DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat A B C D E F G

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat A B C D E F G"

Transkript

1 DER GOLDENE SCHNITT Ein Verhältnis, das es in sich hat A B C D E F G Welches der sieben Rechtecke gefällt die am besten? Miss bei jedem Rechteck die Seitenlänge ab und trage ihr Längen in die nachfolgende Tabelle ein. Gib anschließend die gesuchten Verhältnisse an! Finde dazu ganzzahlige Werte! Verhältnis (lange : kurze Seite) Wert des Bruchs Verhältnis (lange : kurze Seite) Wert des Bruchs A B C D E F G A B C D E F G Kennst du dieses Gebäude? Wo steht es? Seine Maße betragen: 91 m x 22 m x 154 m In welchem Verhältnis stehen Länge und Höhe sowie Breite und Höhe zueinander? 1

2 Eine weitere Fragestellung führt uns ebenfalls zum Verhältnis des Goldenen Schnitts: Kaninchen sind dafür bekannt, dass sie viele Junge gebären. Ein italienischer Mathematiker namens Fibonacci 1 wollte wissen, wie viele Kaninchenpaare innerhalb eines Jahres geboren werden. Er nahm an: Im Januar gibt es ein Paar Kaninchen, nämlich ein Männchen und ein Weibchen. Einen Monat später im Februar bekommt es Junge, wiederum ein männliches und ein weibliches (also ein Pärchen). Das geht jeden Monat so weiter. Nun können die Jungpärchen aber auch wieder Junge bekommen und zwar im übernächsten Monat nach ihrer Geburt. Also für die Februargeborenen gibt es im April den ersten Nachwuchs in Form eines Pärchens. Das gilt für alle neugeschlüpften Kaninchenpaare. Überlege nun, wie viele Pärchen es am Ende des Jahres (also im Dezember) gibt, wenn keine Todesfälle zu beklagen sind! Tipp: Lege dir eine Übersicht ( umgekehrter Stammbaum ) an und trage jeweils ein, wie viele Pärchen im Februar, März, April geboren werden! Auch wenn es am Anfang nicht so scheint, es gibt ein Prinzip, mit dem man jeweils auf das nächste Monat schließen kann. Monat Neuge- borene Jan 0 Feb 1 März 1 April 2 Mai Juni Juli Aug Sept Okt Nov Dez 1 Fibonacci war ein italienischer Mathematiker, der um 1200 lebte. Neben anderen ist es auch ihm zu verdanken, dass die römische Ziffernschreibweise durch die indisch- arabischen Ziffern in Europa abgelöst wurde. Er wurde 1179 geboren und hieß eigentlich Leonardo da Pisa, wurde aber Fibonacci genannt, weil er»figlio di Bonaccio«, der Sohn des Bonaccio war, eines bekannten Kaufmanns und Funktionärs der Republik Pisa im 12. Jahrhundert. Der Vater unterhielt Handelsbeziehungen mit den arabischen Ländern Nordafrikas und des Nahen Ostens. Weil der Sohn ihn auf seinen häufigen Reisen begleitete, konnte er die muselmanischen Schulen besuchen und die mathematischen Techniken lernen, in denen die Araber Meister waren. Es war nur natürlich, dass Leonardo dabei auch das System der indisch- arabischen Ziffern erlernte. Später fasste er seine arithmetischen, algebraischen und geometrischen Kenntnisse in seinem Buch über Abaci (1202, Liber abaci ) zusammen, in dem er auch die Vorzüge der Einfachheit und Praktikabilität des neuen Zahlsystems verteidigte. Im Westen wurde dieses System zunächst nicht sofort wohlwollend aufgenommen. Es gab viele Wissenschaftler, Händler und Gelehrte, die sich der neuen Mode widersetzten. In Florenz zum Beispiel wurde den Bankiers durch die Statuten des Geldwechsels der Gebrauch arabischer Ziffern verboten. Die Menschen widersetzten sich den neuen Ziffern, weil es jetzt schwieriger war, die Rechnungsbücher der Händler zu verstehen. Langsam, aber unaufhaltsam setzten sich jedoch auch in Europa die arabischen Ziffern durch. 2

3 Trage die Fibonacci- Zahlen in die nachstehende Tabelle ein und berechne das Verhältnis benachbarter Zahlen! Dass verschiedene Größen in genau diesem Verhältnis stehen, kommt auch in der Natur vor! Spiralförmiges Wachstumsmuster des Föhrenzapfens Beim Tannenzapfen gehört jeder Samen zu zwei Spiralen. Acht dieser Spiralen verlaufen im Uhrzeigersinn, 13 in entgegen gesetzter Richtung. Das Verhältnis von 8:13 kommt mit 1:1,625 schon recht nahe an den Goldenen Schnitt heran. Spiralförmiges Wachstumsmuster bei Pflanzen Ähnlich wie beim Tannenzapfen gehört auch bei vielen anderen Pflanzen, jeder Samen zu beiden Spiralen! Die eine Spirale dreht sich immer im Uhrzeigesinn, die andere gegen den Uhrzeigersinn. Berechne für die folgenden Pflanzen das Verhältnis im Uhrzeiger : gegen Uhrzeiger! 3

4 Bekannt ist auch, dass bereits die Menschen der Renaissance Körperstudien betrieben haben, in denen der Goldene Schnitt eine wesentliche Rolle spielte. Sie griffen dabei auf die Schönheitsideale der Antike zurück, für deren Skulpturen ebenfalls diese Proportion verwendet wurde. Körperstudie von Leonardo da Vinci und von Albrecht Dürer Übereinander gelegt ergibt sich, dass die (Körper- )Proportionen nahezu identisch sind! Nur im Bereich des Kopfes gibt es markante Unterschiede. Wir sehen, dass sich auf die Studien Rechtecke legen lassen, deren Seitenverhältnisse das Verhältnis des Goldenen Schnitts ergeben. Man nennt ein solches Rechteck Goldenes Rechteck! 4

5 Konstruktion des Goldenen Schnitts Das Besondere am Goldenen Rechteck ist also, dass das kleinere Restrechteck, das durch das Abschneiden eines Quadrats entsteht, stets wieder ein Goldenes Rechteck ist. Wegen dieser speziellen Eigenschaft bezeichnet man das Goldene Rechteck auch als das Rechteck mit dem tanzenden Quadrat. Wie lang sind die ersten fünf Quadratseiten und die ersten fünf Rechtecksseiten? Wenn man in die ständig kleiner werdenden Quadrate jeweils einen Viertelkreis mit der Seitenlänge des neuen Quadrats als Radius einzeichnet, entsteht eine Spirale. Zeichne nun eine solche Spirale und gestalte sie färbig! 5

6 Konstruktion der Goldenen Spirale 6

7 Untersuchungen an der Regenbogenforelle Untersuche mithilfe der beiden goldenen Rechtecke beim Kopf und der Schwanzflosse die Regenbogenforelle! Wo liegt ungefähr das Auge? Wo ungefähr die Schwanzflosse? 7

8 Konstruktion des Goldenen Dreiecks aus einem regelmäßigen Fünfeck Verbindest du die Eckpunkte A, B und D zu einem Dreieck, dann entsteht ein Goldenes Dreieck! Miss die Winkel und Seitenlänge! Wo zeigt sich das Verhältnis des Goldenen Schnittes? Zeichne nun alle fünf möglichen Goldenen Dreiecke im Fünfeck ein! Miss alle entstehenden Seiten möglichst genau nach! Kannst du bei diesen Seiten nochmals das Verhältnis des Goldenen Schnittes finden? 8

9 VW- Beetle und der Goldene Schnitt Finde das Goldenes Rechteck, das den VW- Beetle umschreibt! Untersuche die Gestaltung des VW- Beetle anschließend mit weiteren Gnomonen und Goldenen Rechtecken! 9

10 Der Goldene Schnitt und die Werbung Der Goldene Schnitt ist für die Werbung und Gestaltung von Werbeplakaten von zentraler Bedeutung! Zeichne ein Goldenes Rechteck mit den Seitenlängen 16 cm und 10 cm! Entwirf ein Plakat, ein Buchcover, für dein Lieblingsprodukt und achte dabei auf den Goldenen Schnitt!! 10

DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat

DER GOLDENE SCHNITT. Ein Verhältnis, das es in sich hat DER GOLDENE SCHNITT Ein Verhältnis, das es in sich hat Welches der folgenden Rechtecke findet ihr am schönsten? In welchem Verhältnis stehen die Rechtecksseiten dabei? A B C D E F G Verhältnis (lange :

Mehr

Die Fibonacci-Zahlen 1

Die Fibonacci-Zahlen 1 Die Fibonacci-Zahlen 1 Leonardo Pisano Leonardo von Pisa ca. 1170 bis 1250 Sohn eines Kaufmanns aus Pisa Sein Vater war Handelsattaché der Republik Pisa in Bugia (im heutigen Algerien). Er zeigte früh

Mehr

Leonardo da Pisa alias Fibonacci

Leonardo da Pisa alias Fibonacci Leonardo da Pisa alias Fibonacci 1. Juli 003 Weber Tony, Ramagnano Nicola Mathematik Fibonacci Seite / 9 Inhaltsverzeichnis Biographie...3 Fibonacci Zahlen...5 Definition...5 Fibonacci Spirale...5 Goldener

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

3. rekursive Definition einer Folge

3. rekursive Definition einer Folge 3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.

Mehr

Proportionen am Buch. Einige Standard-Blatt-Formate

Proportionen am Buch. Einige Standard-Blatt-Formate Proportionen am Buch Mittelalter / Renaissance: Asien versus Westeuropa. Blattästhetik. Umblättern. Japan oft nur oben/unten, Westeuropa rund herum Freiraum. Satzspiegel: übliche Konstruktionen. Siehe

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

Fibonacci-Zahlen in der Mathematik

Fibonacci-Zahlen in der Mathematik Fibonacci-Zahlen in der Mathematik Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie email: christian.hartfeldt@t-online.de Internetauftritt:

Mehr

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt MATHEMATIK IN KUNST UND NATUR Fibonacci Zahlen und der goldene Schnitt BEGLEITVORTRAG ZUR AUSSTELLUNG MATHEMATIK ZUM ANFASSEN DES MATHEMATIKUMS GIEßEN AN DER HOCHSCHULE PFORZHEIM Prof. Dr. Kirsten Wüst

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Die Goldene Spirale... 1. Der Goldene Schnitt... 3. Das Goldene Rechteck... 7. Gruppenarbeit... 8

Die Goldene Spirale... 1. Der Goldene Schnitt... 3. Das Goldene Rechteck... 7. Gruppenarbeit... 8 Die Goldene Spirale Fach: Mathematik Hauptseminar: Spiralen, WS 2005/2006 Dozent: Prof. Dr. R. Deißler Referenten: Judith Stoiber 1389024 Peter Rath 1389345 Handout zum Referat vom 24.01.2006 Inhaltsverzeichnis:

Mehr

Mathematische Überraschungen in der Natur

Mathematische Überraschungen in der Natur Mathematische Überraschungen in der Natur Die Goldene Zahl ist wahrscheinlich die außergewöhnlichste aller Zahlen. Sie hat hunderterlei einzigartige Eigenschaften wie sonst keine andere Zahl und so verwundert

Mehr

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign.

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign. Monat: Januar Anzahl Bänder: 9 01.01.2015 Donnerstag Do DO 02.01.2015 Freitag Fr FR 03.01.2015 Samstag 04.01.2015 Sonntag 05.01.2015 Montag Mo1 MO 06.01.2015 Dienstag Di DI 07.01.2015 Mittwoch Mi MI 08.01.2015

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg Fibonaccizahlen Auftreten in der Biologie Department Mathematik Universität Hamburg Fibonacci I Geschichte Leonardo da Pisa, genannt FIBONACCI (etwa 1170-1250) Liber Abbici (1202): Indisch-arabische Ziffern

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Math-Champ M7 Klasse: Datum: Name:

Math-Champ M7 Klasse: Datum: Name: Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Fächerverbindender Unterricht Renaissance

Fächerverbindender Unterricht Renaissance Fächerverbindender Unterricht Renaissance Bereich Mathematik THEMA: Der Goldene Schnitt Zeit: Schüler bestimmen das Arbeitstempo selbst, müssen aber alle Aufgaben fertig stellen Bei 14 Tagen FvU haben

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Karin Roller. Fibonacci- Das Profi-Tool

Karin Roller. Fibonacci- Das Profi-Tool Karin Roller Vorstandsmitglied der VTAD e.v. und Regionalmanagerin in Stuttgart Privatinvestorin (Futures und Forex) Technische Analystin CFTe II (Certified Financial Technician) berufliche Eignung als

Mehr

Walter Orlov. Goldener Schnitt und Euleresche Zahl

Walter Orlov. Goldener Schnitt und Euleresche Zahl Walter Orlov Goldener Schnitt und Euleresche Zahl August 2004 Euklid (325-270 vor Christus) wird die Entdeckung des Streckenverhältnis Goldenen Schnittes zugeschrieben. Unter Goldenem Schnitt versteht

Mehr

Würzburg. Gleichungen 1 E1. Vorkurs, Mathematik

Würzburg. Gleichungen 1 E1. Vorkurs, Mathematik Würzburg Gleichungen E Diophantos von Aleandria einer der Begründer der Algebra Diophantos von Aleandria (um 250 n. Chr.), griechischer Mathematiker. Diophantos behandelte lineare und quadratische Gleichungen.

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10

Mehr

4.7 Der goldene Schnitt

4.7 Der goldene Schnitt 4.7 Der goldene Schnitt Aus Faust I: MEPHISTO: Gesteh' ich's nur! Dass ich hinausspaziere,verbietet mir ein kleines Hindernis: Der Drudenfuß auf Eurer Schwelle --- FAUST: Das Pentagramma macht dir Pein?

Mehr

Mathematik Aufnahmeprüfung Teil 1

Mathematik Aufnahmeprüfung Teil 1 Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,

Mehr

Materialien zur Mathematik II

Materialien zur Mathematik II Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Fibonaccis Kaninchen. Entdeckende Mathematik mit Derive. von Gregor Noll

Fibonaccis Kaninchen. Entdeckende Mathematik mit Derive. von Gregor Noll Entdeckende Mathematik mit Derive von Die Fibonacci-Zahlen (1) In seinem Werk Liber abaci aus dem Jahre 1202 stellte Leonardo von Pisa, genannt Fibonacci, eine bis heute berühmt gebliebene Aufgabe: Leonardo

Mehr

Von Sehnen und Sehnenlängen Konstruktion (mit Zirkel und Lineal) und Rechnung

Von Sehnen und Sehnenlängen Konstruktion (mit Zirkel und Lineal) und Rechnung Die regelmäßige 5-Ecks - Konstruktion des Klaudios Ptolemaios (gelebt ca. 100 bis ca. 160 n. Chr. in Alexandria) 1 : Gegeben ein Kreis mit Durchmesser AB. D ist der Mittelpunkt der trecke MB. C ist Kreispunkt

Mehr

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall?

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall? Kantonsschule Solothurn Fachmaturität RYSWS12/13 Folgen und Reihen Einstiegsaufgaben 1. Der Turm von Hanoi Aufgabe Bewege alle Scheiben vom linken Stapel zum rechten Stapel. Dabei darf jeweils nur die

Mehr

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und

Einführung. Schon immer haben sich die Menschen gern mit Rätseln und Einführung Schon immer haben sich die Menschen gern mit Rätseln und Zauberei beschäftigt. Oft beruhen solche magischen Spielereien auf physikalischen oder chemischen Phänomenen oder resultieren aus der

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Wissen und Können zum Maßstab und zur Ähnlichkeit 1

Wissen und Können zum Maßstab und zur Ähnlichkeit 1 Wissen und Können zum Maßstab und zur Ähnlichkeit 1 1. Bedeutungen der Begriffe in der Mathematik Der Begriff Maßstab wird in der Mathematik nur bei der Eintafelprojektion eines Köpers zur Angabe der Höhe

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI

Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI 2. Auflage 2. Auflage 3. Auflage Karin Roller Vorstandsmitglied der VTAD e.v. und stellv. Regionalmanagerin in Stuttgart Boardmember der IFTA

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

DER VITRUVIANISCHE MENSCH

DER VITRUVIANISCHE MENSCH DER VITRUVIANISCHE MENSCH Diese Arbeit wurde angefertigt von: Bosco Servatius Guillermo Rebollo de Garay Betreuung: Axel Stöcker 2 Inhalt 1. Kurzfassung.... 4 2.Material und Methoden. 5 3.Ergebnisse....

Mehr

bm1 Ko 3a Daten darstellen bis Buch I S. 79 / II S. 71 / III S. 63

bm1 Ko 3a Daten darstellen bis Buch I S. 79 / II S. 71 / III S. 63 bm1 Ko 3a Daten darstellen bis Buch I S. 79 / II S. 71 / III S. 63 Erstmals sollte auch das Schülerblatt farbig kopiert werden, weil die Grafik 3 sonst nicht gut interpretierbar ist. Aufgabe 2: Die LP

Mehr

Fibonacci-Zahlenfolge und der Goldene Schnitt

Fibonacci-Zahlenfolge und der Goldene Schnitt 016 Fibonacci-Zahlenfolge und der Goldene Schnitt Julian Neumann Klasse 1 B 4.0.016 Inhaltsverzeichnis 1 Einleitung... Sachdarstellung... 3 3 Die Fibonacci-Zahlen... 4 3.1 Kaninchenproblem... 6 3. Herleitung

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Jahresplanung. Jahresplanung

Jahresplanung. Jahresplanung Jahresplanung Reihenfolge und Zeitbedarf der Themenblöcke in der Jahresplanung haben Vorschlagscharakter und müssen an die individuellen Bedürfnisse, die Länge des es, Ferienzeiten und besondere inhaltliche

Mehr

KURSZIELE BESTIMMEN MIT FIBONACCI

KURSZIELE BESTIMMEN MIT FIBONACCI Karin Roller KURSZIELE BESTIMMEN MIT FIBONACCI FinanzBuch Verlag Nähere Informationen unter: http://www.mvg-verlag.de Kapitel 1: Der Goldene Schnitt der geheime Code Chronologie zum Goldenen Schnitt Der

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Fibonacci Das Profi-Tool VTAD Regionalgruppe München 08.08.2012

Fibonacci Das Profi-Tool VTAD Regionalgruppe München 08.08.2012 Fibonacci Das Profi-Tool VTAD Regionalgruppe München 08.08.2012 Karin Roller karin.roller@t-online.de Karin Roller Vorstandsmitglied der VTAD e.v. und Regionalmanagerin in Stuttgart Privatinvestor (Futures

Mehr

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen

Mehr

Was ist Koordinaten-Geometrie?

Was ist Koordinaten-Geometrie? Thema Was ist Koordinaten-Geometrie? ist eine Systematische Sammlung von Techniken, um geometrische Probleme Probleme nicht durch Zeichnen, sondern durch Berechnungen zu lösen. Vorgehensweise: 1. Was ist

Mehr

Kompositionsgeometrie in Renaissance-Gemälden

Kompositionsgeometrie in Renaissance-Gemälden Maler und Malerinnen überlassen nicht viel dem Zufall. Sie machen sich Gedanken über den Aufbau ihrer Bilder. Sie machen sich Gedanken über formale und farbliche Elemente. Das nennt man Komposition. In

Mehr

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann

Mehr

Karin Roller Kurszielbestimmung mit Fibonacci. Karin Roller

Karin Roller Kurszielbestimmung mit Fibonacci. Karin Roller 2. Auflage 3. Auflage Karin Roller Karin Roller Vorstandsmitglied der VTAD e.v. und stellv. Regionalmanagerin in Stuttgart Boardmember der IFTA (International Federation of Technical Analysts) Privatinvestorin

Mehr

Der Goldene Schnitt + = 1, Das Ungewöhnlicher offenbart sich, wenn man den reziproken Wert und die Quadratzahl bildet: = 0,

Der Goldene Schnitt + = 1, Das Ungewöhnlicher offenbart sich, wenn man den reziproken Wert und die Quadratzahl bildet: = 0, Der Goldene Schnitt Über den Goldenen Schnitt sind schon so viele Dinge geschrieben worden, dass man es kaum für möglich hält, noch neue Erkenntnisse hinzuzufügen. Für viele Menschen ist unklar, was er

Mehr

Geschichte Grundlagen Fibonacci-Zahlen Geometrischer Trugschluß Anwendung Fazit und Ausblick. Der Goldene Schnitt. Dario Jotanovic

Geschichte Grundlagen Fibonacci-Zahlen Geometrischer Trugschluß Anwendung Fazit und Ausblick. Der Goldene Schnitt. Dario Jotanovic Der Goldene Schnitt Dario Jotanovic Mathematisches Proseminar Implementierung mathematischer Algorithmen Hochschule Darmstadt 19. Dezember 2013 Inhaltsangabe 1 Geschichte 2 Grundlagen Teilung im goldenen

Mehr

Kurszielbestimmung mit. Karin Roller. Fibonacci! 12. September 2015

Kurszielbestimmung mit. Karin Roller. Fibonacci! 12. September 2015 Kurszielbestimmung mit Fibonacci! 12. September 2015 1 3. Auflage Karin Roller Vorstandsmitglied der VTAD e.v. und stellv. Regionalmanagerin in Stuttgart Privatinvestorin (Futures und Forex) Technische

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Lösen von Gleichungen Teilbarkeitsregeln ggt kgv Löse die Gleichungen und mache die Probe durch Einsetzen! a) 12 x 1 = 47 b) 2,4 y = 10,368 c) r : 1,2 = 10 Schreibe den Text

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Proportionalität umgekehrte Proportionalität A529-01

Proportionalität umgekehrte Proportionalität A529-01 29 Proportionalität umgekehrte Proportionalität 1 10 401 In welchen Wertetabellen ist die Zuordnung proportional? Tabellen 2 und 3 Tabelle 1 x 1 2 3 y 0 3 6 Tabelle 3 x 3 6 9 y 1 2 3 Tabelle 2 x 1 2 3

Mehr

Ferienwohnung Altmühltal, Ferienhaus Eichstätt direkt am Fluss. Belegungskalender und

Ferienwohnung Altmühltal, Ferienhaus Eichstätt direkt am Fluss. Belegungskalender  und Jan 2017 Feb 2017 März 2017 direkt am Fluss.. KW 1 KW 2 KW 3 KW 4 KW 5 So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di letzter update 08.01.2017 KW 5 KW 6 KW

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Zeichnungen von zusammengesetzten Figuren aus Dreiecken, Quadraten, Rechtecken, Parallelogrammen, Trapezen und eventuell Kreisbögen. Einige Streckenlängen

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

Fibonacci Techniken. Oliver Paesler

Fibonacci Techniken. Oliver Paesler Fibonacci Techniken Oliver Paesler Inhaltsverzeichnis: 1 Wer war Fibonacci?... 3 2 Die Fibonacci Zahlenreihe... 4 3 Fibonacci Extensions...6 4 Fibonacci Fanlines... 6 5 Fibonacci Retracements... 8 6 Fibonacci

Mehr

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer:

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer: Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe Band 6 978-3-12-742421-8 Lehrer: - eine Sachsituation mit Blick auf eine konkrete Fragestellung

Mehr

Die Proportionen der regelmässigen Vielecke und die

Die Proportionen der regelmässigen Vielecke und die geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Fibonacci-Folge Mathematik»Facharbeit«

Fibonacci-Folge Mathematik»Facharbeit« Mathematik»Facharbeit«Mathias Dirksmeier Sven Wilkens Jahrgangsstufe 12 Thomas-Morus-Gymnasium, 2009 Gliederung 1 Allgemeines 2 Allgemein Formel von Moivre-Binet Beziehung zum Goldenen Schnitt 3 Modell

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich Lösungen Benjamin 2015, Känguru der Mathematik - Österreich 1. In welcher Figur ist genau die Hälfte grau gefärbt? Lösung: In (A) ist 1/3 gefärbt, in (B) die Hälfte, in (C) ¾, in (D) ¼ und in (E) 2/5.

Mehr

Goldener Schnitt Was war das große Geheimnis der Pythagoräer?

Goldener Schnitt Was war das große Geheimnis der Pythagoräer? Das Pentagramm Der Drudenfuß Das Pentagramm war das Zeichen des Geheimbundes der Pythagoräer, und diese geheimnisvolle Figur gilt schon seit alters her als magisches Symbol. So fand es z.b. in früherer

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Hinweise für Schülerinnen und Schüler:

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Hinweise für Schülerinnen und Schüler: VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2010/2011 Datum der Durchführung 28. Oktober 2010 ORIENTIERUNGSARBEIT Primarschule Mathematik Hinweise für

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Goldener Schnitt in der Mathematik

Goldener Schnitt in der Mathematik Fakultät für Mathematik Goldener Schnitt in der Mathematik Herbert Henning & Christian Hartfeldt Inhaltsverzeichnis 1 Grundlagen zum Goldenen Schnitt 4 2 Stetige Teilung einer Strecke (nach Heron von Alexandria,

Mehr

Aufgabe S1 (4 Punkte)

Aufgabe S1 (4 Punkte) Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5

Mehr