Automatische Parallelisierung

Größe: px
Ab Seite anzeigen:

Download "Automatische Parallelisierung"

Transkript

1 MPI und OpenMP in HPC Anwendungen findet man immer häufiger auch den gemeinsamen Einsatz von MPI und OpenMP: OpenMP wird zur thread-parallelen Implementierung des Codes auf einem einzelnen Rechenknoten (z.b. SMP) eingesetzt mit Aufruf geeigneter Funktionen aus der MPI-Bibliothek wird die Kommunikation zwischen den auf den verschiedenen Rechenknoten laufenden parallelen Prozessen implementiert MPI-Bibliothek muss hierzu thread-sicher sein (z.b. Sun MPI)! 52 Automatische Parallelisierung Idee: Compiler extrahiert automatisch die Parallelität aus einem sequentiellem Programm und generiert eine thread-basierte parallele Implementierung Ansatz: In den meisten HPC-Anwendungen wird die meiste Rechenzeit für (geschachtelte) Schleifen benötigt Ist auch eine automatische Parallelisierung von Schleifen durch Compiler möglich? Stand der heutigen Compilertechnik: Analyse von Datenabhängigkeiten in Schleifen zur Erkennung von sicher parallelisierbaren Schleifen Generierung von parallelem Code für einfache Schleifen mit Barrieren- Synchronisation am Schleifenende einige einfache Code-Transformationen werden zur Erhöhung der Anzahl parallelisierbarer Schleifen durchgeführt 53

2 Automatische Parallelisierung (Forts.) Einfache Schleifen (d.h. ohne Index-Abhängigkeiten zwischen Iterationen) lassen sich gut automatisch parallelisieren, z.b.: for (i=0 ; i<n ; i++) for (j=0 ; j<m ; j++) a[i][j] = b[i][j] * c[i][j]; for (i=0 ; i<n/2 ; i++) for (j=0 ; j<m/2 ; j++) a[2*i][2*j+1] = a[2*i][2*j+1] + b[3*i][j+2]; for (i=1 ; i<n/2 ; i++) a[2*i] = 0.5 * (a[2*i-1] + a[2*i+1]); automatische Parallelisierung z.b. auf Sun durch Aufruf von cc fast xautopar xloopinfo <file>.c o file und Setzen der Umgebungsvariablen PARALLEL auf den gewünschten Parallelitätsgrad 54 Automatische Parallelisierung (Forts.) Probleme entstehen bei automatischer Parallelisierung z.b. durch Schleifen mit Index-Abhängigkeiten zwischen Iterationen: for (i=1 ; i<n ; i++) a[i] = a[i-1] + b; for (i=0 ; i<n-2 ; i++) { a[i] = b[i] * c; b[i] = a[i+2] * d; Schleifen mit Funktionsaufrufen: for (i=0 ; i<n ; i=i+incr(i)) a[i] = a[i] + b[i] * c; for (i=0 ; i<n ; i=i++) a[i] = a[i] + compute(a,b,i); 55

3 Automatische Parallelisierung (Forts.) auf Zeiger basierende Schleifen: for (i=min ; i<max ; i++) *p++ = *q--; Schleifen mit auf Feldern basierenden Indexausdrücken: for (i=0 ; i<n ; i++) a[p[i]] = a[q[i]] + b[p[i]] + c; Schleifen mit mehreren datenabhängigen Ausgängen: for (i=0 ; i<n ; i++) { if (b[i] == 0) break; a[i] = a[i] / b[i]; Schleifen mit indexabhängigen Bedingungen: for (i=0 ; i<n ; i++) for (j=0 ; j<m ; j++) if (j > i) a[i][j] = a[i][j] + b[i][j] * c; 56 Automatische Parallelisierung (Forts.) Schleifen mit (eventuell versteckten) Reduktionen: for (i=0 ; i<n ; i++) { y = x * a[i]; x = y + 2 * b[i]; Schleifen mit skalaren Werten: for (i=0 ; i<n ; i++) { t = a[i]; a[i] = b[i]; b[i] = t; 57

4 Automatische Parallelisierung (Forts.) einige Probleme lassen sich (zumindest in einfachen Fällen) durch Code-Transformationen lösen, z.b. indem skalare Variablen durch Feldvariablen ersetzt werden Variablen in Schleifen umbenannt werden Anweisungen oder Funktionen eingesetzt werden ( Inlining ) Reduktionen von Vektoren automatisch erkannt und durch Aufrufe von parallelen Reduktionsfunktionen ersetzt werden (z.b. auf Sun möglich durch Angabe der zusätzlichen Option xreduction) eine weitere Leistungssteigerung kann erreicht werden, indem bei geschachtelten Schleifen innere und äußere Schleife vertauscht werden, um z.b. Parallelitätsgrad oder Anzahl paralleler Berechnungen zu erhöhen Schleifen automatisch entrollt werden mehrere kleine Schleifen mit identischem Indexbereich zusammengefasst werden 58 Automatische Vektorisierung bei der automatischen Vektorisierung wird aus Schleifen ein Code für Vektorprozessoren oder Vektoreinheiten generiert: in geschachtelten Schleifen wird stets nur die innere Schleife vektorisiert Schleifeniterationen müssen unabhängig sein nur einfache Zugriffsmuster auf Feldelemente gestattet die N Iterationen einer Schleife werden derart in Streifen unterteilt, dass die Zahl k der Feldelemente je Streifen in ein Vektorregisters passt (ggf. Sonderbehandlung für die letzten Iterationen erforderlich, wenn N kein Vielfaches von k ist) Beispiel: Gegeben sei ein Prozessor mit 128-Bit Vektorregister und eine Schleife mit den float Vektoren a, b und c vor der Vektorisierung: for (i=0; i<n; i++) c[i] = a[i] * b[i] nach der Vektorisierung: for (i=0; i<n; i++) c[i:i+3] = a[i:i+3] * b[i:i+3] 59

5 Automatische Vektorisierung (Forts.) Intel C/C++ Compiler kann ab Version 7.0 automatisch Code für die Vektoreinheiten MMX, SSE und SSE2 des Intel Pentium 4 Prozessors generieren Aufruf erfolgt z.b. mit: icc xw vec_report3 prog.c in aufeinanderfolgenden Iterationen dürfen nur Zugriffe auf benachbarte Feldelemente erfolgen (d.h. mit stride = 1) Compiler kann effizienteren Code generieren, wenn Daten auf 16-Byte Grenzen ausgerichtet sind es können sowohl for als auch while Schleifen vektorisiert werden; sie dürfen jedoch nur einen Eintritts- und einen Ausgangspunkt aufweisen 60 High Performance FORTRAN (HPF) im Jahre 1993 vom HPF Forum entwickelter Standard als Ergänzung zu FORTRAN 90 Ziel: architekturunabhängige parallele Programmierung FORTRAN ermöglicht einfachere Parallelisierung als C, da keine Zeiger vorhanden sind i.a. keine dynamischen Datenstrukturen unterstützt werden HPF gestattet explizite datenparallele Programmierung durch Datenstrukturen (Arrays) für mehrdimensionale Datenfelder parallele Ausführung auf Feldkomponenten mittels FORALL: FORALL (I=2:N-2:2, J=1:M) A(I,J) = B(I-1,J)+C(I+1,J) oder durch eine parallele Zuweisung: M(1:N,7) = 0.5 zusätzliche INDEPENDENT-Direktive zur Kennzeichnung konfliktfrei parallel ausführbarer Schleifen 61

6 HPF (Forts.) einige zentrale Ideen von High Performance FORTRAN: Definition von Indexräumen ( index templates ):!HPF$ TEMPLATE t(1:100,1:100) Angabe des Alignments von Feldern zu Indexräumen oder anderen Feldern:!HPF$ ALIGN A(I,J) WITH t(j,i)!hpf$ ALIGN B(I,J) WITH t(2*i,2*j) zusätzliche Layout-Direktive geben an, wie einzelne Index-Dimensionen auf p Prozessoren verteilt (d.h. partitioniert) werden: REAL A(100,100), B(50,50), C(100,100,2)!HPF$ DISTRIBUTE t(block,*), C(CYCLIC,BLOCK,*) mit BLOCK : Datenelement i wird auf Prozessor i DIV p abgebildet CYCLIC : Datenelement i wird auf Prozessor i MOD p abgebildet * : Elemente dieser Dimension werden nicht verteilt zur Laufzeit Reorganisation der Daten möglich: REDISTRIBUTE bzw. REALIGN (Syntax wie DISTRIBUTE und ALIGN) 62 HPF (Forts.) parallele implizite Kommunikation über Indexausdrücke: FORALL (I=1:100) A(I,2) = C(I,5,1) viele eingebaute Kommunikationsfunktionen: SUM, TRANSPOSE,... HPF unterstützt mehrdimensionale virtuelle Prozessortopologien, Beispiel: Matrix-Multiplikation in HPF REAL*4, DIMENSION(1000,1000) :: A,B,C!HPF$ PROCESSORS GRID(2, 2)!HPF$ DISTRIBUTE C(BLOCK,BLOCK) onto GRID!HPF$ ALIGN A(I,J) WITH C(I,*)!HPF$ ALIGN B(I,J) WITH C(*,J) INTEGER :: I,J,K DO I = 1, 1000 DO J = 1,1000 DO K = 1,1000 C(I,J) = C(I,J) + A(I,K) * B(K,J) END DO END DO END DO 63

7 Java und Java? höherer Speicherbedarf (ca. 5-fach im Vgl. zu C) geringere Geschwindigkeit (ca % langsamer im Vgl. zu C) durch Teilinterpretation des Codes mittels Just-in-time Übersetzer Probleme bei Gleitkomma-Anwendungen durch Forderung nach exakter Reproduzierbarkeit von Ergebnissen genauere Zwischenergebnisse in FPU müssen vor jeder Folgeoperation auf das von Java vorgeschriebene Zahlenformat gerundet werden! Verbot von Multiply&Add Maschinenbefehlen ineffiziente interne Realisierung von mehrdimensionalen Feldern schlechtere Lesbarkeit von Programmen (kein Überladen von Operatoren) Threads sind bereits fester Bestandteil der Sprache: Starten eines Threads durch Instantiierung eines Objekts von der Klasse Thread und Aufruf der Methode start() gegenseitiger Ausschluss durch Schlüsselwort synchronized 64 Java (Forts.) dasjava Grande Forum ( versucht, eine zum Einsatz in HPC Anwendungen besser geeignete Java- Umgebung zu definieren, z.b. durch neue Schlüsselworte strictfp und fastfp neue Klassen für mehrdimensionale Felder Festlegen einer Schnittstelle für MPI zukünftige Bedeutung von Java für HPC unklar! 65

8. HPF High Performance FORTRAN

8. HPF High Performance FORTRAN 8. HPF High Performance FORTRAN datenparallele Erweiterung von FORTRAN 90 SPMD-Ansatz daten-parallele Array-Operationen verteilte Datenstrukturen Schleifenparallelität FORTRAN 77 -> FORTRAN 90 -> HPF FORTRAN

Mehr

Master-Thread führt Programm aus, bis durch die Direktive

Master-Thread führt Programm aus, bis durch die Direktive OpenMP seit 1998 Standard (www.openmp.org) für die Shared-Memory Programmierung; (Prä-)Compiler für viele Systeme kommerziell oder frei (z.b. Omni von phase.hpcc.jp/omni) verfügbar Idee: automatische Generierung

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart & Enno Zickler hermann.lenhart@zmaw.de OpenMP Allgemeine Einführung I OpenMP Merkmale: OpenMP ist keine Programmiersprache!

Mehr

Konzepte der parallelen Programmierung

Konzepte der parallelen Programmierung Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur Konzepte der parallelen Programmierung Parallele Programmiermodelle Nöthnitzer Straße 46 Raum 1029 Tel. +49 351-463

Mehr

Datenparallelität. Bildverarbeitung Differentialgleichungen lösen Finite Element Methode in Entwurfssystemen

Datenparallelität. Bildverarbeitung Differentialgleichungen lösen Finite Element Methode in Entwurfssystemen Datenparallelität PPJ-38 Viele Prozesse bzw. Prozessoren führen zugleich die gleichen Operationen auf verschiedenen Daten aus; meist Datenelemente in regulären Datenstrukturen: Array, Folge Matrix, Liste.

Mehr

C-to-CUDA-Compiler. Johannes Kölsch. October 29, 2012

C-to-CUDA-Compiler. Johannes Kölsch. October 29, 2012 October 29, 2012 Inhaltsverzeichnis 1 2 3 4 5 6 Motivation Motivation CUDA bietet extreme Leistung für parallelisierbare Programme Kompliziert zu programmieren, da multi-level parallel und explizit verwalteter

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Ulrich Körner, Nathanael Hübbe hermann.lenhart@zmaw.de OpenMP Einführung I: Allgemeine Einführung Prozesse

Mehr

Beispiel: Schleifenparallelisierung

Beispiel: Schleifenparallelisierung Beispiel: Schleifenparallelisierung for (i = 0; i high) { printf ( Exiting during iteration %d\n,i); break; for (j=low;j

Mehr

OpenMP. Viktor Styrbul

OpenMP. Viktor Styrbul OpenMP Viktor Styrbul Inhaltsverzeichnis Was ist OpenMP Warum Parallelisierung Geschichte Merkmale von OpenMP OpenMP-fähige Compiler OpenMP Ausführungsmodell Kernelemente von OpenMP Zusammenfassung Was

Mehr

Shared-Memory Programmiermodelle

Shared-Memory Programmiermodelle Shared-Memory Programmiermodelle mehrere, unabhängige Programmsegmente greifen direkt auf gemeinsame Variablen ( shared variables ) zu Prozeßmodell gemäß fork/join Prinzip, z.b. in Unix: fork: Erzeugung

Mehr

1. Einführung in OpenMP

1. Einführung in OpenMP 1. Einführung in OpenMP Übersicht Einführung Homogene und inhomogene Arbeitsverteilung Rekursive Parallelität Beispiele Parallele Programmierung 1 Nicolas Maillard, Marcus Ritt 1 Überblick OpenMP: Vereinfachte

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm Prof. Dr. Walter F. Tichy Dr. Victor Pankratius Ali Jannesari Modell und

Mehr

PGI Accelerator Model

PGI Accelerator Model PGI Accelerator Model Philip Höhlein, Nils Werner Supervision: R. Membarth, P. Kutzer, F. Hannig Hardware-Software-Co-Design Universität Erlangen-Nürnberg Philip Höhlein, Nils Werner 1 Übersicht Motivation

Mehr

Einige Grundlagen zu OpenMP

Einige Grundlagen zu OpenMP Einige Grundlagen zu OpenMP Stephanie Friedhoff, Martin Lanser Mathematisches Institut Universität zu Köln 22. Juni 2016 Überblick Was ist OpenMP? Basics Das OpenMP fork-join-modell Kompilieren und Ausführen

Mehr

Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen

Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen J. Treibig, S. Hausmann, U. Ruede 15.09.05 / ASIM 2005 - Erlangen Gliederung 1 Einleitung Motivation Grundlagen 2 Optimierungen

Mehr

Paralleles Programmieren mit OpenMP und MPI OpenMP-Übungsaufgaben Steinbuch Centre for Computing

Paralleles Programmieren mit OpenMP und MPI OpenMP-Übungsaufgaben Steinbuch Centre for Computing Paralleles Programmieren mit OpenMP und MPI OpenMP-Übungsaufgaben Steinbuch Centre for Computing und Universität Karlsruhe (TH) www.scc.kit.edu Parallele Berechnung von PI program compute_pi integer integer,

Mehr

Memory Models Frederik Zipp

Memory Models Frederik Zipp Memory Models Frederik Zipp Seminar: Programmiersprachen für Parallele Programmierung (SS 2010) Fakultät für Informatik - IPD SNELTING LEHRSTUHL PROGRAMMIERPARADIGMEN 1

Mehr

Multi-threaded Programming with Cilk

Multi-threaded Programming with Cilk Multi-threaded Programming with Cilk Hobli Taffame Institut für Informatik Ruprecht-Karls Universität Heidelberg 3. Juli 2013 1 / 27 Inhaltsverzeichnis 1 Einleitung Warum Multithreading? Ziele 2 Was ist

Mehr

OpenMP - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009

OpenMP - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009 - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009 Grundlagen der Parallelen Programmierung Hardware Threads vs. Prozesse Kritische Abschnitte Lange

Mehr

Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm

Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm Programmtransformationen: Vom PRAM Algorithmus Dr. Victor Pankratius David J. Meder IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe

Mehr

Rechnerarchitektur SS 2013

Rechnerarchitektur SS 2013 Rechnerarchitektur SS 2013 Parallel Random Access Machine (PRAM) Michael Engel TU Dortmund, Fakultät für Informatik Teilweise basierend auf Material von Gernot A. Fink und R. Yahyapour 6. Juni 2013 Parallel

Mehr

OpenMP - Geschichte. 1997: OpenMP Version 1.0 für Fortran

OpenMP - Geschichte. 1997: OpenMP Version 1.0 für Fortran OpenMP - Geschichte 1997: OpenMP Version 1.0 für Fortran Standard für f r die Shared-Memory Memory-Programmierung inzwischen für f r alle namhaften SMP-Rechner verfügbar wird im techn.-wiss. Rechnen die

Mehr

Peter Prinz Ulla Kirch-Prinz C+ + Lernen und professionell anwenden. ffl mitp

Peter Prinz Ulla Kirch-Prinz C+ + Lernen und professionell anwenden. ffl mitp Peter Prinz Ulla Kirch-Prinz C+ + Lernen und professionell anwenden ffl mitp Inhaltsverzeichnis Einleitung 19 1 Grundlagen 21 Entwicklung und Eigenschaften von C + + 22 Objektorientierte Programmierung

Mehr

Intel Thread Checker

Intel Thread Checker Kurs 1: Ferienakademie 2009 26. September 2009 Gliederung Gliederung Was macht der Thread Checker und warum? Historisches Alternativen Was macht der Thread Checker und warum? Historisches Alternativen

Mehr

OpenMP am Beispiel der Matrizenmultiplikation

OpenMP am Beispiel der Matrizenmultiplikation OpenMP am Beispiel der Matrizenmultiplikation David J. Meder, Dr. Victor Pankratius IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

II.1.1. Erste Schritte - 1 -

II.1.1. Erste Schritte - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.1.1. Erste Schritte - 1 - 1.

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Felder, mehrdimensional Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Überblick: mehrdimensionale Felder 2 Vereinbarung

Mehr

Übung 2. Letzte Änderung: 19. Mai 2017

Übung 2. Letzte Änderung: 19. Mai 2017 Übung 2 Letzte Änderung: 19 Mai 2017 Zusammenfassung Übung 1 Zum Beispiel CPI ( ), Ausführungszeit, MIPS-Rate MIPS ist schlecht als Vergleichsmaß, weil zu sehr abhängig von Compiler und Befehlsarchitektur

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Hochleistungsrechnen auf dem PC

Hochleistungsrechnen auf dem PC Hochleistungsrechnen auf dem PC Steffen Börm Christian-Albrechts-Universität zu Kiel Ringvorlesung Informatik, 26. Juni 2014 S. Börm (CAU Kiel) Hochleistungsrechnen auf dem PC 26. Juni 2014 1 / 33 Übersicht

Mehr

Parallele Programmiermodelle

Parallele Programmiermodelle Parallele Programmiermodelle ProSeminar: Parallele Programmierung Semester: WS 2012/2013 Dozentin: Margarita Esponda Einleitung - Kurzer Rückblick Flynn'sche Klassifikationsschemata Unterteilung nach Speicherorganissation

Mehr

Kapitel 4.2 Parallele Algorithmen

Kapitel 4.2 Parallele Algorithmen Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Kapitel 4.2 Parallele Algorithmen SWT I Sommersemester 2009 Prof. Dr. Walter F. Tichy Dipl.-Inform. David J. Meder Überblick Matrix-Vektor-Multiplikation

Mehr

Programmiervorkurs für die Numerik Teil 2/4

Programmiervorkurs für die Numerik Teil 2/4 line 1 1 0.8 0.6 0.4 0.2 0-0.2-0.4 Programmiervorkurs für die Numerik Teil 2/4 Christian Power Mathematisches Institut Universität Tübingen -8-6 -4-2 0 05.10.2016 2 4 6 8-8 -6-4 -2 0 2 4 6 8 Wiederholung

Mehr

1. Referenzdatentypen: Felder und Strings. Referenz- vs. einfache Datentypen. Rückblick: Einfache Datentypen (1) 4711 r

1. Referenzdatentypen: Felder und Strings. Referenz- vs. einfache Datentypen. Rückblick: Einfache Datentypen (1) 4711 r 1. Felder und Strings Eigenschaften von Referenzdatentypen 1. Referenzdatentypen: Felder und Strings Referenzdatentypen sind Konstrukte, mit deren Hilfe wir aus einfachen Datentypen neue eigene Typen erzeugen

Mehr

1. Referenzdatentypen: Felder und Strings

1. Referenzdatentypen: Felder und Strings 1. Felder und Strings Eigenschaften von Referenzdatentypen 1. Referenzdatentypen: Felder und Strings Referenzdatentypen sind Konstrukte, mit deren Hilfe wir aus einfachen Datentypen neue eigene Typen erzeugen

Mehr

II.1.1. Erste Schritte - 1 -

II.1.1. Erste Schritte - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.1.1. Erste Schritte - 1 - 1.

Mehr

7 Laufzeit-Speicherverwaltung

7 Laufzeit-Speicherverwaltung 7.1 Grundlagen Bevor wir die Code-Generierung betrachten, müssen wir uns Gedanken über zur Laufzeit des zu generierenden Programms notwendige Aktivitäten zur Zuordnung und Freigabe von Speicherplatz machen.

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Objektorientierung in C++ (3) Aspekte der Vererbung (1) Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 546 Zuweisung bei Vererbung Dr. Frank Seifert Vorlesung

Mehr

I Grundlagen der parallelen Programmierung 1

I Grundlagen der parallelen Programmierung 1 vii I Grundlagen der parallelen Programmierung 1 1 Einführung...... 3 1.1 Paradigmenwechsel in der Softwareentwicklung..... 4 1.2 Anwendungsbereiche...... 5 1.3 Parallelität in der Hardware..... 5 1.3.1

Mehr

Testen nebenläufiger Objekte

Testen nebenläufiger Objekte Testen nebenläufiger Objekte Threads in Java Julian Lambertz Seminar Tests in Informatik und Statistik im SS 2004 Universität Ulm J.L., Juni 2004 1 Themenüberblick Einleitung Begriff der Nebenläufigkeit

Mehr

5. Parallelprogrammierung II und q-gram Indizes. AlDaBi Praktikum

5. Parallelprogrammierung II und q-gram Indizes. AlDaBi Praktikum 5. Parallelprogrammierung II und q-gram Indizes AlDaBi Praktikum Inhalt Parallelprogrammierung II q-gram Indizes Bemerkungen zur P-Aufgabe PARALLELPROGRAMMIERUNG II OpenMP - Eine Einführung in die parallele

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten, Operatoren und Ausdrücke Anweisungen und Kontrollstrukturen (Steuerfluss)

Mehr

Compute Unified Device Architecture CUDA

Compute Unified Device Architecture CUDA Compute Unified Device Architecture 06. Februar 2012 1 / 13 Gliederung 2 / 13 : Compute Unified Device Architecture entwickelt von Nvidia Corporation spezifiziert Software- und Hardwareeigenschaften Ziel:

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Auswahlen (Selektionen)

Auswahlen (Selektionen) 1 Anhang 10.3 Ein/Ausgaben Eingabe mit Prompt (Beispiel) cout ; // Prompt ohne endl cin

Mehr

Erste Ergebnisse mit MPI auf der NEC SX-4

Erste Ergebnisse mit MPI auf der NEC SX-4 PARALLELES RECHNEN Erste Ergebnisse mit MPI auf der NEC SX-4 Verwendung von MPI MPI/SX MPICH Kommunikationsleistung Leistung einer CFD-Applikation Literatur Message Passing-Anwendungen auf einer shared-memory

Mehr

Felder, Zeiger und Adreßrechnung

Felder, Zeiger und Adreßrechnung Felder, Zeiger und Adreßrechnung Felder bestehen aus Variablen eines einzigen Datentyps. Bisher kennen wir eindimensionale Felder. In C sind Felder mit beliebigen Dimensionen möglich. Unsere räumliche

Mehr

Berichte aus der Informatik. Dieter Pawelczak. Start in die C-Programmierung

Berichte aus der Informatik. Dieter Pawelczak. Start in die C-Programmierung Berichte aus der Informatik Dieter Pawelczak Start in die C-Programmierung Shaker Verlag Aachen 2012 Inhaltsverzeichnis Inhaltsverzeichnis i 1 Einleitung 1 1.1 Umfeld und Aufbau des Buches 1 Die Programmiersprache

Mehr

HSR Rapperswil 2001 Markus Rigling. Programmieren: Templates Auflage

HSR Rapperswil 2001 Markus Rigling. Programmieren: Templates Auflage HSR Rapperswil 2001 Markus Rigling Programmieren: Templates 1 1. Auflage Inhaltsverzeichnis: Templates.1 1. Verwendung 3 2. Erstellen einer Templateklasse. 3 3. Faustregel zum Erstellen eines Klassentemplates..

Mehr

Chapel Dennis Appelt. Seminar: Sprachen für Parallelverarbeitung.

Chapel Dennis Appelt. Seminar: Sprachen für Parallelverarbeitung. Chapel Dennis Appelt Seminar: Sprachen für Parallelverarbeitung INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS KIT University of the State of Baden-Wuerttemberg and National

Mehr

Polymorphie Begriffsklärung und Anwendung

Polymorphie Begriffsklärung und Anwendung Polymorphie Begriffsklärung und Anwendung Klaus Kusche, Mai 2014 Inhalt Ziel & Voraussetzungen Was bedeutet Polymorphie? Die einzelnen Arten der Polymorphie: Konzept Beispiel / Anwendung Nutzen Implementierung

Mehr

II.1.1. Erste Schritte - 1 -

II.1.1. Erste Schritte - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.1.1. Erste Schritte - 1 - 1.

Mehr

Peg-Solitaire. Florian Ehmke. 29. März / 28

Peg-Solitaire. Florian Ehmke. 29. März / 28 Peg-Solitaire Florian Ehmke 29. März 2011 1 / 28 Gliederung Einleitung Aufgabenstellung Design und Implementierung Ergebnisse Probleme / Todo 2 / 28 Einleitung Das Spiel - Fakten Peg-33 33 Löcher, 32 Steine

Mehr

Parallele Programmierung mit OpenMP

Parallele Programmierung mit OpenMP Parallele Programmierung mit OpenMP - Eine kurze Einführung - 11.06.2003 RRZN Kolloquium SS 2003 1 Gliederung 1. Grundlagen 2. Programmiermodell 3. Sprachkonstrukte 4. Vergleich MPI und OpenMP 11.06.2003

Mehr

Automatische SIMD Parallelisierung 23. Mai 2005

Automatische SIMD Parallelisierung 23. Mai 2005 Automatische SIMD Parallelisierung von eingebetteten Anwendungen basierend auf Mustererkennung Seminararbeit von nach [1] Universität Karlsruhe (TH), Fakultät für Informatik, IPD Goos, 18.05.2005 1 Einleitung

Mehr

Parallele und verteilte Programmierung

Parallele und verteilte Programmierung Thomas Rauber Gudula Rünger Parallele und verteilte Programmierung Mit 165 Abbildungen und 17 Tabellen Jp Springer Inhaltsverzeichnis 1. Einleitung 1 Teil I. Architektur 2. Architektur von Parallelrechnern

Mehr

Parallel Regions und Work-Sharing Konstrukte

Parallel Regions und Work-Sharing Konstrukte Parallel Regions und Work-Sharing Konstrukte Um eine Parallelisierung von größeren Programmabschnitten, als es einzelne Schleifen sind, zu ermöglichen, stellt OpenMP als allgemeinstes Konzept die Parallel

Mehr

Physische Datenstrukturen

Physische Datenstrukturen Elementare Datentypen Strukturierte Datentypen Zeiger Seite 1 Einfache Datentypen Datentyp char Verwendung: ASCII-Zeichen Wertebereich: alle darstellbaren Zeichen, 8 bit lange Ganzzahlen im Intervall -128

Mehr

Parallelverarbeitung

Parallelverarbeitung Parallelverarbeitung WS 2015/16 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 18. Januar 2016 Betriebssysteme / verteilte Systeme Parallelverarbeitung

Mehr

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5 Informatik 1 (251-0832-00) D-MAVT F2010 Schleifen, Felder Nachbesprechung Blatt 3 Aufgabe 1 ASCII... A > a Vorsicht: Lösen Sie sich von intuitiven Schlussfolgerungen. A ist nicht grösser als a, denn in

Mehr

Übersicht. 4.1 Ausdrücke. 4.2 Funktionale Algorithmen. 4.3 Anweisungen. 4.4 Imperative Algorithmen Variablen und Konstanten. 4.4.

Übersicht. 4.1 Ausdrücke. 4.2 Funktionale Algorithmen. 4.3 Anweisungen. 4.4 Imperative Algorithmen Variablen und Konstanten. 4.4. Übersicht 4.1 Ausdrücke 4.2 Funktionale Algorithmen 4.3 Anweisungen 4.4 Imperative Algorithmen 4.4.1 Variablen und Konstanten 4.4.2 Prozeduren 4.4.3 Verzweigung und Iteration 4.4.4 Globale Größen Einführung

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten, Operatoren und Ausdrücke Anweisungen und Kontrollstrukturen (Steuerfluss)

Mehr

Programmieren I. Kapitel 5. Kontrollfluss

Programmieren I. Kapitel 5. Kontrollfluss Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,

Mehr

Compiler für f r Eingebettete Systeme (CfES)

Compiler für f r Eingebettete Systeme (CfES) Compiler für f r Eingebettete Systeme (CfES) Sommersemester 2009 Dr. Heiko Falk Technische Universität Dortmund Lehrstuhl Informatik 12 Entwurfsautomatisierung für Eingebettete Systeme Kapitel 9 Ausblick

Mehr

Programmieren I. Arrays Heusch 7.2 Ratz Institut für Angewandte Informatik

Programmieren I. Arrays Heusch 7.2 Ratz Institut für Angewandte Informatik Programmieren I Arrays Heusch 7.2 Ratz 5.1 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Arrays: Definition Arrays (dt. Felder) dienen zum Speichern mehrerer gleichartiger Daten

Mehr

Evaluation. Einleitung. Implementierung Integration. Zusammenfassung Ausblick

Evaluation. Einleitung. Implementierung Integration. Zusammenfassung Ausblick Christopher Schleiden Bachelor Kolloquium 15.09.2009 Einleitung Evaluation Implementierung Integration Zusammenfassung Ausblick Einleitung laperf Lineare Algebra Bibliothek für C++ Möglichkeit zur Integration

Mehr

Programmieren in C/C++ und MATLAB

Programmieren in C/C++ und MATLAB Programmieren in C/C++ und MATLAB Sven Willert Sabine Schmidt Christian-Albrechts-Universität zu Kiel CAU 5-1 Übung Schreiben Sie ein Programm, das die Zahl π durch π = 4 4 4 4 4 4 + + +... 3 5 7 9 11

Mehr

Konzepte der Programmiersprachen

Konzepte der Programmiersprachen Konzepte der Programmiersprachen Lehrstuhl Prof. Plödereder Eduard Wiebe Institut für Softwaretechnologie Abteilung Programmiersprachen und Übersetzerbau Sommersemester 2007 Programm-Ausführung Programmiersprachen

Mehr

Einführung in den Einsatz von Objekt-Orientierung mit C++ I

Einführung in den Einsatz von Objekt-Orientierung mit C++ I Einführung in den Einsatz von Objekt-Orientierung mit C++ I ADV-Seminar Leiter: Mag. Michael Hahsler Syntax von C++ Grundlagen Übersetzung Formale Syntaxüberprüfung Ausgabe/Eingabe Funktion main() Variablen

Mehr

Überblick. R.Grossmann / P. Sobe 1

Überblick. R.Grossmann / P. Sobe 1 Überblick 1. Einführung C++ / Entwicklung/ Sprachfamilie 2. Nicht objektorientierte Erweiterungen von C 3. Grundlagen des Typkonzepts von C++ 4. Ziele der Objektorientierung 5. Objekt und Klasse, Elementfunktionen

Mehr

FACHHOCHSCHULE AUGSBURG Hochschule für Technik, Wirtschaft und Gestaltung

FACHHOCHSCHULE AUGSBURG Hochschule für Technik, Wirtschaft und Gestaltung C Sprachelemente für Übung 2 Typumwandlungen (type casts) Bei Ausdrücken, in denen Operanden mit unterschiedlichem Typ vorkommen, werden diese vom Compiler vor der Ausführung automatisch in einen gemeinsamen

Mehr

Beispielvortrag: HPCG auf Intel Haswell-EP

Beispielvortrag: HPCG auf Intel Haswell-EP Beispielvortrag: HPCG auf Intel Haswell-EP Johannes Hofmann 1 Seminarvortrag Architekturen von Multi- und Vielkern-Prozessoren Erlangen, 19.4.2016 1 Computer Architecture, University Erlangen-Nuremberg

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Algorithmen und Datenstrukturen II D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2009, 26. März 2009, c 2009 D.Rösner D.

Mehr

Reihungen. Prof. Dr. Christian Böhm. In Zusammenarbeit mit Gefei Zhang. WS 07/08

Reihungen. Prof. Dr. Christian Böhm. In Zusammenarbeit mit Gefei Zhang.   WS 07/08 Reihungen Prof. Dr. Christian Böhm In Zusammenarbeit mit Gefei Zhang http://www.dbs.ifi.lmu.de/lehre/nfinfosw WS 07/08 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende

Mehr

Just-In-Time-Compiler (2)

Just-In-Time-Compiler (2) Just-In-Time-Compiler (2) Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Just-In-Time-Compiler

Mehr

Automatic Loop Interchange

Automatic Loop Interchange Seminerausarbeitung zur Lehrveranstaltung 185.272 Grundlagen methodischen Arbeitens im WS 2006/07 Automatic Loop Interchange bearbeiten von Ahmet Hulusi AKAN Matrikelnummer: 0325157 Studienkennzahl: 534

Mehr

6 ZEIGERARITHMETIK - ALLGEMEINES

6 ZEIGERARITHMETIK - ALLGEMEINES 6 ZEIGERARITHMETIK - ALLGEMEINES Leitideen: Der Zeigertyp ermöglicht eine Zeigerarithmetik, bei der die Addition von 1 die Adresse der nächsten Komponente eines C-Vektors angibt. Bei C-Vektoren wird nur

Mehr

6. Der OpenMP Standard. Direktiven-basiertes API zur Programmierung von Parallelrechnern mit gemeinsamem Speicher für FORTRAN, C und C++

6. Der OpenMP Standard. Direktiven-basiertes API zur Programmierung von Parallelrechnern mit gemeinsamem Speicher für FORTRAN, C und C++ 6. Der OpenMP Standard Direktiven-basiertes API zur Programmierung von Parallelrechnern mit gemeinsamem Speicher für FORTRAN, C und C++ OpenMP Programmiermodell OpenMP Direktiven basieren in C and C++

Mehr

Das Einsteigerseminar Objektorientierte Programmierung in Java

Das Einsteigerseminar Objektorientierte Programmierung in Java Alexander Niemann Das Einsteigerseminar Objektorientierte Programmierung in Java -H-H Inhalt Vorwort 13 Einleitung 15 1 Java 21 1.1 Die Geschichte von Java 22 1.2 Das Konzept 24 Klassisch - Compiler und

Mehr

Tag 4 Repetitorium Informatik (Java)

Tag 4 Repetitorium Informatik (Java) Tag 4 Repetitorium Informatik (Java) Dozent: Michael Baer Lehrstuhl für Informatik 2 (Programmiersysteme) Friedrich-Alexander-Universität Erlangen-Nürnberg Wintersemester 2017/2018 Übersicht Arrays (Reihungen)

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang

Reihungen. Martin Wirsing. in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang Reihungen Martin Wirsing in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang http://www.pst.informatik.uni-muenchen.de/lehre/ws0506/infoeinf/ WS 05/06 2 Ziele Die Datenstruktur der Reihungen

Mehr

Programmiertechnik 1 FOR-SCHLEIFEN

Programmiertechnik 1 FOR-SCHLEIFEN Programmiertechnik 1 FOR-SCHLEIFEN In diesem Dokument wollen wir uns mit Kontrollstrukturen befassen. Dazu sind im Folgenden einige Übungsaufgaben zu den Themen Schleifen (FOR, WHILE, DO) und Bedingungen

Mehr

Inhaltsverzeichnis. Inhalt. Bemerkung... 9 Vorwort Programme und Programmiersprachen

Inhaltsverzeichnis. Inhalt. Bemerkung... 9 Vorwort Programme und Programmiersprachen Inhalt 3 Bemerkung... 9 Vorwort... 10 1 Programme und Programmiersprachen 1.1 Assembler... 13 1.2 Höhere Programmiersprachen... 15 1.2.1 Interpreter... 16 1.2.2 Compiler... 17 1.2.3 Zwischencode... 18

Mehr

Inhaltsverzeichnis. Grundlagen und Einführung (1. Band) 1

Inhaltsverzeichnis. Grundlagen und Einführung (1. Band) 1 Inhaltsverzeichnis Grundlagen und Einführung (1. Band) 1 1 Einleitung und Vorwort 1 1.1 Vorwort zur 13. Auflage....................... 1 1.2 Vorwort zur 10. Auflage....................... 1 1.3 Voraussetzungen...........................

Mehr

Shared-Memory Parallelisierung von C++ Programmen

Shared-Memory Parallelisierung von C++ Programmen Shared-Memory Parallelisierung von C++ Programmen 9. Februar 2006 1 Übersicht Ergebnisse Zusammenfassung 2 3 Übersicht Ergebnisse Zusammenfassung Übersicht Verbreitete Parallelisierungstechniken für Shared-Memory:

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Programmiertechnik 1 FOR-SCHLEIFEN

Programmiertechnik 1 FOR-SCHLEIFEN Programmiertechnik 1 FOR-SCHLEIFEN In diesem Dokument wollen wir uns mit Kontrollstrukturen befassen. Dazu sind im Folgenden einige Übungsaufgaben zu den Themen Schleifen (FOR, WHILE, DO) und Bedingungen

Mehr

Tutorium Softwaretechnik I

Tutorium Softwaretechnik I Tutorium Softwaretechnik I Moritz Klammler 11. Juli 2017 Fakultät für Informatik, IPD Tichy Titelfoto: Copyright (C) 2010 Multimotyl CC BY-SA 3.0 1 11. Juli 2017 Moritz Klammler - Tutorium Softwaretechnik

Mehr

Computergrundlagen Moderne Rechnerarchitekturen

Computergrundlagen Moderne Rechnerarchitekturen Aufbau eines modernen Computers Computergrundlagen Moderne Rechnerarchitekturen Axel Arnold Institut für Computerphysik Universität Stuttgart DDR3- Speicher Prozessor Prozessor PEG Graphikkarte(n) weitere

Mehr

Sprachkonstrukte. Einführung in Java. Folie 1 von Mai Ivo Kronenberg

Sprachkonstrukte. Einführung in Java. Folie 1 von Mai Ivo Kronenberg Sprachkonstrukte Einführung in Java Folie 1 von 20 12. Mai 2011 Ivo Kronenberg Inhalt Kommentare Identifier (Bezeichner) Variablen Numerische Ausdrücke und Typen Kontrollstrukturen Verzweigungen Bedingungen

Mehr

Werkzeuge zur Programmentwicklung

Werkzeuge zur Programmentwicklung Werkzeuge zur Programmentwicklung B-15 Bibliothek Modulschnittstellen vorübersetzte Module Eingabe Editor Übersetzer (Compiler) Binder (Linker) Rechner mit Systemsoftware Quellmodul (Source) Zielmodul

Mehr

Grundlagen der Informatik Ergänzungen WS 2007/2008 Prof. Dr. Rainer Lütticke

Grundlagen der Informatik Ergänzungen WS 2007/2008 Prof. Dr. Rainer Lütticke Grundlagen der Informatik Ergänzungen WS 2007/2008 Prof. Dr. Rainer Lütticke 1 Links Stellenwertsysteme mit Links zu Zahlensysteme: http://de.wikipedia.org/wiki/stellenwertsystem ASCII-Code: http://de.wikipedia.org/wiki/ascii

Mehr

C.3 Funktionen und Prozeduren

C.3 Funktionen und Prozeduren C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens

Mehr

Einführung in die Modelltransformation mit Xtend

Einführung in die Modelltransformation mit Xtend Einführung in die Modelltransformation mit Xtend 12. Dezember 2012 Taentzer Modellgetriebene Softwareentwicklung 297 Überblick Xtend: Eine statisch getypte Sprache, die zur Modellzu-Text-Transformation

Mehr

Einfache Datentypen in JAVA

Einfache Datentypen in JAVA 5.4.1. Einfache Datentypen in JAVA Ganzzahlige Datentypen byte 8 bits -128

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 2 am 04.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr