Einführung in die Theoretische Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Theoretische Informatik"

Transkript

1 Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass Stelligkeit von 0, 1 ist 0 Stelligkeit von ist 1 Stelligkeit von +, ist 2 2 V = {x, y,... } 3 Wir betrachten die leichungen E (x + y) + z x + (y + z) x + x 1 x + x x 4 Dann gilt E 1 + x 1 5 Dann gilt E x Satz (Satz von Birkhoff) Für beliebige Terme s, t gilt: E = s t gdw. E s t. HZ (IFI) ETI - Woche 7 104/217

2 Zusammenfassung (Schaltalgebra) Sei B = {0, 1}, wir betrachten die Algebra B; +,,, 0, 1 wobei die Operationen +,, wie folgt definiert sind: x y xy x y x + y x x Diese Algebra ist eine Boolesche Boolesche und heißt Schaltalgebra. (Schaltnetz) Ein logischer Schaltkreis (Schaltnetz) ist ein algebraischer Ausdruck der Schaltalgebra Die Operationen +,, werden als logische atter dargestellt HZ (IFI) ETI - Woche 7 105/217 Überblick Inhalte der Lehrveranstaltung Einführung in die Logik Syntax & Semantik der Aussagenlogik, Formales Beweisen, Konjunktive und Disjunktive Normalformen Einführung in die Algebra Boolesche Algebra, Universelle Algebra, Logische Schaltkreise Einführung in die Theorie der Formalen Sprachen rammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen Einführung in die Berechenbarkeitstheorie Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen Einführung in die Programmverifikation Prinzipien der Analyse von Programmen, Verifikation nach Hoare, Verschlüsselung und Sicherheit HZ (IFI) ETI - Woche 7 106/217

3 Sprachen Eine Teilmenge L von Σ heißt eine formale Sprache über Alphabet Σ Die Menge aller Wörter, die aus n Nullen gefolgt von n Einsen bestehen, wobei n 0: {ɛ, 01, 0011, ,...} Die Menge aller Wörter, die jeweils die selbe Anzahl Nullen und Einsen enthalten: {ɛ, 01, 10, 0011, 0101,...} Für jedes Alphabet Σ ist Σ eine formale Sprache eine formale Sprache (die leere Sprache) {ɛ} eine formale Sprache (beachte: {ɛ}) HZ (IFI) ETI - Woche 7 107/217 Sprachen Seien L, M formale Sprachen über dem Alphabet Σ Die Vereinigung von L und M ist wie folgt definiert L M := {x x L oder x M} Wir definieren das Komplement von L: L = Σ \ L := {x Σ x / L} Der Durchschnitt von L und M ist wie folgt definiert: L M := {x x L und x M} Das Produkt (oder die Verkettung) von L und M ist definiert als: LM := {xy x L, y M} Lemma Seien L, L 1, L 2, L 3 formale Sprachen, dann gilt (L 1 L 2 )L 3 = L 1 (L 2 L 3 ) L{ɛ} = {ɛ}l = L L = L = HZ (IFI) ETI - Woche 7 108/217

4 Sprachen Abschluss einer Formalen Sprache Sei L eine formale Sprache und k N Die k-te Potenz von L ist definiert als: {ɛ} falls k = 0 L k = L falls k = 1 LL L }{{} falls k > 1 k-mal Der Kleene-Stern oder Abschluss von L ist wie folgt definiert: L = k 0 L k = {x 1 x k x 1,..., x k L und k N, k 0} HZ (IFI) ETI - Woche 7 109/217 Sprachen Schließlich definieren wir: L + = k 1 L k = {x 1 x k x 1,..., x k L und k N, k 1} Sei Σ = {0, 1} und betrachte die formale Sprache L aller Wörter, die aus n Nullen gefolgt von n Einsen bestehen, wobei n 0, also L = {0 n 1 n n 0} Es gilt L, aber L 2 Allgemein erhalten wir: L 2 = {0 n 1 n 0 k 1 k n, k 0} HZ (IFI) ETI - Woche 7 110/217

5 rammatiken und Formale Sprachen rammatiken und Formale Sprachen S Pronomen Nomen Verb Adjektiv Nomen Lehrveranstaltungsleiter Nomen Vortragender Pronomen Unser Mein Verb ist Adjektiv lästig nett streng monoton anspruchsvoll S Unser Lehrveranstaltungsleiter ist anspruchsvoll HZ (IFI) ETI - Woche 7 111/217 rammatiken und Formale Sprachen Eine rammatik ist ein Quadrupel = (V, Σ, R, S), wobei 1 V eine endliche Menge von Variablen (oder Nichtterminale) 2 Σ ein Alphabet, die Terminale, V Σ = 3 R eine endliche Menge von Regeln 4 S V das Startsymbol Eine Regel ist ein Paar P Q von Wörtern P, Q (V Σ), sodass in P mindestens eine Variable vorkommt P nennen wir auch die Prämisse und Q die Konklusion der Regel Konvention Variablen werden groß geschrieben, Terminale klein Statt P Q 1, P Q 2, P Q 3 schreiben wir P Q 1 Q 2 Q 3 HZ (IFI) ETI - Woche 7 112/217

6 Ableitungen in einer rammatik Sei = (V, Σ, R, S) eine rammatik und seien x, y (V Σ) 1 Wir sagen y ist aus x in direkt ableitbar, wenn gilt: u, v (V Σ), (P Q) R sodass (x = upv und y = uqv) 2 In diesem Fall schreiben wir kurz x y 3 Wenn aus dem Kontext folgt schreiben wir x y (Ableitbar) Wir sagen y ist aus x in ableitbar, wenn k N und w 0, w 1,..., w k (V Σ) existieren, sodass Wir schreiben x x = w 0 w 1... w k = y y, beziehungsweise x y HZ (IFI) ETI - Woche 7 113/217 Sprache einer rammatik Sprache einer rammatik Die vom Startsymbol S ableitbaren Wörter heißen Satzformen Elemente von Σ heißen Terminalwörter Satzformen, die Terminalwörter sind, heißen Sätze (Sprache einer rammatik) Die Menge aller Sätze L() = {x Σ S x} heißt die von der rammatik erzeugte Sprache (Äquivalenz) Zwei rammatiken 1 und 2 heißen äquivalent, wenn L( 1 ) = L( 2 ) HZ (IFI) ETI - Woche 7 114/217

7 Klassen von rammatiken Klassen von rammatiken (rechtslinear) rammatik = (V, Σ, R, S) heißt rechtslinear, wenn für alle Regeln P Q gilt: 1 P V 2 Q Σ Σ + V rammatik 1 = ({B}, {0, 1}, R, B) mit Regeln R: B 0 1 0B 1B B 0B 01B 010 zurück 1 ist rechtslinear L( 1 ) = {0, 1} + HZ (IFI) ETI - Woche 7 115/217 Klassen von rammatiken (kontextfrei) rammatik = (V, Σ, R, S) heißt kontextfrei, wenn für alle Regeln P Q gilt: 1 P V 2 Q (V Σ) rammatik 2 = ({S}, {(, )}, R, S) mit Regeln R: 2 ist kontextfrei S ɛ (S) SS S SS (S)S (ɛ)s = ()S ()(S) ()(SS) ()(()(())) L( 2 ) beschreibt die Menge der balancierten Klammerausdrücke HZ (IFI) ETI - Woche 7 116/217

8 Klassen von rammatiken (beschränkt) rammatik = (V, Σ, R, S) heißt beschränkt, wenn für alle Regeln P Q gilt: 1 entweder P Q 2 oder P = S, Q = ɛ und S kommt in keiner Konklusion einer Regel vor 3 = ({S, B, C}, {a, b, c}, R, S) mit Regeln R: S asbc abc CB BC ab ab bb bb bc bc cc cc Es gilt 3 ist beschränkt L( 3 ) = {a n b n c n n 1} HZ (IFI) ETI - Woche 7 117/217 Klassen von rammatiken (kontextsensitiv) rammatik = (V, Σ, R, S) heißt kontextsensitiv, wenn für alle Regeln P Q gilt: 1 entweder es existieren u, v, w (V Σ) und A V, sodass P = uav und Q = uwv wobei w 1 2 oder P = S, Q = ɛ und S kommt in keiner Konklusion einer Regel vor 3 = ({S, B, C}, {a, b, c}, R, S) mit Regeln R: S asbc abc CB BC ab ab bb bb bc bc cc cc 3 ist nicht kontextsensitiv L( 3 ) = {a n b n c n n 1} HZ (IFI) ETI - Woche 7 118/217

9 Klassen von rammatiken (kontextsensitiv) rammatik = (V, Σ, R, S) heißt kontextsensitiv, wenn für alle Regeln P Q gilt: 1 entweder es existieren u, v, w (V Σ) und A V, sodass P = uav und Q = uwv wobei w 1 2 oder P = S, Q = ɛ und S kommt in keiner Konklusion einer Regel vor 4 = ({S, B, C, H}, {a, b, c}, R, S) mit Regeln R: S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc 4 ist kontextsensitiv L( 4 ) = {a n b n c n n 1} HZ (IFI) ETI - Woche 7 118/217 Klassen von rammatiken rammatik 5 = ({S, Y, T }, {a}, R, S) mit Regeln R: S YST a Y a aay Y at aa 5 ist nicht beschränkt L( 5 ) = {a 2n n 0} = {a, aa, aaaa, aaaaaaaa,...} rammatik 6 = ({S, Y, T }, {a}, R, S) mit Regeln R: S YST a aa Y a aay Y aat aaaa 6 ist beschränkt L( 6 ) = {a 2n n 0} = {a, aa, aaaa, aaaaaaaa,...} HZ (IFI) ETI - Woche 7 119/217

10 Klassen von rammatiken Beobachtung rammatik 2 ist kontextfrei, aber nicht kontextsensitiv, wegen der Regeln S ɛ und S (S). 2 kann in eine äquivalente kontextsensitive rammatik umgeschrieben werden. Satz Für jede kontextfreie rammatik gibt es eine äquivalente kontextsensitive rammatik. Beobachtung rammatik 3 ist nicht beschränkt, aber die äquivalente rammatik 4 ist beschränkt. Satz Jede kontextsensitive rammatik ist beschränkt. Für jede beschränkte rammatik gibt es eine äquivalente kontextsensitive rammatik. HZ (IFI) ETI - Woche 7 120/217 Chomsky-Hierarchie Eine formale Sprache L heißt regulär (vom Typ 3) wenn rechtslineare rammatik mit L = L() kontextfrei (vom Typ 2) wenn kontextfreie rammatik mit L = L() kontextsensitiv (vom Typ 1) wenn kontextsensitive rammatik mit L = L() rekursiv aufzählbar (vom Typ 0) wenn rammatik mit L = L() Satz (Chomsky-Hierarchie) Sei L i die Klasse der Sprachen vom Typ i und L die Klasse aller Sprachen. Dann gilt: L 3 L 2 L 1 L 0 L HZ (IFI) ETI - Woche 7 121/217

11 Chomsky-Hierarchie Chomsky-Hierarchie L L 0 L 1 {(E, s, t) E s t} L 2 {(E, s, t) E s t} L 3 L( 4 ) = {a n b n c n n 1} L( 2 ) = Klammerausdrücke L( 1 ) = {0, 1} + HZ (IFI) ETI - Woche 7 122/217

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2011 Dozent: Prof. Dr. J. Rothe, Prof. Dr. M. Leuschel J. Rothe (HHU Düsseldorf)

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

TEIL III: FORMALE SPRACHEN

TEIL III: FORMALE SPRACHEN EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 TEIL III: FORMALE SPRACHEN 16. TERMERSETZUNGSSYSTEME UND CHOMSKY-GRAMMATIKEN Theoretische Informatik (SoSe 2011)

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie.

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Formale Sprachen Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Inhaltsübersicht und Literatur Formale Sprachen: Definition und Darstellungen Grammatiken für formale Sprachen

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen.

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen. 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Syntax (= Satzgefüge), vgl. auch Grammatik

Syntax (= Satzgefüge), vgl. auch Grammatik 1 Natürliche Sprachen Natürliche Sprachen bezeichnen wie das Wort "Sprache" ausdrückt zunächst das Gesprochene. Das Schweizerdeutsch etwa ist eine typische natürliche Sprache. Mit der Erfindung der Aufzeichnung

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse. Autor: Aho et al.

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse. Autor: Aho et al. Folie: 1 Kapitel 4 Übersicht Übersicht Syntax: Definition 4 syn-tax: the way in which words are put together to form phrases, clauses, or sentences. Webster's Dictionary Die Syntax (griechisch σύνταξις

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I. Skript zur Vorlesung im WS 2001/02 an der TU München

Automaten, Formale Sprachen und Berechenbarkeit I. Skript zur Vorlesung im WS 2001/02 an der TU München Automaten, Formale Sprachen und Berechenbarkeit I Skript zur Vorlesung im WS 2001/02 an der TU München Ekkart Kindler Steffen Manthey Version: 1.30 vom 30. April 2002 ii Redaktioneller Hinweis: Es gibt

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Einführung in die Informatik Grammars & Parsers

Einführung in die Informatik Grammars & Parsers Einführung in die Informatik Grammars & Parsers Grammatiken, Parsen von Texten Wolfram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK) TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Prof. Dr. Jürgen Dix Institut für Informatik, TU Clausthal Informatik III, WS 2006/07 2/561

Prof. Dr. Jürgen Dix Institut für Informatik, TU Clausthal Informatik III, WS 2006/07 2/561 Informatik III (Automatentheorie und formale Sprachen) Prof. Dr. Jürgen Dix Institut für Informatik TU Clausthal WS 2006/07 Zeit und Ort: Vorlesung am Mittwoch 15-17 (HA) und Donnerstag 13 15 (HB) (IfM),

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik Programmieren I Formale Sprachen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Formale Sprachen: Allgemeines Sprachen werden

Mehr

Formale Sprachen. Eine Einführung. Tim Lethen Düsseldorf Version II (04-06)

Formale Sprachen. Eine Einführung. Tim Lethen Düsseldorf Version II (04-06) Formale Sprachen - Eine Einführung Tim Lethen Düsseldorf Version II (04-06) INHALT 0 Einleitung... 3 1 Grundlegende Definitionen... 3 2 Grammatiken... 4 2.1 Definitionen... 4 2.2 Logische Grammatiken (DCGs)...

Mehr

1 Syntax von Programmiersprachen

1 Syntax von Programmiersprachen 1 Syntax von Programmiersprachen Syntax ( Lehre vom Satzbau ): formale Beschreibung des Aufbaus der Worte und Sätze, die zu einer Sprache gehören; im Falle einer Programmier-Sprache Festlegung, wie Programme

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13)

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13) Ein verständiges Herz erwirbt Kenntnisse, und das Ohr der Weisen lauscht dem Wissen. (Die Bibel, "Buch der Sprüche", Kapitel 18 Vers 15) Inhalt 1. Empfehlenswerte Referenzen 2. Aufgabe 1 CF Grammatik für

Mehr

Was ist ein Compiler?

Was ist ein Compiler? Was ist ein Compiler? Was ist ein Compiler und worum geht es? Wie ist ein Compiler aufgebaut? Warum beschäftigen wir uns mit Compilerbau? Wie ist die Veranstaltung organisiert? Was interessiert Sie besonders?

Mehr

Notation um Grammatik G hervorzuheben: Eine kontextfreie Grammatik erzeugt eine kontextfreie Sprache. Informatik I -1- WS 2005/2006

Notation um Grammatik G hervorzuheben: Eine kontextfreie Grammatik erzeugt eine kontextfreie Sprache. Informatik I -1- WS 2005/2006 Die Sprache einer Grammatik Definition: Sei G = (V, T, P, S) eine kontextfreie Grammatik. Dann umfasst die Sprache L(G) alle Zeichenketten aus Terminalsymbolen, die sich vom Startsymbol ableiten lassen.

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was isher geschah: Formale Sprachen Alphaet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen reguläre Ausdrücke: Syntax, Semantik, Äquivalenz Wortersetzungssysteme Wortersetzungsregeln

Mehr

Kapitel 5: Applikative Programmierung

Kapitel 5: Applikative Programmierung Kapitel 5: Applikative Programmierung In der applikativen Programmierung wird ein Programm als eine mathematische Funktion von Eingabe-in Ausgabewerte betrachtet. Das Ausführen eines Programms besteht

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprachen bedeutend für die Syntaxdefinition von Programmiersprachen (Compilerbau) Automaten

Mehr

IT-Basics 2. DI Gerhard Fließ

IT-Basics 2. DI Gerhard Fließ IT-Basics 2 DI Gerhard Fließ Wer bin ich? DI Gerhard Fließ Telematik Studium an der TU Graz Softwareentwickler XiTrust www.xitrust.com www.tugraz.at Worum geht es? Objektorientierte Programmierung Konzepte

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Syntax WS 2006/2007 Manfred Pinkal Einführung in die Computerlinguistik 2006/2007 M. Pinkal UdS 1 Morphologie und Syntax Gegenstand der Morphologie ist die Struktur

Mehr

Kapitel 11: Wiederholung und Zusammenfassung

Kapitel 11: Wiederholung und Zusammenfassung Wiederholung und Zusammenfassung 1: Begriff und Grundprobleme der Informatik Begriff Informatik Computer als universelle Rechenmaschine Grenzen der Berechenbarkeit Digitalisierung Problem der Komplexität

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Informatik I. Lutz Donnerhacke lutz@iks-jena.de. PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb

Informatik I. Lutz Donnerhacke lutz@iks-jena.de. PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb Informatik I Lutz Donnerhacke lutz@iks-jena.de PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb 1 Semesterübersicht Grundbegriffe der theoretischen Informatik Übersicht über Funktionen von Betriebsystemen

Mehr

Parsing-EinfŸhrung Ð 1

Parsing-EinfŸhrung Ð 1 Parsing-EinfŸhrung bersicht Falsifizierbarkeit, oder: Sind Grammatiken wissenschaftlich? Grammatik, Formalismus Kontextfreie Grammatiken Ableitungen Ziel Verstehen der linguistischen Motivation Intuitives

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Deterministische Kellerautomaten

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

4. 4. Algorithmen und Datenstrukturen in deskriptiven Programmiersprachen

4. 4. Algorithmen und Datenstrukturen in deskriptiven Programmiersprachen Kapitel Kapitel 4 Deskriptive Programmierung SS 2008 4. 4. Algorithmen und Datenstrukturen in in deskriptiven Programmiersprachen Deskriptive Programmierung 1 Sprachverarbeitung in in Prolog Prolog Prolog

Mehr

Ausführung von Grammatikbasierten Prozessmodellen in einer Cloud Umgebung

Ausführung von Grammatikbasierten Prozessmodellen in einer Cloud Umgebung Institut für Architektur von Anwendungssystemen Universität Stuttgart Universitätsstraße 38 D - 70569 Stuttgart Diplomarbeit Nr. 3163 Ausführung von Grammatikbasierten Prozessmodellen in einer Cloud Umgebung

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Institut für Informatik der Bayerischen Julius Maximilians Universität Würzburg Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Studienarbeit von Christian

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Syntax II WS 2008/2009 Manfred Pinkal Morphologie und Syntax Gegenstand der Morphologie ist die Struktur des Wortes: der Aufbau von Wörtern aus Morphemen, den kleinsten

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen

Mehr

1. Formale Sprachen 1.2 Grammatiken formaler Sprachen

1. Formale Sprachen 1.2 Grammatiken formaler Sprachen 1. Formale Sprachen 1.2 Grammatiken formaler Sprachen Die Regeln zur Bildung korrekter Wörter einer Sprache kann man in einer natürlichen Sprache formulieren. Da dies jedoch wieder Mehrdeutigkeiten mit

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

Spezielle Themen der KI. NLP Natural Language Processing. Sprachverstehen

Spezielle Themen der KI. NLP Natural Language Processing. Sprachverstehen Spezielle Themen der KI NLP Natural Language Processing Sprachverstehen NLP - Verarbeitungsstufen des Sprachverstehen 47 Phonologie und Phonetik Phonologie Lautlehre oder Sprachgebilde-Lautlehre untersucht

Mehr

Aufgabentypen die in der Klausur vorkommen

Aufgabentypen die in der Klausur vorkommen Aufgabentypen die in der Klausur vorkommen können 1. Nennen Sie fünf wichtige Anwendungsgebiete der Computerlinguistik. 2. Für welches der drei Anwendungsgebiete Maschinelle Übersetzung, Rechtschreibkorrektur

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 0: Organisatorisches & Einführung schulz@eprover.org Software Systems Engineering Kurzvorstellung Studium der Informatik in Kaiserslautern Promotion an

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Formelsammlung theoretische Informatik I

Formelsammlung theoretische Informatik I Formelsammlung theoretische Informatik I Stand: 27.05.2005 - Version: 1.0.3 Erhältlich unter http://privat.macrolab.de Diese Formelsammlung basiert auf der Vorlesung Theoretische

Mehr

Formelsammlung zur Informatik

Formelsammlung zur Informatik Formelsammlung zur Informatik Jan Krieger 24. September 2006 . The time has come, the Walrus said, To talk of many things: Of shoes and ships and sealingwax Of cabbages and kings And why the sea is boiling

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek Institut für Theoretische Informatik Technische Universität Braunschweig Januar 2014 Inhaltsverzeichnis 1 Endliche Automaten 1 1.1 Mathematische Grundbegriffe.......................

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) siehe auch Formale Grundlagen 3 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr