Prüfungsaufgaben Wiederholungsklausur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfungsaufgaben Wiederholungsklausur"

Transkript

1 NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur Technische Informaik I - Elekroechnische Grundlagen Technische Informaik II echneraufbau Name Vorname Marikelnummer Fachrichung Immarikulaionsjahr Ergebnisse Aufgabe Aufgabe Aufgabe 3 Aufgabe 4 Summe max. Punke 8 davon erreich Noe Daum/nerschrif des Korrigierenden: Hinweise: Zeidauer insgesam Minuen Zum Besehen der Klausur sind mindesens 4 Punke erforderlich. Zur Klausur Technische Informaik I und II sind keine Hilfsmiel erlaub. Ausnahme: nichprogrammierbarer Taschenrechner. Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie

2 Teil (. Semeser) Aufgabe. Belaseer Spannungseiler Bei der Spannungsmessung an elekrischen- und elekronischen Schalungen kann es zu Verfälschungen des Meßergebnisses durch die Einwirkung des Innenwidersandes des Meßgeräes kommen. Für die Aufgaben werden die Parameer des im Prakikum verwendeen Muliesers HC 5 verwende. An dem gegebenen Spannungseiler is der Widersand unbekann. Da die Schalung in Harz eingegossen is und nur die Anschlüsse A und B zugänglich sind, muß die Besimmung des Widersandsweres über die Spannung an den Anschlüssen A und B erfolgen. An der folgenden Schalung soll der Widersand besimm werden. Dabei soll die Spannung an den Anschlüsse A und B mi einem Meßinsrumen von kp/v (Meßwerk: 5 mv/µa - i,5 kp) im Meßbereich 5V gemessen werden. Dabei is der Innenwidersand des Meßinsrumenes MI kp/v ] 5V5 kp. Alle Berechnungen auf 3 Sellen genau. Die 4. Selle darf gerunde werden. I M I 3M IM A Were: E V Mp MI 5kp V E M M MI B Wie hoch is der Wer des Widersandes? a) Wie groß is der Wer des Ersazwidersandes ers. Hinweis: Berechnung über E und Der Widersand ers beseh aus der Zusammenfassung der Parallelschalung von und MI. b) Wie groß is der Wer des Widersandes. Hinweis: Berechnung über ers und MI c) Wie groß sind die Sröme I M, I M und I 3M Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie

3 Im Folgenden sollen ideale Were berechne werden. Die Schalung änder sich wie folg. I A I E AB d) Wie groß sind die Spannung AB ohne das Messgerä? e) Wie groß sind die Sröme I und I ohne das Messgerä? B V ideales Volmeer (mi dem Widersand Q zu berachen) Formeln: ers E + ers + daraus folg ers MI ers + MI MI I M I M + I 3M AB daraus folg AB E E + + I Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 3

4 Aufgabe. Schalverhalen eines C - Tiefpasses Gegeben is folgende Schalung: S i() u() 9,6735V für 3µs 5V C 4nF V u () C u C() u() Im Anfangszusand is der Kondensaor enladen. Danach wird die Spannung eingeschale. Nach der Zei sell sich die Spannung u() ein. Das Ziel der Aufgabe is die Berechnung der Zeikonsane τ und der Widersand des C Tiefpasses sowie der Indukiviä L des L Tiefpasses. Alle Berechnungen auf 4 Sellen genau. Die 5. Selle darf gerunde werden. Aufgabe: a) Welchen Wer ha die Zeikonsane τ, wenn nach der Zei die Spannung u() am Kondensaor anlieg? b) Wie hoch is der Wer des Widersandes? c) Wie hoch is der Einschalsrom i() zum Zeipunk bei der obigen Schalung? d) Ändern Sie die Schalung so, daß das gleiche Zeiverhalen u() mi einer Spule und einem Widersand erreich wird (Zeichnung der Schalung ohne Angabe der Were). e) Wie muß der Wer der Indukiviä L gewähl werden, dami bei gleichem Widersandswer das selbe Zeiverhalen u() erreich wird? Formeln: u( ) e τ τ und i( ) I e mi τ C L Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 4

5 Teil (. Semeser) Aufgabe 3. Code-Schloss Es is die Schalung eines Code-Schlosses gegeben (s. Abbildung). Die Eingänge T, T,..., T sellen die Tasen,,..., 9, *, # der Tasaur dar. Alle Tasen sind über Pull-up-Widersände mi den Eingängen der Logic-Box verbunden. Jede nichgedrücke Tase lieg dadurch eindeuig auf High- Pegel und nimm beim Drücken Low-Pegel an. Drei verschiedene Tasen müssen in der richigen eihenfolge gedrück werden, genau dann öffne sich das Code-Schloss. Gesamschalung: +5V LOGIC-BOX ANALOG- BOX * # Aufgaben: a) m welchen Typ von Speichergliedern handel es sich in der dargesellen Logic-Box? Geben Sie die Boolesche Gleichung für den Ausgang Q des Speichergliedes als Funkion der Eingänge und S an! b) Beschreiben Sie die Funkionsweise des Code-Schlosses ausführlich! c) Welche eihenfolge der Tasen is erforderlich, dami sich das Code-Schloss öffne? d) Wie lauen die Booleschen Gleichungen für Si, i (i,, 3) als Funkion der Tj (j,,..., )? (Es genüg die Angabe der nichminimieren Gleichungen!) Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 5

6 GESAMTSCHALTNG CODE-SCHLOSS Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 6

7 Aufgabe 4. Volladdierer Ein Volladdierer bilde die Summe S und den Überrag D aus 3 einselligen Dualzahlen A, B, C. Aufgaben: a) Sellen Sie die Wereabelle des Volladdierers auf! Dabei sollen die Spalen in der eihenfolge A, B, C, S, D bezeichne werden. b) Besimmen Sie aus der Wereabelle die Schalfunkionen für die Summe S und den Überrag D in der DNF! c) Minimieren Sie die Schalfunkionen der Summe S und des Überrags D mi Hilfe der Booleschen Algebra! d) Worin unerscheiden sich Volladdierer und Halbaddierer? Handel es sich bei der Schalung des Volladdierers um ein Schalnez oder um ein Schalwerk? Begründen Sie Ihre Anwor! Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 7

8 Lösung: Lösungen Aufgabe : a) Wie groß is der Wer des Ersazwidersandes ers. daraus folg ( ers ) ers ers E + ers + E ( E ) ers ers E V MΩ V MΩ ers,5mω 5kΩ V V 8V b) Wie groß is der Wer des Widersandes. + daraus folg ers MI MI MI ers ers 5kΩ 5kΩ 5kΩ 5kΩ 5kΩ 5kΩ 5kΩ 5kΩ c) Wie groß sind die Sröme I M, I M und I 3M I M daraus folg I M V I M,4mA 4µ A 5kΩ Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 8

9 I 3 daraus folg M MI I 3 M MI V I3 M,4mA 4µ A 5kΩ I M IM + I3M I M 4µ A + 4µ A 8µ A d) Wie groß sind die Spannung AB ohne das Messgerä? AB daraus folg AB E E + + 5kΩ 5kΩ AB V V,3333 V 33, 33V MΩ + 5kΩ,5 MΩ e) Wie groß sind die Sröme I und I ohne das Messgerä? ( ) E I + und I I daraus folg I E + V V I I,6666mA 66,66µ A MΩ + 5kΩ,5MΩ Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 9

10 Lösungen Aufgabe : Aufgabe: a) Welchen Wer ha die Zeikonsane τ, wenn nach der Zei die Spannung u() am Kondensaor anlieg? u( ) e τ daraus folg u( ) e τ e τ u( ) e u( ) u( ) τ ln τ τ u( ) ln 3µ s 3µ s 3µ s 3µ s τ 6µ s 9,6735V ln(,3935) ln(,665),5 ln 5V b) Wie hoch is der Wer des Widersandes? τ daraus folg C τ C 6 6µ s 6 s 3 V,5, 5kΩ 4nF 9 As 4 A V c) Wie hoch is der Einschalsrom i() zum Zeipunk bei der obigen Schalung? τ i( ) I e mi τ I daraus folg i( ) e Zum Zeipunk folg: 5V i( ) e,5kω s 6µ s 5V e,5kω 5V 33,33mA,5kΩ Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie

11 d) Ändern Sie die Schalung so, daß das gleiche Zeiverhalen u() mi einer Spule und einem Widersand erreich wird (Zeichnung der Schalung ohne Angabe der Were). S L i() u L() V () u() e) Wie muß der Wer der Indukiviä L gewähl werden, dami bei gleichem Widersandswer das selbe Zeiverhalen u() erreich wird? L τ C daraus folg L τ L,5kΩ 6µ s 9mH Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie

12 Lösungen Aufgabe 3: a) Bei den Speichergliedern der Logic-Box handel es sich um S-FlipFlops. Ein S-FlipFlop kann z.b. aus zwei NO-Gaern aufgebau werden, die folgendermaßen mieinander verschale werden: Die Boolesche Gleichung für den Ausgang Q des S-FlipFlops als Funkion der Eingänge und S ergib sich aus der obigen Schalung zu: Q ( ) * S + ( ) * Q b) Die Beäigung der Tase T (T ) sez das FlipFlop FF (Q ). FF behäl diesen Zusand auch dann, wenn diese Tase wieder losgelassen wird. Gleichzeiig werden die beiden anderen FlipFlops über die NAND-Gaer zurückgesez, so dass an den Ausgängen Q und Q3 eine logische "" anlieg. Das Ausgangs-Signal Q des FF gib über das Gaer AND4 den Sezeingang des FlipFlops FF frei. Dadurch bewirk die Beäigung der Tase T das Sezen des FlipFlops FF (Q ). Das Ausgangs-Signal Q führ wieder über das Gaer AND5 zur Freigabe des Sezeingangs von FlipFlop FF3. Bei Beäigung der Tase T3 wird das FlipFlop FF3 gesez (Q3 ). Der Transisor wird durchgeschale, und das elais zieh an. c) Die Tasen müssen in der eihenfolge T T T3 beäig werden, dami sich das Code-Schloss öffne. d) Die Booleschen Gleichungen für die Si, i (i,, 3) als Funkion der Tj (j,,..., ) lauen in der nichminimieren Form: FF: S T ( Tj (j 4, 5,..., ) ) Q ( T) * Tj (j 4, 5,..., ) + Q * Tj (j 4, 5,..., ) FF: S Q * ( T) (T * Tj (j 4, 5,..., ) ) Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie

13 Q T * Q * ( T) * Tj (j 4, 5,..., ) + T * Q * Tj (j 4, 5,..., ) FF3: S3 Q * ( T3) 3 (T * Tj (j 4, 5,..., ) ) Q3 T * Q * ( T3) * Tj (j 4, 5,..., ) ) + T * Q3 * Tj (j 4, 5,..., ) ) Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 3

14 Lösungen Aufgabe 4: a) Wereabelle des Volladdierers A B C S D b) DNF: S ( ( A) * ( B) * C ) + ( ( A) * B * ( C) ) + ( A * ( B) * ( C )) + ( A * B * C ) D (( A) * B * C ) + ( A * ( B) * C ) + ( A * B * ( C)) + ( A * B * C ) c) Minimiere Schalfunkionen: S A B C D A * B + B * C + A * C d) Der Halbaddierer unerscheide sich vom Volladdierer in der Anzahl der Eingänge, der Halbaddierer bilde aus zwei einselligen Dualzahlen Summe und Überrag. Bei beiden Addierern handel es sich um Schalneze, d.h. es reen keine Speicherglieder auf. Dr. H-J Lieske/ni. Leipzig/999-/Version Daei: KEW99-5. Januar - Seie 4

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NIVESITÄT LEIPZIG Iniu für Informaik Prüfungaufgaben Klauur zur Vorleung WS 2/2 und SS 2 b. Techniche Informaik Prof. Dr. do Kebchull Dr. Paul Herrmann Dr. Han-Joachim Lieke Daum:. Juli 2 hrzei: 8-3 Or:

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Kapitel 4. Versuch 415 T-Flipflop

Kapitel 4. Versuch 415 T-Flipflop Kapiel 4 Versuch 415 T-Flipflop Flipflops, die mi jeder seigenden oder mi jeder fallenden Takflanke in den engegengesezen Zusand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können aus

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form.

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form. Sequenielle Schalungen 9 Charakerisische Gleichungen Eine charakerisische Gleichung beschreib die Arbeisweise eines Flipflops in schalalgebraischer Form. n is ein Zeipunk vor einem beracheen Tak. is ein

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ Serie 26 Qualifikaionsverfahren Telemaikerin EFZ Telemaiker EFZ Berufskennnisse schriflich Pos. 5.2 Elekrische Sysemechnik Name, Vorname Kandidaennummer Daum Zei: Hilfsmiel: Bewerung: 45 Minuen Masssab,

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

Grundsätzlich werden folgende Darstellungsformen für die Beschreibung logischer Funktionen verwendet: Wertetabelle Signal-Zeit-Plan Stromlaufplan.

Grundsätzlich werden folgende Darstellungsformen für die Beschreibung logischer Funktionen verwendet: Wertetabelle Signal-Zeit-Plan Stromlaufplan. 8 Seuern mi der LOGO Grundfunkionen 2 Grundfunkionen 2. UD-Verknüpfung (AD) Eine UD-Verknüpfung is eine logische Funkion mi mindesens zwei voneinander unabhängigen, binären Eingangsvariablen und einer

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2 NIVERSITÄT LEIPZIG Institut für Informatik Prüfungsaufgaben Klausur Wintersemester 2/21 Abt. Technische Informatik Prof. Dr. do Kebschull Dr. Paul Herrmann Dr. Hans-Joachim Lieske Datum: 6. Februar 21

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NVERSTÄT LEPZG nstitut für nformatik Prüfungsaufgaben Klausur Wintersemester 000/001 bt. Technische nformatik Prof. Dr. do Kebschull Dr. Paul Herrmann Dr. Hans-Joachim Lieske Datum: 05. Oktober 000 hrzeit:

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich nleiung zum Physikprakikum für Obersufenlehrpersonen Kapaziäen (C) Frühjahrssemeser 2017 Physik-Insiu der Universiä Zürich Inhalsverzeichnis 9 Kapaziäen (C) 9.1 9.1 Einleiung........................................

Mehr

1. Einführung und Grundlagen

1. Einführung und Grundlagen . Einführung und Grundlagen. Srom und Spannung. Der Ohmsche Widersand.3 Widersandsnezwerke.4 Kondensaoren und -Nezwerke.5 ndukiviäen und -Nezwerke.6 Komplexe Widersände, mpedanzen.7 - und -Nezwerke.8 Fourier-eihen.9

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

(t) -U. An dem gegebenen Hochpaß liegt der skizzierte Impuls. Man berechne und skizziere U A (t). C = 1 nf, R = 1 KΩ, U = 5 V, T 1 = T 2 = 1 µs.

(t) -U. An dem gegebenen Hochpaß liegt der skizzierte Impuls. Man berechne und skizziere U A (t). C = 1 nf, R = 1 KΩ, U = 5 V, T 1 = T 2 = 1 µs. Aufgabe. () () A () - T T An dem gegebenen Hochpaß lieg der skizziere zweiseiige echeckimpuls. Man berechne und skizziere A (). = µf, = KΩ, = 5 V, T = T = ms. Aufgabe. () () A () T T An dem gegebenen Hochpaß

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

11 Sequentielle Schaltungen

11 Sequentielle Schaltungen 11 Sequenielle Schalungen E 1 E 2 Kombinaorische Schalung A 2 A=f(E) E n A 1 A m E 1 A 1 E 2 Sequenielle A 2 Schalung E n A=f(E, Z) Z'=g(E, Z) A m Abbildung 1: Kombinaorische / Sequenielle Schalung Z'

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Muserlösung Grundlagen der Elekroechnik B 22.08.207 22.08.207 Muserlösung Grundlagen der Elekroechnik B Seie von 3 Aufgabe : Gleichsromseller (20 Punke) u u i T L i 2 T i

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5.

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5. Kapiel 7: Schalakoren 7. Schalakoren fach Schalakor EB/23/ mi Nebenselleneingang Ar.- Nr. 657 9 4. Einsellungen in der Tool-Sofware (ETS) Auswahl in der Produkdaenbank Herseller: Meren Produkfamilie: 4.

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elekroechnik B 29.3.216 Name: Marikelnummer: Vorname: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: (Punke) 1 (18) 2 (2) 3 (23) 4 (21) 5 (18) Punke Klausur

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Übung 5: BB-Datenübertragung

Übung 5: BB-Datenübertragung ZHW, NM, 5/6, Rur Übung 5: BB-Daenüberragung Aufgabe Nichlineare Ampliudenquanisierung. Das Signal s() = S p?sin(pf ) wird über einen Kanal überragen, der das Signal mi dem Fakor a dämpf. Der Parameer

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Elektrische Antriebe Grundlagen und Anwendungen. Übung 4: Gleichspannungswandler

Elektrische Antriebe Grundlagen und Anwendungen. Übung 4: Gleichspannungswandler Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 21 D 8333 München Email: ea@ei.um.de Inerne: hp://www.ea.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.: +49

Mehr

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d)

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d) Digialechnik 2 Grundschalungen der Digialechnik BFH-I-Biel/Bienne (Version v.d) oland Schäfer Inhalsverzeichnis Kombinaorische Schalungen. Muliplexer/Demuliplexer................... Muliplexer (Muliplexers).............

Mehr

Trigger- Trigger- Trigger- Triggerereignis ereignis ereignis ereignis

Trigger- Trigger- Trigger- Triggerereignis ereignis ereignis ereignis 5.2.3. Enwurf synchroner Auomaen 5.2.3.1. Grundlagen Mi der Einführung eines (periodischen) Taksignals kann die oben angeführe Auomaendefiniion ewas modifizier werden. Wir berachen hier Auomaen aus mi

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 4. Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen 4.2 egiser 22 Technische Informaik 2 Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen Bei chalnezen exisier kein

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elekroechnik B 24.9.215 Name: Marikelnummer: Vorname: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: (Punke) 1 (16) 2 (2) 3 (24) 4 (2) 5 (2) Punke Klausur

Mehr

Ansteuerung. Prioritäten

Ansteuerung. Prioritäten KNX Schalakor Basic REG-K/8x/6 A mi Handbeäigung Ar.-Nr. MEG67-8 Applikaion Schalen Basic 472/. Applikaion Schalen Basic 472/. Meren 292/ Applikaion Schalen Basic 472/. Funkionsübersich Mi dieser Applikaion

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Elementare RC- und RL-Glieder

Elementare RC- und RL-Glieder ANGEWANDTE ELEKTRONIK EINFÜHRNG WS 09/0 Elemenare RC- und RL-Glieder. Der Sromluß durch einen Kondensaor Abb.. veranschaulich einen Kondensaor, der durch Anschalen an eine Spannungsquelle geladen und anschließend

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Klausur. Grundlagen der Elektrotechnik II WS 06/ Februar Name Matrikelnummer Studiengang

Klausur. Grundlagen der Elektrotechnik II WS 06/ Februar Name Matrikelnummer Studiengang . Klausur Grundlagen der Elekroechnik II W 06/07. Februar 007 Nae Marikelnuer udiengang Aufgabe Thea Max. Punke Erreiche Punke Transisor 9 auschen 4 OPV 8 4 igial 9 ue 0 Hinweise: Es sind keinerlei Unerlagen

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Klausur "Elektronik und Messtechnik" 9115/6203. am Teil: Elektronik

Klausur Elektronik und Messtechnik 9115/6203. am Teil: Elektronik Name, Vorname: Klausur "Elektronik und Messtechnik" 9115/6203 am 12.03.2007 1. Teil: Elektronik Hinweise zur Klausur: Die für diesen Teil zur Verfügung stehende Zeit beträgt 2 h. Matr.Nr.: Aufg. P max

Mehr

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt.

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. 2 Theorie der semanischen Typen 2.2.2 Semanik von TL Menge der omänen Zu jedem Typ gib es eine Menge von möglichen enoaionen der Ausdrücke dieses Typs. iese Menge wird omäne des bereffenden Typs genann.

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 4: Schutzbeschaltung elektronischer Bauelemente

Leistungselektronik Grundlagen und Standardanwendungen. Übung 4: Schutzbeschaltung elektronischer Bauelemente ehrsuhl für Elekrische Anriebssyseme und eisungselekronik Technische Universiä München Arcissraße 21 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.: +49

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Quality Assurance in Software Development

Quality Assurance in Software Development Insiue for Sofware Technology Qualiy Assurance in Sofware Developmen Qualiässicherung in der Sofwareenwicklung A.o.Univ.-Prof. Dipl.-Ing. Dr. Bernhard Aichernig Insiue for Sofware Technology Graz Universiy

Mehr