Parameterabhängige Integrale, Kurven, Kurvenintegrale Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Parameterabhängige Integrale, Kurven, Kurvenintegrale Vorlesung"

Transkript

1 Prmeterbhängige Integrle, Kurven, Kurvenintegrle Vorlesung Mrcus Jung

2 Inhltsverzeichnis Inhltsverzeichnis 1 Einführung 3 2 Eigenschften Prmeterbhängiger Integrle Stetigkeit Integrtionsreihenfolge Dierentierbrkeit Leibniz-Regel für prmeterbhängige Grenzen Uneigentliche prmeterbhängige Integrle Kurven Denition Doppelpunkt Singulrität Schnittpunkt, Schnittwinkel Bogenlänge einer Kurve Rektizierbrkeit Kurvenintegrle Motivtion Denition Additivität, Linerität Kurvenintegrl eines Vektorfeldes Denition Wegunbhängigkeit von Kurvenintegrlen über Vektorfeldern

3 1 Einführung 1 Einführung Prmeterbhängige Integrle sind Integrle, bei denen der Integrnd selbst noch von einer (oder mehreren) unbhängigen Vriblen bhängt, z.b. Gmm - Funktion. Für den Fll eigentlicher Integrle betrchtet mn lso Funktionen der Form: F (x) := f(x, y)dy x I Die Vrible x tritt hier ls Prmeter uf, über diese wird nicht integriert! Hier ist: I R ein Intervll f(x,y) eine Funktion f : I [, b] R bei festem x I, die ls Funktion von y über [, b] integrierbr sein möge 2 Eigenschften Prmeterbhängiger Integrle 2.1 Stetigkeit Eine wichtige Eigenschft prmeterbhängiger Integrle ist die Stetigkeit: Ist f(x, y) stetig uf I [, b], so existiert ds Integrl F (x) := x I, und F (x) ist uf I stetig. f(x, y)dy für lle 2.2 Integrtionsreihenfolge Nun betrchtet mn die Wichtigkeit der Integrtionsreihenfolge. Annhmen: D := [, b] [c, d] R 2 f : D R stetig f : [, b] R mit F (x) := f(x, y)dy Dmit gilt die Vertuschbrkeit der Integrtionsreihenfolge: F (x)dx = d ( c f(x, y)dy)dx = d c ( f(x, y)dx)dy Dies ist ein Spezilfll des Stzes von Fubini, welcher mehrdimensionle Integrle uf eindimensionle Integrle zurückführt, welche dnn einfch berechnet werden können. 3

4 2 Eigenschften Prmeterbhängiger Integrle 2.3 Dierentierbrkeit Nun geht es um die Vertuschbrkeit von Integrtion und Dierenzition prmeterbhängiger Integrle: Ist f(x, y) nch x stetig prtiell dierenzierbr, dnn ist F (x) stetig dierenzierbr, und somit gilt: F (x) = f (x, y)dy x x I Einfches Beispiel: f(x, y) = x 2 y ) F (x) = f(x, y)dy = x x (1 2 x2 y 2 ) = xy 2 b) F (x) = f(x, y)dy = 2xydy = xy 2 x Weitere Beispiele, u.. Besselfunktion ls Übung 2.4 Leibniz-Regel für prmeterbhängige Grenzen Nun betrchtet mn Integrle, bei denen uch die Grenzen von Prmetern bhängen, lso g(x), h(x). Annhme: D := [, b] [c, d] R 2 f : D R stetig f : [, b] R mit F (x) := f(x, y)dy f nch x stetig prtiell dierenzierbr g, h : ], b[ ]c, d[ stetig dierenzierbr Hängen uch die Integrtionsgrenzen (g, h) von Prmetern b, so erhält mn für 2.3 die Dierenzitionsregel (Leibniz-Regel): x h(x) g(x) f(x, y)dy = h(x) g(x) x f(x, y)dy + f(x, h(x))h (x) f(x, g(x))g (x) 4

5 2 Eigenschften Prmeterbhängiger Integrle Die Gleichung us 2.3 ist nur ein Spezilfll der Leibniz-Regel, d die beiden letzten Terme hier wegfllen, d.h. wenn die Integrtionsgrenzen nicht von Prmetern bhängig sind, sind h (x), g (x) = und dmit fllen die beiden letzten Terme uf der rechten Seite weg. Beispiel zu 2.4 F (x) = x2 cos(xt 2 )dt F (x) = x2 t 2 sin(xt 2 )dt + 2xcos(x 5 ) 2.5 Uneigentliche prmeterbhängige Integrle Zum Schluss betrchten wir noch die Dierenzierbrkeit von Integrlen, deren Grenze im Unendlichen liegt. Annhme: f(x, y) stetig und nch x stetig prtiell dierenzierbr f(x, y)dy, konvergent f x (x, y)dy uf kompkten Teilmengen von I gleichmäÿig Unter diesen Vorrussetzungen ist uch F (x) stetig dierenzierbr und die Ableitung lässt sich unter ds Integrlzeichen ziehen: F (x) = Beispiel zu 2.5 f (x, y)dy x Die Ableitung der Gmm-Funktion lässt sich nun folgendermÿen berechnen: Γ(x) = e t t x 1 dt Γ (x) = e t t x 1 ln(t)dt 5

6 3 Kurven 3 Kurven Wenn mn in der Mthemtik von Kurven spricht, geht es um eindimensionle Objekte, die in mehrdimensionlen Räumen uftreten können, und in der Regel eine Krümmung besitzen. Eindimensionl bedeutet, dss sich die Kurve nur in eine Richtung "bewegt". 3.1 Denition Eine stetige Funktion : [, b] R n heiÿt eine Kurve im R n oder Prmeterdrstellung einer Kurve, wobei () ls Anfngspunkt und (b) ls Endpunkt der Kurve bezeichnet werden. Flls () = (b) wird die Kurve ls geschlossen bezeichnet. Ist eine Abbildung : [, b] R n eine C 1 Abbildung, ist lso jede Koordintenfunktion c j (t) stetig dierenzierbr, so nennt mn (t) eine C 1 Kurve. Ist jede Koordintenfunktion c j stetig dierenzierbr, ist uch stetig dierenzierbr. EineC 1 Kurve heiÿt gltt, flls x [, b] ċ(t) Die Ableitung ċ(t) von (t) heiÿt Tngentilvektor n die Kurve (t) Beispiele (t) := (cos(t), sin(t)) T, t [, 2π], beschreibt einen Kreis im R 2 (t) := (rcos(2πt), rsin(2πt), ht) T, t R beschreibt eine Schrubenlinie mit Rdius r > 6

7 3 Kurven 3.2 Doppelpunkt Es sei : I X eine Kurve. x X heiÿt Doppelpunkt von, flls s, t I existiert, mit s t und x = (s) = (t) Beispiel: Beim Kreis ist jeder Punkt Doppelpunkt, z.b.: () = (2π) 3.3 Singulrität Es sei : I R m eine Kurve und dierenzierbr, dnn ist t I eine singuläre Stelle von, flls ċ(t) = 3.4 Schnittpunkt, Schnittwinkel Zwei Kurven können sich im Rum schneiden. Sind die Kurven nicht identisch, d.h. es gilt nicht (t) = d(t) t I, knn es ein oder mehrere Schnittpunkte geben mit den dzugehörigen Schnittwinkeln. Es seien : I R m und d : J R m Kurven. x R m heiÿt Schnittpunkt von und d, wenn ein t I und ein r J existiert, mit x = (t) = d(r) Der Winkel α zwischen zwei Tngentilvektoren ċ(t), ḋ(r) heiÿt Schnittwinkel von, d in t und r. Es gilt: cos(α) = < ċ(t), ḋ(r) > ċ(t) > 2 ḋ(r) Bogenlänge einer Kurve Die Bogenlänge gibt einfch nur die Länge einer Kurve n. Um diese zu bestimmen ht mn sich folgendes überlegt: Kurve (t), t b durch Kntenzug pproximieren (siehe Abb.) Zu vorgegebener Zerlegung Z = ( = t < t 1 <... < t m = b) des Intervlls [, b] setzt mn n: Gesmtlänge L(Z) := m 1 (t j+1 ) (t j ) j= Schut mn sich die Abb. n, ist es klr, dss L(Z) stets kleiner gleich der ttsächlichen Länge ist. Geht Z erhält mn die ttsächliche Länge. 7

8 3 Kurven 3.6 Rektizierbrkeit Ist die Menge {L(Z) : z Z[, b]} nch oben beschränkt, so heiÿt die Kurve rektizierbr und L() := sup{l(z) Z Z[, b]} = lim L(Z) Z heiÿt die Länge der Kurve Dmit lässt sich die Länge der Kurve nun einfch berechnen: Stz: Jede C 1 - Kurve ist rektizierbr, und für die Länge von gilt: L() = ċ dt Beispiel: Berechnung der Länge eines Kreises (t) = (r cos(t), r sin(t)) T ċ(t) = ( r sin(t), r cos(t)) T ċ(t) = r L() = 2π rdt = 2π r Zum Schluss noch einige wichtige Prmetrisierungen: Polrkoordinten: (t) = (r cosφ, r sinφ) T Zylinderkoordinten: (t) = (r cosφ, r sinφ, z) T Kugelkoordinten: (t) = ( rcosφ cosθ, r sinφ cosθ, r sinθ) T 8

9 4 Kurvenintegrle 4 Kurvenintegrle Nchdem wir nun die Denition und Eigenschften von Kurven kennengelernt hben, kommen wir nun zur Integrtion von Kurven. 4.1 Motivtion Um zu verstehen, wrum mn sich mit Kurvenintegrlen beschäftigt, betrchten wir folgende Aufgbe: Es sei ein krummliniger, evtl. inhomogen mit Msse belegter Drht gegeben. Nun frgt mn sich nch der Gesmtmsse des Drhtes. Dies erreicht mn durch Integrtion. Die Lge des Drhtes beschreiben wir durch eine C 1 Kurve x = (t), t b Im Punkt x ht der Drht die ortsbhängige Mssendichte ρ( x) = Msse Längeneinheit Nun rbeitet mn wieder mit einer Zerlegung und pproximiert die Dichte uf dem Drhtstück (t i ),(t i+1 ) durch einen konstnten Wert, ρ((t i )) Dies knn gemcht werden, d die Wegstücke ls sehr klein ngenommen werden, (t t+1 ) (t). Für die Gesmtmsse erhält mn nun folgende Näherung: ρ ges = m 1 i= ρ((t i )) (t i+1 ) (i) Wie schon bei der Berechnung der Bogenlänge lässt sich nun zeigen, dss diese Näherung für Z gegen folgendes Integrl konvergiert: ρ ges = ρ((t)) ċ(t)dt Wichtiges Integrl in der Mechnik um z.b. Gesmtmsse zu bestimmen, oder in der E-Dynmik, um z.b. Gesmtldung zu bestimmen. 9

10 4 Kurvenintegrle 4.2 Denition Gegeben sei D R n, f : D R stetig und : [, b] D eine C 1 Kurve. Ds Kurvenintegrl von f( x) längs wird nun deniert durch f( x)ds := f((t)) ċ(t) dt Im Beispiel der Berechnung der Gesmtmsse des Drhts, wäre die Gesmtmsse lso durch folgendes Integrl gegeben: ρ ges = ρ( x)ds Sollte die Kurve geschlossen sein, verwendet mn folgendes Zeichen ls Kurvenintegrl: f( x)ds Bemerkung: Kurvenintegrle sind prmetrisierungsinvrint, d.h. egl welche Prmetrisierung gewählt wird (z.b. Polr-, Kugelkoordinten), ds Integrl bleibt gleich. 4.3 Additivität, Linerität Ist stückweise stetig dierenzierbr, c i sind die einzelnen Teile der zerlegten Kurve, dnn gilt: f( x)ds = f( x)ds i w i Dies ist die Additivität, die besgt, dss sich z.b. die Gesmtmsse des Drhtes berechnen lässt durch Addition der einzelnen Mssen der Teilstücke des Drhtes. Des Weiteren gilt: (f( x) + α g( x))ds = f( x)ds + α g( x)ds Dies ist die Linerität des Kurvenintegrls. 4.4 Kurvenintegrl eines Vektorfeldes Nun geht es drum Kurvenintegrle von Vektorfeldern zu bestimmen. Ein Vektorfeld ist eine Funktion, die im Rum jedem Punkt einen Vektor zuordnet. Sie können z.b die Stärke und Richtung einer Krft beschreiben. Wir betrchten folgende Situttion: Ein Mssenpunkt bewege sich längs einer Kurve (t) in einem Krftfeld K( x). Gesucht ist die physiklische Arbeit,die geleistet wird. 1

11 4 Kurvenintegrle Approximiert wird die Kurve (t) wieder durch Streckenzüge mit Ecken (t i ), wobei uch hier folgende Zerlegung von [, b] gilt: Z = { = t < t 1 <... < t m = b} Längs einer Teilstrecke wird ds Krftfeld K( x) durch eine konstnte Krft K((t i )) pproximiert. Dmit erhält mn für die Gesmtrbeit eine Summe von Sklrprodukten: A ges = m 1 i= bzw. in Dimensionen n 1 A ges = n j=1 < K((t i )),(t i+1 (t i ) > m 1 i= K j ((t i )) (c j (t t+1 ) c j (t i )) Für die Zerlegung Z mit Z erhält mn nun ds Integrl: < K((t)), ċ(t) > dt 4.5 Denition Für ein stetiges Vektorfeld f : D R n, D R n oen, und eine C 1 Kurve : [, b] D wird ds Kurvenintegrl deniert durch: f( x)d x := < f((t)), ċ(t) > dt Sollte die Kurve geschlossen sein, lso () = (b) verwendet mn uch hier folgendes Zeichen für ds Integrl: f( x)d x Bemerkung: Auch Kurvenintegrle eines Vektorfeldes sind liner, dditiv und prmetrisierungsinvrint. 11

12 4 Kurvenintegrle Beispiel x R 3, f( x) := ( y, x, z 2 ) T,(t) := (cost, sint, t) T, t 2π f( x)d x = ( ydx + xdy + z 2 dz) = 2π Bemerkung: [( sint)( sint) + cost cost + 2 t 2 ]dt = 2π (1 + 3 t 2 )dt = 2π (2π)3 Ein stetiges Vektorfeld f( x), x D R n heiÿt wirbelfrei, flls dessen Kurvenintegrl längs ller geschlossenen C 1 Kurven (t) in D verschwindet, lso wenn : f( x)d x = Somit ist ein Vektorfeld oensichtlich genu dnn wirbelfrei, wenn der Wert eines Kurvenintegrls nur von Anfngs- und Endpunkt des Weges, jedoch nicht vom Verluf des Weges bhängen, ds Kurvenintegrl ist lso wegunbhängig. 4.6 Wegunbhängigkeit von Kurvenintegrlen über Vektorfeldern Im folgenden werden Kriterien für Vektorfelder gesucht, die die Wegunbhängigkeit von Kurvenintegrlen grntieren. Bemerkung: Eine Teilmenge D R n heiÿt zusmmenhängend, flls je zwei Punkte in D durch eine C 1 Kurve verbunden werden können. Eine oene und zummenhängende Menge D R n heiÿt Gebiet in R n Ein Gebiet D R n heiÿt einfch zusmmenhängend, wenn sich jede geschlossene Kurve : [, b] D stetig innerhlb D uf einen Punkt zusmmenziehen lässt. Denition: f : D R n sei Vektorfeld uf einem Gebiet D R n. Mn bezeichnet f( x) ls Grdientenfeld, flls es eine sklre C 1 Funktion ϕ : D R gibt, mit grdϕ( x) = f( x) 12

13 4 Kurvenintegrle Denition: Der Grdient ist deniert ls: grdf( x) = ( f x 1,..., f x n ) Er ist ein Dierentilopertor, der uf ein Sklrfeld ngewndt wird. Ddurch erhält mn ein Vektorfeld, dss die Änderungsrte und die Richtung der gröÿten Änderung des Sklrfeldes ngibt. Anschulich gibt der Grdient beispielsweise die Richtung des steilsten Anstieges in einem Höhenprol (Vektorfeld) n. Bemerkung: Wenn ein Krftfeld ein Potentil besitzt, K( x) = grdϕ( x) wird es uch ls konservtiv bzw. energieerhltend bezeichnet. Ist ein Krftfeld konservtiv, ist es wegunbhängig. Die funktion U( x) := ϕ( x) ist dnn die potentielle Energie. Also: Besitzt ein Vektorfest ein Potentil, dnn ist es konservtiv. Ein konservtives Vektorfeld ist wegunbhängig. Um heruszunden, ob ein Vektorfeld wegunbhängig ist, muss mn lso nur noch eine Bedingung nden, die ngibt, wnn ein Vektorfeld ein Potentil besitzt! Dies ist die sogennnte Integrbilitätsbedingung: Es sei D R n ein einfch zusmmenhängendes Gebiet. Ein C 1 Vektorfeld f : D R n besitzt genu dnn ein Potentil uf D, flls die Integrbilitätsbedingung x D : J f( x) = (J f( x)) T, lso f k x j erfüllt ist. Bemerkung: = f j x k, Für den Fll n=3 mit Vektorfeld f( x), x R 3 und einem C 1 Grdientenfeld f( x) = grdϕ( x) ht mn: rot f( x) = rotgrdϕ( x) =, d.h ist rot f( x) =, ht mn ein Grdientenfeld, welches j wie beschrieben ein Potentil besitzt und somit wegunbhängig ist. Also lutet die Integrbilitätsbedingung im R 3 : rot f( x) = 13

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale Doppel- und Dreifchintegrle Sei [, b] ein Intervll des R 2 oder R 3 (lso ein Rechteck bzw. ein Quder), i.e. [, b] = [, b ] [ 2, b 2 ] oder [, b] = [, b ] [ 2, b 2 ] [ 3, b 3 ]. Für Intervlle des R 2 bzw.

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

HM II Tutorium 12. Lucas Kunz. 10. Juli 2018

HM II Tutorium 12. Lucas Kunz. 10. Juli 2018 HM Tutorium 12 Lucs Kunz 1. Juli 218 nhltsverzeichnis 1 Theorie 2 1.1 Sklr- und Vektorfelder............................ 2 1.1.1 Regeln für Opertoren......................... 2 1.1.2 Potentilfelder..............................

Mehr

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit Mthemtik für Ingenieure III, WS 9/ Montg. $Id: otentil.te,v. 9// :: hk E $ Potentilfelder. Wegunbhängige Integrierbrkeit Definition.: Seien U R n offen und F : U R n ein stetiges Vektorfeld. Dnn heißt

Mehr

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit 1 1. Kurven Wir betrchten jetzt vektorwertige Funktionen von einer Veränderlichen. Eine Abbildung f = (f 1,..., f m ) : I R m heißt differenzierbr in t I, flls lle Komponentenfunktionen f 1,..., f m in

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Höhere Mathematik Vorlesung 2

Höhere Mathematik Vorlesung 2 Höhere Mthemtik Vorlesung 2 März 217 ii Ordnung brucht nur der Dumme, ds Genie beherrscht ds Chos. Albert Einstein 2 Prmeterbhängige Integrle Sie belieben wohl zu scherzen, Mr. Feynmn! Eine Sche, die ich

Mehr

Kurvenintegrale und Potenzialfelder

Kurvenintegrale und Potenzialfelder Kurvenintegrle und Potenzilfelder. Kurvenintegrle von Vektorfeldern Sei R n immer ein Gebiet, lso eine offene und zusmmenhängende Teilmenge des R n. Definition Ein Vektorfeld uf ist eine Abbildung F :!

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Hörslübung 4, Anlysis II SoSe 28, 4./5. Mi Uneigentliche und prmeterbhängige Integrle Die ins Netz gestellten Kopien der Unterlgen sollen nur die

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

In diesem Kapitel soll untersucht werden, wann umgekehrt zu einer solchen Funktion f eine Funktion F existiert mit grad F = f T, d.h.

In diesem Kapitel soll untersucht werden, wann umgekehrt zu einer solchen Funktion f eine Funktion F existiert mit grad F = f T, d.h. 9 2 Wegintegrle 2. Vorbemerkungen Die Ableitung einer differenzierbre Funktion F : IR n IR ist durch f T = grd F gegeben. In diesem Kpitel soll untersucht werden, wnn umgekehrt zu einer solchen Funktion

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Beweis: Sind ϕ 1,ϕ 2 C 1 (Ω) Stammfunktionen von F, so folgt. grad(ϕ 2 ϕ 1 ) = gradϕ 2 gradϕ 1 = F F = 0,

Beweis: Sind ϕ 1,ϕ 2 C 1 (Ω) Stammfunktionen von F, so folgt. grad(ϕ 2 ϕ 1 ) = gradϕ 2 gradϕ 1 = F F = 0, Die Physiker nennen ds Grvittionsfeld konservtiv, weil der Energieerhltungsstz gilt. Die verrichtete Arbeit zum Beispiel bei Trnsport einer Msse vom Mthemtischen Institut zum Kndel entspricht genu der

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

$Id: kurven.tex,v /12/21 16:29:27 hk Exp hk $

$Id: kurven.tex,v /12/21 16:29:27 hk Exp hk $ $Id: kurven.tex,v 1.5 212/12/21 16:29:27 hk Ex hk $ 7 Kurvenintegrle 7.2 Sklre Kurvenintegrle In der letzten Sitzung hben wir die Theorie der Kurvenintegrle begonnen und uns erst einml mit Kurven im R

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale 1.1 Kurven Kurven sind eindimensionle geometrische Ojekte. In der Mechnik kommen Kurven z.b. ls Bhnen von Mssenpunkten vor. Dünne Stngen, Drähte oder Seile werden in der Regel ls Kurven idelisiert. In

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Anleitung zu Blatt 7, Analysis II

Anleitung zu Blatt 7, Analysis II Deprtment Mthemtik der Universität Hmburg Dr. H. P. Kini Anleitung zu Bltt 7, Anlysis II SoSe 1 Kurvenintegrle (1. Art) Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitrbeit während

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Integralrechnung. Andreas Rottmann. 15. Oktober 2003

Integralrechnung. Andreas Rottmann. 15. Oktober 2003 Integrlrechnung Andres Rottmnn 15. Oktober 2003 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 1.1 Integrtion ls Umkehrung des Differenzierens........... 2 1.2 Integrtionsregeln...........................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

16. Integration über Flächen. Der Gaußsche Integralsatz

16. Integration über Flächen. Der Gaußsche Integralsatz 41 16. Integrtion über Flächen. Der Gußsche Integrlstz Der Gußsche Stz in der Ebene. 16.1. Orientierter Rnd von Normlbereichen. Es sei [, b] ein Intervll, und f 1 und f 2 seien stückweise stetig di erenzierbre

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben.

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben. A Anlysis, Woche Kurven I A. Der n-dimensionle Euklidische Rum A3 Drunter versteht mn für eine Zhl n N + R n := {x, x,..., x n ; mit x i R für lle i {,..., n}}. Ebenso gibt es uch C n := {z, z,..., z n

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

Inhaltsverzeichnis Integralrechnung f

Inhaltsverzeichnis Integralrechnung f Inhltsverzeichnis 4 Integrlrechnung für f : D(f R R 4. Bestimmtes und unbestimmtes Integrl........ 4.. Ds bestimmte Integrl............. 4..2 Ds unbestimmte Integrl, Stmmfunktion.. 3 4.2 Integrtionsregeln....................

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

j=1 t (cos nt, sin nt) T ein Weg. Alle diese Wege beschreiben die gleiche Kurve im R 2, nämlich die Einheitskreislinie.

j=1 t (cos nt, sin nt) T ein Weg. Alle diese Wege beschreiben die gleiche Kurve im R 2, nämlich die Einheitskreislinie. 11 Kurvenintegrle Wir hben bisher usschließlich Integrle über Intervllen betrchtet. Ein Ziel dieses Kpitels ist es, Integrle über Kurven zu erklären. Besonders interessiert uns die Frge, wnn ein solches

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Parametrisierungsinvarianz von Kurvenintegralen.

Parametrisierungsinvarianz von Kurvenintegralen. Prmetrisierungsinvrinz von Kurvenintegrlen. Stz: Ds Kurvenintegrl ist unbhängig von der Prmetrisierung der betrhteten Kurve. Beweis: Für einen Prmeterwehsel h : [α, β] [, b] einer Kurve gilt β d f x) ds

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Numerische Mathematik Sommersemester 2013

Numerische Mathematik Sommersemester 2013 TU Chemnitz 5. Februr 2014 Professur Numerische Mthemtik Prof. Dr. Oliver Ernst Dipl.-Mth. Ingolf Busch Dipl.-Mth. techn. Tommy Etling Numerische Mthemtik Sommersemester 2013 Musterlösungen zu nicht behndelten

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

F ds= F ds. Theorem 1: "Stefanie Bayer" Wegintegrale und Kurvenintegrale

F ds= F ds. Theorem 1: Stefanie Bayer Wegintegrale und Kurvenintegrale Wegintegrle und Kurvenintegrle Theorem : Sei F ein uf dem Weg = [, ] stetiges Vektorfeld und sei = [, ] Reprmeteristion von. Wenn richtungs-whrend ist, dnn gilt und wenn richtungs-wechselnd ist, dnn gilt

Mehr

Integralrechnung. Fakultät Grundlagen

Integralrechnung. Fakultät Grundlagen Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

4 Parameterabhängige Integrale

4 Parameterabhängige Integrale 4 Prmeterbhängige ntegrle m letzten Abschnitt dieses Kpitels behndlen wir ls Anwendung der prtiellen Ableitung prmeterbhängige ntegrle. Sei dzu Ω R n offen und = [,b] ein kompktes ntervll. Für eine gegebene

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

Lösungsskizzen zur Präsenzübung 06

Lösungsskizzen zur Präsenzübung 06 Lösungsskizzen zur Präsenzübung 06 Mirko Getzin Universität Bielefeld Fkultät für Mthemtik 23. Mi 2014 Keine Gewähr uf vollständige Richtigkeit und Präzision ller (mthemtischen) Aussgen. Ds Dokument ht

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Analysis 2. Martin Brokate. 1 Normierte Räume: Grundbegriffe 3. 2 Normierte Räume: Konvergenz, Stetigkeit 13

Analysis 2. Martin Brokate. 1 Normierte Räume: Grundbegriffe 3. 2 Normierte Räume: Konvergenz, Stetigkeit 13 Anlysis 2 Mrtin Brokte Inhltsverzeichnis 1 Normierte Räume: Grundbegriffe 3 2 Normierte Räume: Konvergenz, Stetigkeit 13 3 Kurven im R n 25 4 Prtielle Ableitungen, Sklr- und Vektorfelder 31 5 Differenzierbrkeit

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

1 Integralsätze - Motivation

1 Integralsätze - Motivation Wolfrm Liebermeister 28.10.2013 Einführung: Integrle HU-Berlin - Institut für Theoretische Biophysik nlehnung n die Vorlesung Höhere Mthemtik 3 von Michel Eisermnn, www.igt.uni-stuttgrt.de/eiserm Tutoren:

Mehr

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung

Lösung 18: Reelle innere Produkte, Normen und Gram-Schmidt Orthogonalisierung D-MATH Linere Algebr I/II HS 217/FS 218 Dr. Meike Akveld Lösung 18: Reelle innere Produkte, Normen und Grm-Schmidt Orthogonlisierung 1. Seien v (i) 1, v (i) 2, v (i) 3 R 3, sodss B i (v (i) 1, v (i) 2,

Mehr

Zwei-Punkt Randwertprobleme. Fahed Bakar

Zwei-Punkt Randwertprobleme. Fahed Bakar Zwei-Punkt Rndwertprobleme Fhed Bkr Contents Inhltsverzeichnis II 1 Zwei-Punkt Rndwertprobleme (RWP) 1 1.1 Zwei-Punkt Rndwertprobleme.................... 1 1.2 Vritionle Formulierung des RWP..................

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Übungsaufgaben Vektoranalysis

Übungsaufgaben Vektoranalysis Kllenrode, www.sotere.uos.de Übungsufgben Vektornlysis. Bestimmen ie die Quellen des Feldes A B. Lösung: Rechenregeln (Produktregel) verwenden, du die Abkürungen C A und D B : ( A B) ( C D) D ( C) C (

Mehr