Robuste und effiziente Konfidenzbereiche für nichtzentrale Perzentile

Größe: px
Ab Seite anzeigen:

Download "Robuste und effiziente Konfidenzbereiche für nichtzentrale Perzentile"

Transkript

1 LP-00671: Evakuierung von Gebäuden KSFE 2011 Heidelberg Robuste und effiziente Konfidenzbereiche für nichtzentrale Perzentile, Februar 2011 Vortrag KSFE 2011, Heidelberg 1 / 20 All rights reserved.

2 nichtzentrale Perzentile Zielsetzung des Vortrags Ich möchte mit diesem Vortrag an einem Beispiel zeigen, wie man wichtige Weiterentwicklungen statistischer Methoden mit Hilfe statistischer Simulation sehr effektiv durchführen kann. Die Aufgabe, die hier durch statistische Simulation gelöst werden soll, ist die Punkt- und Intervall-Schätzung von randständigen Perzentilen bei moderatem Stichprobenumfang, in Situationen, in denen die bekannte nichtparametrische Methode keine oder unbefriedigende Lösungen liefert, die parametrische Methode auf Basis der Normalverteilung aber ebenfalls nicht anwendbar ist. Page 2/20

3 nichtzentrale Perzentile : Vorbemerkung Anmerkung: Dieser Vortrag wirbt nicht für das Arbeiten mit unverantwortlich kleinen Stichprobenumfängen. Die Schätzung randständiger Perzentile ist und bleibt ein statistisch anspruchvolles Problem. Dennoch führen die Ineffizienz und manglende Robustheit der klassischen Methoden in der Praxis gelegentlich zu unerfüllbaren Wünschen an die Stichprobengröße. Page 3/20

4 nichtzentrale Perzentile Ein etwas extremes Beispiel 1: Gegeben eine Stichprobe von n=40 Meßergebnissen. Berechne Schätzwert und 95%- Konfidenzbereich für das 99.te Perzentil Q(0.99) Nichtparametrisch: Geht nicht, n muss mindestens 368 sein! Wäre n=368, so wäre die Lösung: Für Q(0.01) : X = LCL, X = Punktschätzer, X = UCL (1) (4) (9) Für Q(0.99) : X = LCL, X = Punktschätzer, X = UCL (360) (365) (368) Alles andere als robust! Wenn Ausreißer vorhanden, dann dort! Page 4/20

5 nichtzentrale Perzentile: Beispiel-Aufgabe Die entsprechende parametrische Lösung unter Normalverteilungsannahme lautet X 2.54* SD, X 2.33* SD, X 2.14* SD Dies ist der zweite klassische Ansatz: X + k( p)* SD, k( p) = probit( p) für den Punktschätzer, k( p) aus der t-verteilung zu berechnen für die Konfidenzgrenzen. Page 5/20

6 nichtzentrale Perzentile: Beispiel-Aufgabe Mit einer Beispiel-Stichprobe (n=368): Parametische und nichtparametrische Schätzwerte NPar. Param. LCL EST UCL Q (0.01) = 2.76 Page 6/20

7 nichtzentrale Perzentile: Beispiel-Aufgabe Vor- und Nachteile der beiden klassischen Lösungen: Nichtparametrisch: Enthält keine verteilungsabhängigen Konstanten, also allgemeingültig für alle stetigen Verteilungen. Aber extrem ineffizient (n_min=368!) und ausreißerempfindlich ( X!) (1) Parametrisch: Sehr empfindlich gegenüber Abweichungen von der angenommenen Normalverteilung (anders als etwa t-test ) Page 7/20

8 nichtzentrale Perzentile: Idee für Verbesserung Idee: Modifiziere den parametrischen Ansatz Qˆ ( p) = Mˆ + c( p, F ) Dˆ derart, dass die Abhängigkeit der Konstanten vom Verteilungstyp F 0 möglichst gering ist und gewisse Robustheitseigenschaften haben. Ermittle c( p, F0 ) durch Simulation ( SAS) auch für Alternativen zumverteilungstyp der Normalverteilung. Wähle die Konstante als Kompromiss zwischen möglichen Fehlerverteilungstypen. 0 c( p, F ) 0 Mˆ, Dˆ Page 8/20

9 nichtzentrale Perzentile: Lösungsansatz Lösungsansatz: Bestimme durch Simulation Perzentile der Verteilung von Q( p) Mˆ Q ˆ 0( p) M0 Z = = Dˆ Dˆ 0 denn : < < Q ˆ 0( p) M0 c( p, F ˆ ˆ 0) Q( p) M c( p, F0) D Dˆ = = + 0 > >... und die Wahrscheinlichkeiten dieser Relationen wollen wir bei Konfidenzgrenzen kontrollieren. Page 9/20

10 nichtzentrale Perzentile: Beispiel Beispiel: Mˆ = Median X, ˆ 1 D = Mean Absolute Deviation from the Median MD = n X X i= 1 n Es zeigte sich, dass bei dieser Wahl von Dˆ, c( p, F0 ) eine relativ geringe Abhängigkeit von dem gewählten Vereilungstyp hat, wenn die zugelassenen Verteilungstypen neben der Normalverteilung t Verteilungen mitwenig Freiheitsgraden umfasssen (10 df,5 df,3 df ). i Page 10/20

11 nichtzentrale Perzentile: Fortsetzung Beispiel Für F = t und Z = ( Q(0.99) X ) / MD ergeben sich bei n= 40 (absichtlich etwas sehr 0 10 klein gewählt) die Perzentile Zˆ = 2.43, Zˆ = 3.27, Zˆ = 4.41 und damit die Perzentilschätzer Q(0.01) Q(0.99) X 3.27* MD (Punktschätzer) X * MD (Punktschätzer) X 4.41* MD (95%-CI: UG) X * MD (95%-CI: UG) X 2.43* MD (95%-CI: OG) X * MD (95%-CI: OG) Die Größe der Bereiche zeigt, dass n=40 für die 1. bzw. 99. Perzentile doch etwas klein ist. Die Message ist: Man kann, wenn man muss, und braucht nicht mindestens n=368! Das weitere Vorgehen wäre an dieser Stelle: Berechnung von Bias und Präzision der Schätzer (wieder über Simulation) für andere t-verteilungen (3, 5, df) und die Gauß-Vert. Dann Beschreibung des Verfahrens und seiner Grenzen. Page 11/20

12 nichtzentrale Perzentile: Beispiel 2 Zweites Beispiel: Das erste Beispiel war noch an die Symmetrie der Verteilung gekoppelt. Hier ist ein Beispiel auch für asymmetrische Verteilungen: n = % CI für 97.5te Perzentile Q(0.975) gesucht. (Nichtparametrisch braucht man mindestens n=146). Dichte der Gamma- Verteilung mit Parameter a=3 Page 12/20

13 nichtzentrale Perzentile: Fortsetzung Beispiel 2 Diesmal soll als Punktschätzer das übliche nichtparamtrische Stichprobenperzentil Xˆ verwendet werden, die Konfidenzgrenzen sollen die Form X + Faktor*( Xˆ X ) haben. Es ergibt sich ( X wie vorher der Median): %-CI für Q(0.975): [ X *( Xˆ X ), X *( Xˆ X ) ] Das Gleiche am unteren Ende der Verteilung: bzw. 95%-CI für Q(0.025): [ X *( Xˆ X ), X * ( Xˆ X ) ] 95%-CI für Q(0.025): [ X 1.18*( X Xˆ ), X 0.89*( X Xˆ ) ] Page 13/20

14 nichtzentrale Perzentile: Fortsetzung Beispiel 2 Diese Egebnisse beziehen sich auf die SAS- Perzentildefinition PCTLDEF=5 (default). Unter dieser Definition ist z.b. Xˆ = (3), der drittkleinste Wert (vgl auch KSFE2010 -Vortrag zu SAS Makro UNISTATS 2.0, H. Stürzl & ). X Unter PCTLDEF=4 gilt Xˆ = 0.475X X und es ergeben sich etwas andere Konstanten, (2) (3) 95%-CI für Q(0.025): [ X 1.14*( X Xˆ ), X 0.87*( X Xˆ ) ] (PCTLDEF=5: 1.18 statt 1.14, 0.89 statt 0.87) Page 14/20

15 nichtzentrale Perzentile: Programmierung in SAS Grundsätzlich zwei Möglichkeiten: 1. Alles in einem Datenschritt ohne output-statement, nur in Arrays rechnen (Rechenzeit-optimal, nur im Hauptspreicher rechnen, kein intensives Schreiben/Lesen auf Festplatte; Replications entspr. 30 Sek.). Perzentile mit PCTL-Funktion bestimmen. 2. Ein Dataset mit &Replications (=10000 bis ) Zeilen erstellen, Perzentile mit Proc Univariate o.ä. berechnen, wieder Datenschritt zur Berechnung der Größe Z = ( Q ( p) Mˆ )/ Dˆ, dann wieder Proc Univariate zur Berechnung der Perzentile der Verteilung von Z. Der zweite Weg ergibt ein übersichtlicheres, SAS-typisches Programm, braucht etwas längere Laufzeit: ca. 10 Sek. bei Replikationen, ca. 1 Min. bei Replikationen. Page 15/20

16 nichtzentrale Perzentile: Programmierung in SAS Code des SAS-Programms für obiges Beispiel: %macro CI_for_Pctl_Gamma_Dist( p=0.025, n=100, shapepar=3, rep=10000, seed= , out=tmp); PROC DATASETS nolist LIB=work;DELETE _d /MEMTYPE=DATA;RUN;QUIT; data _d; array zz z1-z&rep; array xx x1-x&n; Page 16/20

17 nichtzentrale Perzentile: Programmierung in SAS * number of replicates for simulation is recommended; rep=&rep; *number of measurements per sample; n=&n; *Parameter of Gamma-distribution,-1 refers to Gaussian distribution; shapepar=&shapepar; *Percentage of Percentile; p=&p;p100=100*p; *true Percentile; TruePctl=probit(&p); if shapepar>0 then TruePctl=gaminv(&p,shapepar); Page 17/20

18 nichtzentrale Perzentile: Programmierung in SAS do i1=1 to rep;* Replications for simulation; do i3=1 to n; xx[i3]=rannor(&seed);**gaussian random numbers; **transforming to gamma-distribution if shapepar>0; if shapepar>0 then do; xx[i3]=gaminv(probnorm(xx[i3]),shapepar); end; end; x_p=pctl(p100,of x1 - x&n); x_50=pctl(50,of x1 - x&n); end; zz[i1]=(truepctl-x_50)/(x_50-x_p); Page 18/20

19 nichtzentrale Perzentile: Programmierung in SAS z_025=pctl( 2.5,of z1 - z&rep); z_500=pctl(50,of z1 - z&rep); z_975=pctl(97.5,of z1 - z&rep); run; data &out;set _d;run; proc print data=_d; var z_025 z_500 z_975 ; format z_025 z_500 z_ ; label z_025='factor_for_ul_of_95ci_q(p)' z_500='factor_for_median_unbiased_q(p)' z_975='factor_for_ll_of_95ci_q(p)' ; title"ci_for_pctl_gamma_dist(p=&p,n=&n,shapepar=&shapepar,rep=&rep, seed=&seed,out=&out)"; run; %mend CI_for_Pctl_Gamma_Dist; Page 19/20

20 nichtzentrale Perzentile Literatur 1. H.Stürzl, C.Gutenbrunner: SAS Makro UNISTATS KSFE 2010 Berlin,U Rendtel, P Schirmbacher, O Kao, W.F. Lesener, R. Minkenberg (Hrsg.). Shaker Verlag, Aachen, W. Kössler, W. Lesener: Adaptive Lokationstests mit U-Statistiken. 14.KSFE 2010 Berlin, U Rendtel, P Schirmbacher, O Kao, W.F. Lesener, R. Minkenberg (Hrsg.). Shaker Verlag, Aachen, Page 20/20

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n Streuungsmaße Diskrete Stetige Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre (empirische) (Streuung) s 2 = 1 n (X i X) 2 n 1 i=1 s 2 n var(x) Warum Division durch (n

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Effizientes Bootstrapping mit SAS

Effizientes Bootstrapping mit SAS Effizientes Bootstrapping mit SAS Wien, 04.5.2009 Dr. Mihai Paunescu Agenda Was ist Bootstrapping? Effizientes Programmieren von Bootstrapping? Anwendungsbeispiel für Ordered Logit Was ist Bootstrapping?

Mehr

Bootstrap: Konfidenzintervalle

Bootstrap: Konfidenzintervalle Resampling Methoden Dortmund, 2005 (Jenő Reicigel) Bootstrap: Konfidenintervalle Konfidenintervall Sei T ein Schäter für θ, und nehmen wir an, dass die Verteilung von T θ bekannt ist. Notwendige Bedingung

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Übungen mit dem Applet Rangwerte

Übungen mit dem Applet Rangwerte Rangwerte 1 Übungen mit dem Applet Rangwerte 1 Statistischer Hintergrund... 2 1.1 Verteilung der Einzelwerte und der Rangwerte...2 1.2 Kurzbeschreibung des Applets...2 1.3 Ziel des Applets...4 2 Visualisierungen

Mehr

Medizinische Statistik

Medizinische Statistik Medizinische Statistik Angewandte Biometrie für Ärzte und Gesundheitsberufe Bearbeitet von Wilhelm Gaus, Rainer Muche 1. Auflage 2013. Buch. 640 S. Hardcover ISBN 978 3 7945 2931 5 Format (B x L): 16,5

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 1 4. Basiskonzepte der induktiven

Mehr

Bootstrapping ein neuer Standard in Anwendung und Lehre?

Bootstrapping ein neuer Standard in Anwendung und Lehre? . Bernd Heinen SAS Institute GmbH In der Neckarhelle 168 Heidelberg Bernd.heinen@jmp.com Zusammenfassung Bootstrapping bietet eine Möglichkeit, Verteilungsinformationen auch komplexer Statistiken aus einem

Mehr

Biostatistik, WS 2013/2014 Wilcoxons Rangsummen-Test

Biostatistik, WS 2013/2014 Wilcoxons Rangsummen-Test 1/22 Biostatistik, WS 2013/2014 Wilcoxons Rangsummen-Test Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1314/ 20.12.2013 Motivation 4/22 Bei (ungefähr) glockenförmigen und symmetrisch

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205 9.1 Einfluss und Robustheit 205 9 Robuste Methoden 9.1 Einfluss und Robustheit a Sensitivität. Eine Beobachtung hinzufügen. Effekt? Einfache Regression: β = i(x i x)y i i (x i x) 2 = i x iy i β = β+ x,

Mehr

Lösung parametrischer Bootstrap

Lösung parametrischer Bootstrap Lösung parametrischer Bootstrap Aus Statistik II ist der Momentenschätzer für die Exponentialverteilung bekannt: ˆλ = 1 x = 1 1 n n 1 x. i Damit ergibt sich der Schätzer ˆλ = 1/mean(x) 0.00289 aus den

Mehr

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419 5.8 8.1 Einführung empirische Verteilungsfunktion 8.2 EDF- Kolmogorov-Smirnov-Test Anderson-Darling-Test Cramer-von Mises-Test 8.3 Anpassungstest auf Normalverteilung - Shapiro-Wilk-Test 8.4. auf weitere

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

10. Medizinische Statistik

10. Medizinische Statistik 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.

Mehr

Fallzahlplanung bei unabhängigen Stichproben

Fallzahlplanung bei unabhängigen Stichproben Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner benjamin.hofner@stat.uni-muenchen.de 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Verfahren für metrische Variable

Verfahren für metrische Variable Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

Allgemeine lineare Modelle

Allgemeine lineare Modelle 262 Merkpunkte Allgemeine lineare Modelle Multiple lineare Regression mit nicht-normalen Zufallsabweichungen bilden eine harmlose" Verallgemeinerung der multiplen lin. Regr. Beispiele: Gumbel-Regression,

Mehr

Bootstrapping ein neuer Standard in Anwendung und Lehre?

Bootstrapping ein neuer Standard in Anwendung und Lehre? Bootstrapping ein neuer Standard in Anwendung und Lehre? JMP Bernd Heinen SAS Institute GmbH In der Neckarhelle 168 Heidelberg Bernd.heinen@jmp.com Zusammenfassung Bootstrapping bietet eine Möglichkeit,

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

6.4 Der Kruskal-Wallis Test

6.4 Der Kruskal-Wallis Test 6.4 Der Kruskal-Wallis Test Der Test von Kruskal und Wallis, auch H-Test genannt, ist ein Test, mit dem man die Verteilungen von Teilstichproben auf Unterschiede untersuchen kann. Bei diesem Test geht

Mehr

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale)

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) PROC NPAR1WAY zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) Allgemeine Form: PROC NPAR1WAY DATA=name Optionen ; VAR variablenliste ; CLASS

Mehr

MEHR ALS LINEAR ODER LOGISTISCH?

MEHR ALS LINEAR ODER LOGISTISCH? MEHR ALS LINEAR ODER LOGISTISCH? QUANTILS EN UND ADAPTIVE SPLINES IN SAS MIHAI PAUNESCU QUANTILE proc univariate data=dat; ods select moments quantiles; var sales; Basic Statistical Measures Location Variability

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Spalten aufsummieren?!

Spalten aufsummieren?! News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren Allgemeine Fragen zu SAS Spalten aufsummieren?! 5 July, 2010-11:59 Student- Hallo liebe SAS-Gemeinschaft

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren

Dr. H. Grunert Schließende Statistik Vorlesungscharts. Vorlesung 7. Schätzverfahren Vorlesungscharts Vorlesung 7 Schätzverfahren Konstruktion von Konfidenzintervallen Konfidenzintervalle für den Erwartungswert normalverteilter Grundgesamtheiten Konfidenzintervalle für Anteilswerte Seite

Mehr

Übungen zur Vorlesung. Statistik 2

Übungen zur Vorlesung. Statistik 2 Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Blatt 11 Dipl.-Math. oec. D. Engel Übungen zur Vorlesung Statistik 2 Aufgabe 40 (R-Aufgabe, keine Abgabe) In dieser Aufgabe

Mehr

14.3 Das Einstichprobenproblem in R

14.3 Das Einstichprobenproblem in R 14.3. DAS EINSTICHPROBENPROBLEM IN R 343 0.553 0.570 0.576 0.601 0.606 0.606 0.609 0.611 0.615 0.628 0.654 0.662 0.668 0.670 0.672 0.690 0.693 0.749 0.844 0.933 die absoluten Häufikeiten n i der Klassen.

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

DWT 314/460 csusanne Albers

DWT 314/460 csusanne Albers 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schatzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schatzvariablen fur Parameter von Verteilungen. Sei ~X = (X 1 ; : : : ; X n ):

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population Thema der Stunde I. Die Form der Stichprobenkennwerteverteilung II. Schlüsse von der Stichprobe auf die Population III. t-test für unabhängige und abhängige Stichproben Stichprobenkennwerte Population

Mehr

Binomialverteilung Vertrauensbereich für den Anteil

Binomialverteilung Vertrauensbereich für den Anteil Übungen mit dem Applet Binomialverteilung Vertrauensbereich für den Anteil Binomialverteilung Vertrauensbereich für den Anteil 1. Statistischer Hintergrund und Darstellung.... Wie entsteht der Vertrauensbereich?...

Mehr

Grundlagen der schließenden Statistik

Grundlagen der schließenden Statistik Grundlagen der schließenden Statistik Schätzer, Konfidenzintervalle und Tests 1 46 Motivation Daten erhoben (Umfrage, Messwerte) Problem: Bei Wiederholung des Experiments wird man andere Beobachtungen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Noémie Becker & Dirk Metzler 15. April 2016 Inhaltsverzeichnis 1 Der Standardfehler 1 1.1 Ein Versuch............................................

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Vergleich von k unabhängigen Gruppen (einfaktorielle, einfache Varianzanalyse)

Vergleich von k unabhängigen Gruppen (einfaktorielle, einfache Varianzanalyse) Vergleich von k unabhängigen Gruppen (einfaktorielle, einfache ) A: Faktor (Gruppenvariable) mit k Stufen (Faktorstufen) Modell Y ij = µ + α i + ǫ ij, i = 1...k, j = 1...n i µ: Gesamterwartungswert α i

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Kapitel 2. Weitere Beispiele Effizienter Algorithmen

Kapitel 2. Weitere Beispiele Effizienter Algorithmen Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik Bearbeitet von Karl Mosler, Friedrich Schmid 4., verb. Aufl. 2010. Taschenbuch. XII, 347 S. Paperback ISBN 978 3 642 15009 8 Format

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

10. Statistische Verteilungen

10. Statistische Verteilungen 10. Statistische Verteilungen Übung Röntgenpraxis XVI Die Patienten der Röntgenpraxis unterscheiden sich durch unterschiedliche Fitness. Daher benötigen die MTRA unterschiedliche Zeiten, um die Patienten

Mehr

Permutationstests II.

Permutationstests II. Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Permutationstests II. 1. Zwei-Stichprobentest auf Variabilität 2. Mehrere Stichproben: Vergleich von Mittelwerten 3. Kurzer Exkurs: Präzision von Monte

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

5.9. Nichtparametrische Tests Übersicht

5.9. Nichtparametrische Tests Übersicht 5.9. Übersicht Es werden die wichtigsten Rang-Analoga zu den Tests in 5.2.-5.6. behandelt. 5.9.0 Einführung 5.9.1 Einstichprobenproblem (vgl 5.2), 2 verbundene Stichproben (vgl. 5.3) Vorzeichentest, Vorzeichen-Wilcoxon-Test

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer Wahrscheinlichkeit und Statistik BSc D-INFK. a) (iii) b) (ii) c) (i) d) (ii) e) (ii) f) (iii) g) (ii) h) (i) i) (ii) j) (i). Für ein heruntergeladenes Dokument

Mehr

Einführung in Bootstrap

Einführung in Bootstrap Kapitel 5 Einführung in Bootstrap Literatur zum Thema: - Efron B, Tibshirani RJ: An Introduction to the Bootstrap (1993) - Hall P: The Bootstrap and Edgeworth Expansion (1992) - Davison AC: Recent Developments

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Einstichprobenproblem t-test

Einstichprobenproblem t-test t-test a) H 0 : µ µ 0 H A : µ > µ 0 große Werte von T = X µ 0 s n indizieren Gültigkeit von H A. b) H 0 : µ µ 0 H A : µ < µ 0 kleine Werte von T indizieren H A c) H 0 : µ = µ 0 H A : µ µ 0 T groß indiziert

Mehr

Fragestellungen. Ist das Gewicht von Männern und Frauen signifikant unterschiedlich? (2-sample test)

Fragestellungen. Ist das Gewicht von Männern und Frauen signifikant unterschiedlich? (2-sample test) Hypothesen Tests Fragestellungen stab.glu 82 97 92 93 90 94 92 75 87 89 hdl 56 24 37 12 28 69 41 44 49 40 ratio 3.60 6.90 6.20 6.50 8.90 3.60 4.80 5.20 3.60 6.60 glyhb 4.31 4.44 4.64 4.63 7.72 4.81 4.84

Mehr

Ansprechen einer Anzahl von Variablen über einen Schleifendurchlauf

Ansprechen einer Anzahl von Variablen über einen Schleifendurchlauf News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren Allgemeine Fragen zu SAS Ansprechen einer Anzahl von Variablen über einen Schleifendurchlauf 21 June, 2007-18:43

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr