Menschliches Addierwerk

Größe: px
Ab Seite anzeigen:

Download "Menschliches Addierwerk"

Transkript

1 Menschliches Addierwerk Einleitung In seinem Buch The Three-Body Problem 1 beschreibt der chinesische Autor Liu Cixin die Entwicklung eines Computers, der aus mehreren Millionen Menschen zusammengesetzt ist. Jeder dieser Mensch simuliert ein Logikgatter, indem er entweder eine weiße oder eine schwarze Flagge in der Luft schwenkt um seinen Zustand darzustellen. Durch geschickte Zusammensetzung dieser menschlichen Gatter werden nach und nach die notwendigen Einzelteile gebildet und schlussendlich entsteht so ein voll funktionsfähiger Computer. Projektbeschreibung In diesem Projekt bestreben wir die Umsetzung eines menschlichen Addierwerks im Schulhof des Lycée Technique d Esch-sur-Alzette. Ein Addierwerk ist eine Verkettung von Volladdierern und ermöglicht die Addition von zwei mehrstelligen Binärzahlen. Da sich alle vier Rechenarten auf die Addition zurückführen lassen, bildet ein solches Addierwerk das zentrale Grundelement eines Rechenwerks (Arithmetisch-logische Einheit, ALU) eines Prozessors 2. Figur 1: Aufbau eines 4-Bit-Carry-Ripple Addierers Ein Volladdierer besteht aus drei Eingängen (a, b und carry in ) und zwei Ausgängen (s und carry out ) und ermöglicht das Addieren von drei einstelligen Binärzahlen wobei ein Ausgang (s) die niederwertige Stelle des Resultats liefert und der zweite Ausgang die höherwertige Stelle (carry out). Ein Volladdierer kann mit zwei UND-, zwei XOR- und einem ODER-Gatter implementiert werden. Figur 2: Aufbau eines Volladdierers

2 Praktische Umsetzung Allgemein Die praktische Umsetzung dieses Projektes besteht aus mehreren Phasen: Phase 1: Empfang der Schüler Die Schüler werden im Festsaal empfangen und das Projekt wird kurz vorgestellt. Die Schüler bekommen jeder eine spezifische Funktion: logisches Gatter (UND, ODER, XOR), Eingang- oder Ausgang-Bit. Die Schüler werden dann, ihren Funktionen entsprechend, in Gruppen eingeteilt, wobei jede Gruppe eine spezifische Kennzeichnung bekommt. Sie bekommen dann eine Einführung in die Funktionsweise ihrer Funktion (z.b. Wahrheitstabelle) und üben dann in der Gruppe die korrekte Umsetzung mit den Flaggen. Phase 2: Vorbereitung des Schulhofes Der Schulhof wird zur besseren Orientierung farblich mit Kreide markiert. Große farbige Zonen definieren die Anordnung der einzelnen Volladdierer und kleine Rechtecke dienen der Positionierung der einzelnen Schüler. Jedes Rechteck bekommt eine einzigartige Identifikationsnummer die nachher einem Schüler zugeteilt wird. Phase 3: Umsetzung der Schaltung Die Schüler werden in den Schulhof geleitet und werden von den Lehrern, ihrer Funktion entsprechend, auf die einzelnen Rechtecke aufgeteilt. Phase 4: System-Check In dieser Phase üben die einzelnen Volladdierer ihre Funktionalität ohne Interaktion mit den benachbarten Volladdierern. Der zuständige Lehrer bestimmt manuell den Wert der 3 Eingänge und kontrolliert dann die beiden Ausgangswerte. Phase 5: Menschliches Addierwerk In dieser finalen Phase soll das komplette menschliche Addierwerk funktionieren. Die Verantwortlichen legen manuell den Wert der mehrstelligen Eingangsbinärzahlen fest und geben das Startsignal. Nachdem die komplette Schaltung geschaltet hat und stabil wurde, wird der Ausgangswert ausgelesen.

3 Die logischen Gatter In diesem Projekt werden die logischen Gatter von Schülern simuliert, wobei ein Schüler entweder ein UND-, ein ODER- oder ein XOR-Gatter ist. Jeder Schüler bekommt eine weiße und eine schwarze Fahne von 12 x 24 cm mit einem 40 cm langen Stab. Figur 3: Größe der Flaggen Diese Fahnen dienen zum Liefern des Ausgangwerts des logischen Gatters wobei folgende Farbkodierung benutzt wird: Farbe Ausgang SCHWARZ 0 WEISS 1 Halbaddierer Der erste Addierer der Schaltung muss kein Volladdierer sein sondern kann auch mittels Halbaddierer umgesetzt werden. Dieser besteht aus einem XOR- und einem UND-Gatters. Figur 4: Halbaddierer Zur Umsetzung des Halbaddierers werden 5 Schüler benötigt: 2 Schüler bestimmen den Wert der beiden Eingang-Bits 1 XOR-Schüler und 1 UND-Schüler 1 Ausgang-Bit

4 Volladdierer Figur 5: Aufbau eines Volladdierers Zur Umsetzung eines Volladdierers werden 8 Schüler benötigt: 2 Schüler bestimmen den Wert der beiden Eingang-Bits (ein dritter Schüler für c in wird nicht benötigt da dieser Wert vom vorherigen Addierer abgelesen wird) 2 XOR-Schüler, 2 UND-Schüler, 1 OR-Schüler 1 Ausgang-Bit Für den letzten Volladdierers des Rechenwerks wird ein zusätzlicher Schüler benötigt der den Wert des Übertrags anzeigt. Addierwerk Das Addierwerk besteht aus einer Verkettung von Addierern wobei der erste Addierer ein Halbaddierer ist und die restlichen Addierer aus Volladdierern bestehen. Zum Addieren von zwei Binärzahlen von X Stellen entspricht demnach die Anzahl der benötigten Schüler dem Resultat folgender Formel: Für ein Addierwerk zum Zusammenrechnen von bzw. zweier fünfstelliger Binärzahlen werden demnach 38 Schüler benötigt.

5 Darstellung der kompletten Schaltung Figur 6: Schaltung des Rechenwerks

6 Arbeitsaufteilung Empfang der Schüler Für den Empfang und die Einweisung der Schüler werden 4-5 Verantwortliche benötigt: 1 Person für den allgemeinen Empfang der Schüler, Vorstellung des Projektes, Aufteilung der Schüler in Funktionen, Aufbewahrung und Verteilen der Flaggen, Aufbewahrung und Verteilen der gruppenspezifischen Kennzeichnungen 1 Person pro Gatter-Gruppe (bei fünfstelligen Binärzahlen haben wir 9 XOR-Gatter, 9 UND- Gatter und 4 ODER-Gatter) 1 Person für Ein- und Ausgangbits Vorbereitung des Schulhofes Für das Vorbereiten des Schulhofes werden 1-2 Verantwortliche benötigt die den Schaltplan des Rechenwerks mit Kreide auf den Schulhof übertragen. Umsetzung der Schaltung Für die Umsetzung der Schaltung werden 6 Verantwortliche benötigt: 1 Person für die allgemeine Koordination 1 Person pro Addierer für den Empfang der Schüler, Aufteilen der Schüler auf ihre Rechtecke, Einweisung der Schüler (wen sie beobachten sollen), Koordination des System- Checks, Kontrolle des Addierers während des System-Checks sowie dem finalen Rechenwerks

7 Dokumente für praktische Umsetzung Empfang der Schüler Funktion Allgemeiner Empfang: XOR-Gatter: UND-Gatter: ODER-Gatter: Ein- und Ausgangbit: Verantwortlicher Vorbereitung des Schulhofes Funktion Verantwortlicher Zeichner 1: Zeichner 2: Zeichner 3: Zeichner 4: Zeichner 5: Umsetzung der Schaltung Funktion Allgemeine Koordination: Halbaddierer (Zone 1): Volladdierer 1 (Zone 2): Volladdierer 2 (Zone 3): Volladdierer 3 (Zone 4): Volladdierer 4 (Zone 5): Verantwortlicher

8 Zeichenplan Rechenwerk Schulhof mit Zonenbezeichnung

9 Zeichenplan Volladdierer mit Bezeichnungen

Digitale Systeme und Schaltungen

Digitale Systeme und Schaltungen Zusammenfassung meines Vortrages vom 26. Jänner 2017 Digitale Systeme und Schaltungen Andreas Grimmer Pro Scientia Linz Johannes Kepler Universität Linz, Austria andreas.grimmer@jku.at In dieser Zusammenfassung

Mehr

Seminararbeit Sommersemester 2017

Seminararbeit Sommersemester 2017 Schaltkreise für die Addition Seminararbeit Sommersemester 2017 Bearbeitet von: Maximilian Breymaier (Matrikelnummer: 57214) Christoph Mantsch (Matrikelnummer: 57266) Betreuer: Prof. Dr. Thomas Thierauf

Mehr

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann FB ETIT Übung 7 Schaltnetze 2

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann FB ETIT Übung 7 Schaltnetze 2 Wirtschaftsingenieurwesen Elektronik/chaltungstechnik Prof. M. Hoffmann FB ETIT Übung 7 chaltnetze 2 Kenntnisse bezüglich der logischen Grundfunktionen sowie der Regeln und Gesetze der chaltalgebra sind

Mehr

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Darstellung eines 1-Bit seriellen Addierwerks mit VHDL Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Inhalt: 1. Verwendete Tools 1.1 Simili 3.1 1.2 Tina 2. Vorgehensweise

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS

3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS Physikalisches Praktikum für Vorgerückte 3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS Simon C. Leemann, Abteilung für Physik Versuch: Digitale Elektronik November 998 Zusammenfassung In diesem Bericht

Mehr

Kapitel 5. Standardschaltnetze. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 5. Standardschaltnetze. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 5 Standardschaltnetze Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w Universit of Applied Sciences w Fakultät für Informatik Inhalt und Lernziele Inhalt Vorstellung der wichtigsten Standardelemente

Mehr

3.1 Schaltungselemente 129. b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein.

3.1 Schaltungselemente 129. b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein. 3.1 Schaltungselemente 129 b) Tragen Sie in nachfolgende Abbildung die Realisierung eines 1 Bit 4-auf-1 Multiplexers aus Logikgattern ein. 2 1 0 1 1 130 3 Arithmetische Schaltungen emultiplexer emultiplexer

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 12 Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 KOMPARATOR Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Kapitel 6 - Addierwerke

Kapitel 6 - Addierwerke Kapitel 6 - Addierwerke Versuch 600 Halbaddierer und Volladdierer Der bürgerliche Algorithmus des schriftlichen Addierens zerlegt die binäre Addition in die folgenden elementaren Additionen. Es ergibt

Mehr

Programmierbare Logik Arithmetic Logic Unit

Programmierbare Logik Arithmetic Logic Unit Eine arithmetisch-logische Einheit (englisch: arithmetic logic unit, daher oft abgekürzt ALU) ist ein elektronisches Rechenwerk, welches in Prozessoren zum Einsatz kommt. Die ALU berechnet arithmetische

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- jia.chen@cs.uni-.de http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Digitaltechnik Grundlagen 5. Elementare Schaltnetze

Digitaltechnik Grundlagen 5. Elementare Schaltnetze 5. Elementare Schaltnetze Version 1.0 von 02/2018 Elementare Schaltnetze Dieses Kapitel beinhaltet verschiedene Schaltnetze mit speziellen Funktionen. Sie dienen als Anwendungsbeispiele und wichtige Grundlagen

Mehr

Signale und Logik (3)

Signale und Logik (3) Signale und Logik (3) Zwischenbilanz der bisherigen Erkenntnisse: Prof. Dr. A. Christidis SS 205 Energieformen (z.b. Elektrizität) können auch als Signale (=Informationsträger) genutzt werden (vgl. Telegraph).

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Lehrstuhl für Informatik 12 Cauerstraße 11 91058 Erlangen TECHNICHE FAKULTÄT Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Aufgabe 1 (NAND-chalterfunktion) Es soll ein NAND-Gatter

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der technischen Informatik Kapitel 4 Verarbeitungsschaltungen Pascal A. Klein, M.Sc. 4 Verarbeitungsschaltungen... 3 4.1 Einführung... 3 4.2 Addierer... 3 4.2.1 Halbaddierer... 3 4.2.2 Volladdierer...

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Universität Duisburg-Essen PRAKTIKUM Grundlagen der Technischen Informatik VERSUCH 2 Schaltungssimulation und Schaltungsanalyse Name: Vorname: Betreuer: Matrikelnummer: Gruppennummer: Datum: Vor Beginn

Mehr

Elektronikpraktikum. 9 Logische Gatter. Hinweise: Fachbereich Physik

Elektronikpraktikum. 9 Logische Gatter. Hinweise: Fachbereich Physik Fachbereich Physik Elektronikpraktikum 9 Logische Gatter Stichworte zur Vorbereitung: Logische Grundverknüpfungen, Beziehungen zwischen den Grundverknüpfungen, binäres Zahlensystem, Hexadezimalsystem,

Mehr

Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , ,

Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , , Lehrveranstaltung: Digitale Systeme KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel 24.04.2012, 25.04.2012, 26.04.2012, 27.04.2012 Übersicht Kombinatorische Schaltungen n-bit-addierer Minimierungsverfahren

Mehr

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1=

2 Initialisierung clk_mkand= clk_produkt= multiplexer= init/>>1= 6 Schieben clk_mkand= clk_produkt= multiplexer= init/>>1= Arithmetische Schaltungen c) Vervollständigen Sie nachfolgend abgebildeten Zustands-Automaten so, dass er den Multiplizierer wie gewünscht steuert. Nehmen Sie an, dass Sie zur Detektion des Schleifen-Abbruchs

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Aufgabe 1: a) Bestimmen Sie die Darstellung der Zahl 113

Mehr

Aufgaben zum Elektronik - Grundlagenpraktikum. 3. Praktikumskomplex - Schaltungen mit digitalen Grundgattern

Aufgaben zum Elektronik - Grundlagenpraktikum. 3. Praktikumskomplex - Schaltungen mit digitalen Grundgattern UNIVERSITÄT LEIPZIG Institut für Informatik Wintersemester 2000/2001 Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Elektronik - Grundlagenpraktikum 3. Praktikumskomplex - Schaltungen

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente 7 Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel

Mehr

GTI ÜBUNG 12 KOMPARATOR UND ADDIERER

GTI ÜBUNG 12 KOMPARATOR UND ADDIERER 1 GTI ÜBUNG 12 KOMPARATOR UND ADDIERER Aufgabe 1 Komparator 2 Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander vergleicht. Die Schaltung besitzt drei Ausgänge: ist

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 01.02.2017 Probeklausur zu Computational Engineering

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addierschaltungen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 1 / 19 Addierer für UInt 2 (l)

Mehr

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt Rechenschaltungen Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 22 Gliederung Schieberegister Multiplexer Zähler Addierer 2 / 22 Schieberegister

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2013/14 22. Januar 2014 Kurzwiederholung / Klausurvorbereitung II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners

Mehr

3.8 Sequentieller Multiplizierer 159

3.8 Sequentieller Multiplizierer 159 .8 Sequentieller Multiplizierer 59 Nachfolgende Abbildung zeigt den (unvollständigen) Aufbau einer Schaltung zur Implementierung des gezeigten Multiplikationsverfahrens. b) Vervollständigen Sie die Schaltung

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Martin Schulz Einführung in die Rechnerarchitektur Wintersemester 2017/2018 Lösungsvorschlag

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.

Multiplikationschip. Multiplikation. Beitrag zu Werkstattunterricht Multiplikation Allgemeine Didaktik - Seminar SS95. Oberwiesenstr. Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Kathrin Ender Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorbemerkung 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Versuch: D1 Gatter und Flipflops

Versuch: D1 Gatter und Flipflops Versuch: D1 Gatter und Flipflops Vorbemerkung Es ist nicht beabsichtigt, daß Sie einfach eine vorgegebene Versuchsanordnung abarbeiten. Sie sollen die hier angewendeten Zusammenhänge erkennen und verstehen.

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Mikroprozessor (CPU)

Mikroprozessor (CPU) Mikroprozessor (CPU) Der Mikroprozessor (µp) ist heutzutage das Herzstück eines jeden modernen Gerätes. Er wird in Handys, Taschenrechnern, HiFi-Geräten und in Computern, für die er eigentlich erfunden

Mehr

5. Computer Arithmetik. a i b i C in i-1 C out i s i. a b hc out hs. Addition mit Volladddierer (1 Bit) Halbadddierer (1 Bit) b c in.

5. Computer Arithmetik. a i b i C in i-1 C out i s i. a b hc out hs. Addition mit Volladddierer (1 Bit) Halbadddierer (1 Bit) b c in. 5. Computer Arithmetik In diesem Abschnitt wollen wir einige grundlegende Techniken kennen lernen, mit denen in Computern arithmetische Operationen ausgeführt werden. Das dabei erworben Wissen werden wir

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Carry-Lookahead Addierer (CLA)

Carry-Lookahead Addierer (CLA) Carry-Lookahead Addierer (CLA) Idee: Vorausberechnung der Carry-Signale c i für alle n Stellen für i-ten Volladdierer gilt: c i+1 = a i b i + (a i +b i )c i := G i + P i c i G i = a i b i gibt an, ob in

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Elektronikpraktikum. 9 Logische Gatter. Fachbereich Physik. Stichworte. Schriftliche Vorbereitung. Hinweis. 9.1 Eigenschaften von TTL-Logikbausteinen

Elektronikpraktikum. 9 Logische Gatter. Fachbereich Physik. Stichworte. Schriftliche Vorbereitung. Hinweis. 9.1 Eigenschaften von TTL-Logikbausteinen Fachbereich Physik 9 Logische Gatter Stichworte Elektronikpraktikum Logischen Grundverknüpfungen, Beziehungen zwischen den Grundverknüpfungen, binäres Zahlensystem, Hexadezimalsystem, positive u. negative

Mehr

Von der Schaltungslogik zur Informationsverarbeitung

Von der Schaltungslogik zur Informationsverarbeitung Wintersemester 7/8 Schaltungslogik. Kapitel Von der Schaltungslogik zur Informationsverarbeitung Prof. Matthias Werner Professur Betriebssysteme 49 Schaltnetze! Gatter implementieren boolesche Funktionen

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik TECHNISCHE FAKULTÄT 11. Übung zur Vorlesung Grundlagen der Technischen Informatik Aufgabe 1 (VHDL) Gegeben ist ein binärer Taschenrechner (siehe Abb. 1), der als Eingabe die Tasten 0, 1, +, - und = und

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

ERA-Zentralübung 12. Maximilian Bandle LRR TU München Maximilian Bandle LRR TU München ERA-Zentralübung 12

ERA-Zentralübung 12. Maximilian Bandle LRR TU München Maximilian Bandle LRR TU München ERA-Zentralübung 12 ERA-Zentralübung 12 Maximilian Bandle LRR TU München 27.1.2017 Schaltungsentwurf IV Rest von letzter Übung Aufgabe 11.1 Standardschaltnetze Aufgabe 10.3.3 Automaten 8 Erzeugung der Ausgabe Zuweisung der

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Digitalelektronik. Philipp Fischer. 9. Dezember 2002

Digitalelektronik. Philipp Fischer. 9. Dezember 2002 Digitalelektronik Philipp Fischer 9. Dezember 2002 1 Inhaltsverzeichnis Einfache TTL-Schaltungen 4 EOR-Logik 5 Realisation verschiedener Logiken 5 Addierer 6 Parity-Check 6 Multiplexer 7 Basis Flip-Flop

Mehr

DIGITAL-ELEKTRONIK 8700

DIGITAL-ELEKTRONIK 8700 Rotes Kunststoffgehäuse mit normgerechtem Symbol beklebt (PVC-Folie). Alle Anschlussstellen sind mit 4 mm-buchsen ausgerüstet. Die Buchsen für die Speisespannung sind zusätzlich zur Beschriftung farbig

Mehr

Institut für Informatik. Aufgaben zum Elektronik Grundlagenpraktikum. 3.Praktikumskomplex Schaltungen mit digitalen Grundgattern

Institut für Informatik. Aufgaben zum Elektronik Grundlagenpraktikum. 3.Praktikumskomplex Schaltungen mit digitalen Grundgattern UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Studentenmitteilung 3./4. Semester - WS 2006/ SS 2007 Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-034-97 3223 Zimmer: Jo 04-47 e-mail:

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Inhalt Anwendungsbeispiel für eine ODER- Funktion Einleitung... 9

Inhalt Anwendungsbeispiel für eine ODER- Funktion Einleitung... 9 Inhalt Einleitung............................. 9 Kurze Einführung in die Grundlagen der digitalen Elektronik........................ 10 1.1 Was versteht man unter analog und was unter digital?.... 10 1.2

Mehr

Achtung: Übung Nr. D1. Inhaltsverzeichnis

Achtung: Übung Nr. D1. Inhaltsverzeichnis Fakultät für Physik Prof. Dr. M. Weber, Dr.. abbertz L. Ardila Perez, P. Pstner, D. avoiu, B. iebenborn 3. November 7 Übung Nr. D Inhaltsverzeichnis. L-Gatter.............................................

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Schaltnetze Rechner-Arithmetik Addition Bessere Schaltnetze zur Addition Carry-Look-Ahead-Addierer Multiplikation Wallace-Tree Hinweis:

Mehr

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation 3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

1. Aufgabe (4 + 6 Punkte) = + (n + 1) i=0. IV n (n + 1) n (n + 1) + 2 (n + 1) = n (n + 1) 2 (n + 1) (n + 1) (n + 2) = Behauptung. n = 0 = 6.

1. Aufgabe (4 + 6 Punkte) = + (n + 1) i=0. IV n (n + 1) n (n + 1) + 2 (n + 1) = n (n + 1) 2 (n + 1) (n + 1) (n + 2) = Behauptung. n = 0 = 6. 1. Aufgabe (4 + Punkte) (a) Beweis durch vollständige Induktion über n. 0 0 (0 + 1) Induktionsanfang: n 0: i 0 n n (n + 1) Induktionsanfang: i Induktionsschritt: n n + 1 n+1 i n i + (n + 1) IV n (n + 1)

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 28. November 2012 Rechnertechnologie III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden.

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden. 70 Arithmetische Schaltungen Multiplikation vorzeichenbehafteter Zahlen Zur Multiplikation vorzeichenbehafteter Zahlen (er-komplement) kann auf die Schaltung für vorzeichenlose Multiplikation zurückgegriffen

Mehr

1. Polyadische Zahlensysteme:

1. Polyadische Zahlensysteme: Wie funktioniert ein Rechner? 1. Polyadische Zahlensysteme: Stellenwertsystem zur Darstellung von natürlichen Zahlen. Basis B Stellenwert b Index i = Stelle B N, B 2 N 0 B 1 b, ( ) i b i Ein nicht polyadisches

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Praktikum Grundlagen von Hardwaresystemen Sommersemester Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer

Praktikum Grundlagen von Hardwaresystemen Sommersemester Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer Praktikum Grundlagen von Hardwaresystemen Sommersemester 2007 Versuch 2: Multiplexer, Carry-Ripple- und Carry-Lookahead-Addierer 26. Juni 2007 Fachbereich 12: Informatik und Mathematik Institut für Informatik

Mehr

Aufgaben zum Elektronik - Grundlagenpraktikum

Aufgaben zum Elektronik - Grundlagenpraktikum UNIVERSITÄT LEIPZIG Institut für Informatik Wintersemester 1999/2000 Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Elektronik - Grundlagenpraktikum 4. Praktikumskomplex - Teil 1 Nutzung

Mehr

Weitere Bände zur Reihe finden Sie unter

Weitere Bände zur Reihe finden Sie unter Technik im Fokus Weitere Bände zur Reihe finden Sie unter http://www.springer.com/series/8887. Rolf Drechsler Andrea Fink Jannis Stoppe Computer Wie funktionieren Smartphone, Tablet &Co.? Rolf Drechsler

Mehr

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze 82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und

Mehr

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3 Spezielle Schaltnetze Übersicht in diesem Abschnitt: Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich aus mehreren Gattern zusammensetzen ("spezielle Schaltnetze") und

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Tutorium: Einführung in die technische Informatik

Tutorium: Einführung in die technische Informatik Tutorium: Einführung in die technische Informatik Logische Schaltungen (2. 2.3) Sylvia Swoboda e225646@student.tuwien.ac.at Überblick Grundbegriffen von logischen Schaltung Realisierung von Funktionen

Mehr

3 Initialisierung. Initialisierung. Addieren clk_mkand= clk_produkt= multiplexer= multiplexer= I0 init/>>1= mon. init/>>1= 0.

3 Initialisierung. Initialisierung. Addieren clk_mkand= clk_produkt= multiplexer= multiplexer= I0 init/>>1= mon. init/>>1= 0. u Arithmetische Schaltungen c) Vervollständigen Sie nachfolgend abgebildeten s-automaten so, dass er den Multiplizierer wie gewünscht steuert Nehmen Sie an, dass Sie zur Detektion des Schleifen-Abbruchs

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Informatik I: Einführung in die Programmierung 3. Werte, Typen, Variablen und Ausdrücke

Informatik I: Einführung in die Programmierung 3. Werte, Typen, Variablen und Ausdrücke Informatik I: Einführung in die Programmierung 3. Werte,, n und Albert-Ludwigs-Universität Freiburg Peter Thiemann 30. Oktober 2018 1 30. Oktober 2018 P. Thiemann Info I 3 / 39 Bits Der Computer repräsentiert

Mehr

2 Vervollständige die Wahrheitstabellen.

2 Vervollständige die Wahrheitstabellen. Finde die sieben LogikGatter im Rätsel. Die Wörter können von links nach rechts horizontal oder von oben nach unten vertikal versteckt sein. Zur Hilfe ist das erste Wort schon markiert. L B W P F F C G

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Übungen zu Informatik Technische Grundlagen der Informatik - Übung 9 Ausgabedatum: 2. November 22 Besprechung: Übungsstunden in der Woche ab dem 9. November 22 ) Schaltungen und Schaltnetze Communication

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Funktionsweise von Computern Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Inhalt 1. Ein Blick zurück 2. Stand

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Teil III. Schaltnetze und ihre Optimierung

Teil III. Schaltnetze und ihre Optimierung Teil III Schaltnetze und ihre Optimierung 1 Teil III.1 Schaltnetze 2 Beispiel 1 Schaltnetz für xor mit {+,, } x y x y 0 0 0 0 1 1 1 0 1 1 1 0 DNF: x y = xy + xy 3 Beispiel 2 xor mittels nand-verknüpfung;

Mehr

Was passiert eigentlich im Computer wenn ich ein Programm starte

Was passiert eigentlich im Computer wenn ich ein Programm starte . Das Programm- Icon Auf dem Desktop deines Computers siehst du Symbolbildchen (Icons), z.b. das Icon des Programms Rechner : Klicke mit der rechten Maustaste auf das Icon: Du siehst dann folgendes Bild:

Mehr

Vom Schalter zum Computer

Vom Schalter zum Computer 1 Vom Schalter zum Computer Vom Schalter zum Computer Kann man aus Schaltern einen Computer bauen? Wir benötigen pegelgesteuerte Schalter (Logikpegel am Steuereingang G). Schlieÿer G Öner G Leitet, wenn

Mehr