch Theorema Egregium behandelt die Tatsache, dass die zunächst extrinsisch - d.h. durch Bezug auf den umgebenden 3-dimensionalen Raum - definierte Gauß-Krümmung in Wirklichkeit eine intrinsische Größe ist, d.h. von 2-dimensionalen Bewohnern der Fläche direkt bestimmt werden kann. Eigenschaften einer Fläche, die unter Isometrien erhalten bleiben, sind intrinsisch. Ist F : S S 2 eine Isometrie, so gibt es zu jedem Punkt p S Parametrisierungen ϕ : P S um p und ψ : Q S 2 um F p, so dass die Größen E, F, G in beiden Fällen die gleichen Werte aufweisen. Längen, Winkel und Flächeninhalte bleiben erhalten. Umgekehrt kann man zeigen, dass der Koordinatenwechsel zwischen zwei Parametrisierungen vgl. Vortrag 6 mit identischen Größen E, F, G eine lokale Isometrie ist. Ist ϕ Parametrisierung einer Fläche S, so ist {ϕ u, ϕ v, N} eine Basis des R 3, und jeden anderen Vektor kann man als Linearkombination der Basisvektoren schreiben. Insbesondere gilt: ϕ uu Γ ϕ u + Γ 2 ϕ v + L N, ϕ uv Γ 2ϕ u + Γ 2 2ϕ v + L 2 N, und ϕ vv Γ 22ϕ u + Γ 2 22ϕ v + L 3 N, sowie N u a ϕ u + a 2 ϕ v und N v a 2 ϕ u + a 22 ϕ v. Die Koeffizienten Γ k ij heißen Christoffel-Symbole, und es zeigt sich, dass ist. Man rechnet nach: und L e, L 2 f und L 3 g E F E F E F Γ Γ 2 Γ 2 Γ 2 2 Γ 22 Γ E u F u 2 E v 2 E v 2 G u F v 2 G u 2 G v Die Werte der Christoffel-Symbole hängen also nur von den metrischen Koeffizienten E, F, G und deren Ableitungen ab. Unter Isometrien bleiben sie unverändert. Theorema Egregium Gauß: Die Gauß sche Krümmung ist intrinsisch, also invariant unter lokalen Isometrien. Zum Beweis rechnet man nach, dass die folgende Formel gilt. Γ 2 2 Γ 2 u + v Γ 2Γ 2 + Γ 2 2Γ 2 2 Γ 2 Γ 2 22 Γ Γ 2 2 EK.,. Also hängt K nur von den Christoffelsymbolen und deren Ableitungen ab. 5

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform Vorlesung 2 Differentialgeometrie: Grundlagen 49 Wir werden jetzt κ(v) durch Untersuchung von d p N bestimmen. Dazu beobachten wir zunächst, das aus dn(v) N folgt, dass es zu jedem v T p U ein w T p U

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten)

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Prof. Dr. Daniel Grieser 18.12.2008 Inhaltsverzeichnis Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Untermannigfaltigkeiten

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 9 18. Dezember 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 9 18. Dezember 2013 1 / 17 9. Einführung in der innere Geometrie

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt 2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt { } T p S = X R 3 es gibt ein ε > 0 und eine glatte parametrisierte Kurve c : ( ε,ε) S mit c(0)

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1 Differentialgeometrie 3.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 3 30. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 3 30. Oktober 2013 1 / 23 3. Erste Fundamentalform parametrisierten

Mehr

Differentialgeometrie für Geodäten Wintersemester 2011/12. Mark Hamilton

Differentialgeometrie für Geodäten Wintersemester 2011/12. Mark Hamilton Differentialgeometrie für Geodäten Wintersemester 2011/12 Mark Hamilton 30. Januar 2012 Inhaltsverzeichnis 1 Kurven im R 3 3 1.1 Grundlagen der Topologie..................... 3 1.2 Kurven im R n............................

Mehr

7.6.5 Gaußsche Krümmung K und mittlere Krümmung H

7.6.5 Gaußsche Krümmung K und mittlere Krümmung H 7.6.5 Gaußsche Krümmung K und mittlere Krümmung H Im folgenden sei stets Φ : x(u, v), (u, v) G, eine reguläre C 2 -Fläche. Dann ist an jeder Stelle (u, v) G für jede Flächenrichtung nach 7.6.3 t = a 1

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Übungen zur Vorlesung Differentialgeometrie I

Übungen zur Vorlesung Differentialgeometrie I Sommersemester 2005 Blatt 12 1) Liouvillesche Flächen sind per definitionem solche, deren erste Fundamentalform sich in der Form E = G = U + V, F = 0, schreiben lassen, wobei U = U (u) bzw. V = V (v) in

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Geometrie und Topologie von

Geometrie und Topologie von Prof. Dr. Sebastian Hensel Sommersemester 2018 Geometrie und Topologie von Flächen Kurzskript Einige kleine Hinweise Dieses Kurzskript ist eine Auswahl der wichtigsten Resulate der Vorlesung. Er ersetzt

Mehr

Klausur zur Geometrie für Bachelor und Lehramt

Klausur zur Geometrie für Bachelor und Lehramt Klausur zur Geometrie für Bachelor und Lehramt Aufgabe ( Punkt) Lösung Aufgabe Kurzfragen (jeweils Punkte) (a) Skizzieren Sie qualitativ eine ebene Kurve c : R R mit Krümmung κ(t) = t (b) Ist die ebene

Mehr

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag:

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag: Universität Wien Elementare Differentialgeometrie Lehrveranstaltungsleiter Roland Steinbauer Verfasser: Peter Egger Julian Wiederin a885415 a1046139 Vortrag: 4.11.015 Zuletzt geprüfte Version: 17.1.015

Mehr

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen Analysis 3, Woche Mannigfaltigkeiten II. Immersionen Definition. Sei m n N und X R m offen. Eine Abbildung f C X; R n heißt Immersion, wenn für jedes x X die Matrix fx injektiv ist. Bemerkung.. Man hat

Mehr

Äußere Geometrie von Flächen

Äußere Geometrie von Flächen Äußere Geometrie von Flächen Bezeichnungen und Wiederholung der Analysis II. Auf der übernächsten Folie werden wir definieren, was ein (parametrisiertes) Flächenstück ist. Als mathematisches Objekt ist

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Die zweite Fundamentalform und Krümmungen

Die zweite Fundamentalform und Krümmungen Kapitel 6 Die zweite Fundamentalform und Krümmungen 6.1 Die zweite Fundamentalform Im Abschnitt 5.2 wurde das Normalenvektorfeld N einer regulär parametrisierten Fläche X : U R 2 R 3 definiert. Durch die

Mehr

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n Teil IV : Integration über Untermannigfaltigkeiten In der Analysis II haben wir bereits Kurven in R n eine Länge zugeordnet (also ein eindimensionales Volumen ) und Funktionen über Kurven integriert. In

Mehr

Mannigfaltigkeiten und Integration I

Mannigfaltigkeiten und Integration I und Integration I Martin Jochum 16. Dezember 2008 und Integration I 16. Dezember 2008 1 / 28 Gliederung Definition Folgerungen Tangentialvektoren Differentialformen Euklidische Simplizes Definition Motivation

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

DG III 2. Vorlesung Tim Hoffmann 3

DG III 2. Vorlesung Tim Hoffmann 3 DG III 2 Vorlesung Tim Hoffmann 3 1 Wiederholung Im folgenden werden einige Begriffe und Konstruktionen der Theorie von Kurven und Flächen wiederholt Im Zweifel sei auf die in der Literaturliste angegebenen

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3 Kapitel 6 Vektoranalysis 6. Glatte Kurven und Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Flächen, Gauß-Krümmung, erste und zweite Fundamentalform, theorema egregium

Flächen, Gauß-Krümmung, erste und zweite Fundamentalform, theorema egregium Flächen, Gauß-Krümmung, erste und zweite Fundamentalform, theorema egregium A. Hartmann (alexander.hartmann@stud.uni-goettingen.de. April Ziel dieses Vortrags ist eine Einführung in einige Grundbegriffe

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 11 15. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 11 15. Januar 2014 1 / 15 11. Das Theorema Egregium von Gauß (1827)

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Analysis II. Vorlesung 37. Differenzierbare Kurven

Analysis II. Vorlesung 37. Differenzierbare Kurven Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 37 Differenzierbare Kurven Eine Animation des Graphen der trigonometrischen Parametrisierung des Einheitskreises. Die grünen Punkte sind Punkte

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie.

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Ziel: die geodätische Krümmung einer Kurve γ : I U

Ziel: die geodätische Krümmung einer Kurve γ : I U Ziel: die geodätische Krümmung einer Kurve γ : I U Sei c = f γ nach Bogenlänge parametrisiert. Wir betrachten den Krümmungsvektor c und zerlegen ihn orthogonal in einen Anteil tangential und einen Anteil

Mehr

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet.

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Eine globale eingebettete Fläche nicht-standarde Definition: Def. Eine (globale eingebettete) Fläche ist eine Teilmenge M von R

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Motivation der Vorlesung Analysis IV

Motivation der Vorlesung Analysis IV Motivation der Vorlesung Analysis IV B. Ammann 1 1 Universität Regensburg Vorlesung Analysis IV im SS 2015 Geometrie von Untermannigfaltigkeiten Ziel: Verständnis von Kurven in der Ebene Kurven im Raum

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2 Aufgabe. Zeichnen Sie die Spur des Weges c : [ π, π] R, der durch ct := cost sint + definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis Vorbereitung für die mündliche Examensprüfung Geometrie von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann Inhaltsverzeichnis Bezeichnungen 2 1 Euklidische Geometrie 2 1.1 Der axiomatische

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Differentialgeometrie

Differentialgeometrie Manuskript zur Vorlesung Differentialgeometrie gehalten an der U n i v e r s i t ä t R o s t o c k von Prof. Dr. Dieter Neßelmann Rostock, April 2006 Fassung vom 0. April 2006 Inhaltsverzeichnis Grundlagen

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 1 16. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 1 16. Oktober 2013 1 / 20 Organisatorisches Allgemeines Dozentin:

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

Analysis II. Vorlesung 52. Diffeomorphismen

Analysis II. Vorlesung 52. Diffeomorphismen Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume

Mehr

13. Vorlesung. Lineare Algebra und Koordinatenwechsel.

13. Vorlesung. Lineare Algebra und Koordinatenwechsel. 3. Vorlesung. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1 Aufgabe. Zeichnen Sie die Spur des Weges c : [ 4 π,π] R, der durch ct := + sint cost definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven Diese kleine Formelsammlung ist ein Hilfsmittel für die studienbegleitende Prüfung am 30. August 2012. Sie ist kein Ersatz für eine Vorlesungsmitschrift. Die Formelsammlung wird einseitig im Format DIN

Mehr

Oliver Schnürer, Universität Konstanz Sommersemester 2010 Matthias Makowski

Oliver Schnürer, Universität Konstanz Sommersemester 2010 Matthias Makowski Blatt 1 Aufgabe 1.1. Sei α : I R 2, I ein offenes Intervall, eine reguläre Kurve der Klasse C 2. Zeige: (i) α hat genau dann konstante Krümmung κ, wenn sie Teil eines Kreises mit Radius 1 κ ist, falls

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

1 Distributionen und der Satz von Frobenius

1 Distributionen und der Satz von Frobenius 1 Distributionen und der Satz von Frobenius 1.1 Vorbemerkungen Definition 1.1. Sei M eine d-dimensionale Mannigfaltigkeit, sei (U, ϕ) ein Koordinatensystem auf M mit Koordinatenfunktionen x 1,..., x d.

Mehr

5 Die Liealgebra einer Liegruppe

5 Die Liealgebra einer Liegruppe $Id: liealg.tex,v 1.5 2010/09/03 07:51:34 hk Exp hk $ 5 Die Liealgebra einer Liegruppe Wir sind noch immer mit der Konstruktion der Liealgebra zu einer Liegruppe G beschäftigt. In der letzten Sitzung hatten

Mehr

Proseminar zu Differentialgeometrie I

Proseminar zu Differentialgeometrie I Proseminar zu Differentialgeometrie I Andreas Čap Sommersemester 2011 Kapitel 1. Kurven (1) Seien a, b R 2 Punkte und v, w R 2 Einheitsvektoren. Zeige: Es gibt eine eindeutige orientierungserhaltende Bewegung

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Seminarvortrag über die Euler-Charakteristik einer Fläche

Seminarvortrag über die Euler-Charakteristik einer Fläche Dies ist eine Ausarbeitung für einen Seminarvortrag, den ich im Sommersemester 2013/14 an der Humboldt-Universität im Proseminar Differentialgeometrie von Kurven und Flächen bei Christoph Stadtmüller gehalten

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Differentialgeometrische Eigenschaften von Kurven und Flächen

Differentialgeometrische Eigenschaften von Kurven und Flächen Kapitel 5 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen

Mehr

1.2 Gitter: Grundlegende Konzepte

1.2 Gitter: Grundlegende Konzepte Gitter und Codes c Rudolf Scharlau 16. April 2009 5 1.2 Gitter: Grundlegende Konzepte Es sei V ein n-dimensionaler R-Vektorraum. Auf V sei ein Skalarprodukt gegeben, dessen Werte mit x, y R, dabei x, y

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an.

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an. Mannigfaltigkeiten (Version 19.11. 14:30) Eine n-dimensionale topologische Mannigfaltigkeit ist ein topologischer Raum, der lokal homöomorph zum R n ist. Entsprechend könnten wir natürlich auch eine topologische

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.3 2014/04/17 18:51:19 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir begonnen eindimensionale Untermannigfaltigkeiten des R d zu untersuchen.

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 6 5. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 6 5. Juni 2013 1 / 23 8. Fundamentalsatz der lokalen Kurventheorie (Fortsetzung)

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Probeklausur zur Analysis II

Probeklausur zur Analysis II Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Kontrollfragen und Aufgaben zur 4. Konsultation

Kontrollfragen und Aufgaben zur 4. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Dr. Jens Schreyer und Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 4. Konsultation

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr