Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet:

Größe: px
Ab Seite anzeigen:

Download "Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet:"

Transkript

1 Statistische Inferenz bei ROC Kurven Notation Man unterscheidet: 1. Nichtparametrische, empirische Methoden zur Berechnung der empirischen ROC Kurve 2. Parametrische Ansätze, die recht starke Annahmen an die Verteilung der Testergebnisse stellt 3. Parametrische, aber verteilungsfreie Verfahren, die die ROC Kurve parametrisch modellieren. Hier werden nur die Ränge der Testergebnisse verwendet. ROC-GLM Schätzer. Wir nehmen an dass Testergebnisse bei den Fällen und Testergebnisse bei den Kontrollen vorliegen: {Y D,i, i = 1,..., } und {Y D,i, i = 1,..., }. Diese stammen jeweils aus identischen Verteilungen mit Survivorfunktion S D (y) = P (Y D,i y) bzw. S D(y) = P (Y D,i y). Manchmal wird zusätzlich Unabhängigkeit der Beobachtungen gefordert, insbesondere wenn die Variabilität der Schätzungen von Interesse ist. Biostatistische Methoden 1 Biostatistische Methoden 2 1. Die empirische ROC Kurve Eigenschaften der empirischen ROC Kurve Die empirische ROC Kurve ROC e trägt TPF(c) gegen FPF(c) für alle c (, ) auf, wobei TPF(c) = FPF(c) = I[Y D,i c]/ I[Y D,i c]/ Alternativ lässt sich ROC e (t) = ŜD(Ŝ 1 (t)) über die empirischen Survivorfunktionen ŜD und Ŝ D von Y D bzw. Y D D darstellen. Da FPF(c) nur Werte in der Menge {0, 1/, 2/,..., 1} annehmen kann, ist ROC e keine stetige Funktion. In der Praxis werden aufeinanderfolgende Punkte linear verbunden. Falls keine Bindungen vorliegen, ergibt sich eine Treppenfunktion mit Sprunghöhen 1/ und Sprungbreiten 1/. Bei Bindungen ergeben sich andere Muster, je nachdem ob Beobachtungen von jeweils kranken, jeweils gesunden, oder gesunden und kranken Individuuen identisch sind. ROC e ist nur eine Funktion der Ränge von Y und somit invariant bzgl. streng monoton wachsenden Transformationen. Biostatistische Methoden 3 Biostatistische Methoden 4

2 Beispiel: Genexpressionsdaten Empirische ROC Kurve Relative Genexpressionsintensitäten eines bestimmten Gens wurden bei 23 gesunden und 30 kranken Gewebeproben gemessen. Orginal Skala Logarithmierte Skala Orginal Skala cases controls Logarithmierte Skala cases controls True positive rate False positive rate True positive rate False positive rate Biostatistische Methoden 5 Biostatistische Methoden 6 Variabilität der empirischen ROC Kurve Das empirische AUC Man unterscheidet: Eine simultane Konfidenzregion für FPF und TPF bei festem Schwellenwert c. Ein Konfidenzintervall für ROC(t) bei festem t bzw. für ROC 1 (v) bei festem v Konfidenzbänder für die gesamte ROC Kurve. Definition ist klar: ÂUC e = 1 Interessant ist folgende Umformung: 1 ÂUC e = n D j=1 0 ROC e (t)dt { I[Y D,i > Y D,j ] + 1 } 2 I[Y D,i = Y D,j ], d.h. ÂUC e ist die Mann-Whitney U-Statistik. Im Beispiel ergibt sich ÂUC e = 0.81 Biostatistische Methoden 7 Biostatistische Methoden 8

3 Das empirische AUC ohne Bindungen Liegen keine Bindungen vor, vereinfacht sich die Formel zu ÂUC e = 1 = 1 n D j=1 n D j=1 { I[YD,i > Y D,j ] } { I[YD,i Y D,j ] } Im Folgenden nehmen wir an, dass keine Bindungen vorliegen. Die Varianz des empirischen AUC Man kann zeigen dass asymptotisch gilt: V ar( AUC d 1 e ) = {AUC(1 AUC)+( 1)(Q 1 AUC 2 )+( 1)(Q 2 AUC 2 )}, wobei Q 1 = P (Y D,i > Y D,j, Y D,i > Y D,j ) Q 2 = P (Y D,i > Y D,j, Y D,i > Y D,j ) und (Y D,i, Y D,i ) und (Y D,j, Y D,j ) zufällig ausgewählte Paare von Beobachtungen aus der kranken bzw. gesunden Population sind. Schätzung durch Einsetzen der entsprechenden empirischen Größen. Biostatistische Methoden 9 Biostatistische Methoden 10 Platzierungswerte ( placement values ) Der Platzierungswert eines Testergebnisses y bzgl. der gesunden Population ist P (Y D y) = S D(y). Die ROC Kurve kann als Verteilungsfunktion der Platzierungswerte der kranken Individuen bzgl. der gesunden Population aufgefasst werden: Gleichzeitig gilt: P (S D(Y D ) t) = S D (S 1 (t)) = ROC(t) D AUC = 1 E(S D(Y D )) = E(S D (Y D)) Empirische Platzierungswerte Der empirische Platzierungswert eines Testergebnisses y ist entsprechend Ŝ D(y). Hier gehen also die Beobachtungen der gesunden Individuen bei der Berechnung von Ŝ D ein. Die empirische ROC Kurve kann entsprechend als empirische Verteilungsfunktion der Platzierungswerte der kranken Individuen bzgl. der gesunden Individuen aufgefasst werden. Ferner gilt: ÂUC e = 1 Ŝ D(Y D,i ) = j=1 Ŝ D (Y D,j ) Biostatistische Methoden 11 Biostatistische Methoden 12

4 Berechnung der Platzierungswerte im Beispiel Platzierungswerte im Beispiel rocdata <- read.table("rocdata.txt") # add noise to delete ties rocdata[,1] <- rocdata[,1] + rnorm(nrow(rocdata), sd=0.0001) cases <- rocdata[rocdata[,2]==1,1] controls <- rocdata[rocdata[,2]==0,1] ecdf(pcases) ecdf(pcontrols) # Berechnung der Platzierungswerte pcases <- cases*na pcontrols <- controls*na for(i in 1:length(cases)) pcases[i] <- mean(controls>=cases[i]) Fn(x) Fn(x) pcases pcontrols for(j in 1:length(controls)) pcontrols[j] <- mean(cases>=controls[j]) x x Biostatistische Methoden 13 Biostatistische Methoden 14 Varianz von AUC basierend auf Platzierungswerten Asymptotisch gilt nun: was durch V ar(âuc e) = V ar(s D(Y D )) V ar(âuc e) = V ar(ŝ D(Y D,i )) + + V ar(s D(Y D)) V ar(ŝd(y D,j )) geschätzt wird. KI für AUC bzw. besser für logit AUC basierend auf -Regel. Vergleich von empirischen AUC Werten Zur Varianzberechnung von ÂUC e = ÂUC A,e ÂUC B,e gibt es zwei Varianten: Bei unverbundenen und unabhängigigen Stichproben summieren sich einfach die einzelnen Varianzen. Bei verbunden Stichproben gibt es eine veränderte Formel, da ÂUC e nun mit Hilfe der Differenzen der Platzierungswerte geschrieben werden kann: d AUC e = = X Ŝ D,A (Y D,i,A ) Ŝ D,B(Y D,i,B ) X j=1 Ŝ D,A (Y D,j,A ) ŜD,B(Y D,j,B ) Biostatistische Methoden 15 Biostatistische Methoden 16

5 Berechnung des empirischen AUC Beispiel: Genexpressionsdaten # Berechnung von AUC auc <- 1 - mean(pcases) # oder auch: auc2 <- mean(pcontrols) auc.var <- var(pcases)/length(cases)+var(pcontrols)/length(controls) auc.se <- sqrt(auc.var) # 95% -KI lower <- auc *auc.se upper <- auc *auc.se In diesem Beispiel ergibt sich ÂUC e = mit symmetrischem 95%-KI: (0.688, 0.935). Konstruiert man stattdessen das 95%-KI auf der Logit-Skala, ergibt sich das 95%-KI (0.657, 0.906). Alternativ könnte man auch Bootstrap-KI konstruieren. # 95% -KI auf logit-skala logit.auc <- log(auc/(1-auc)) logit.auc.se <- auc.se/(auc*(1-auc)) lower2 <- 1/(1+exp(-(logit.auc *logit.auc.se))) upper2 <- 1/(1+exp(-(logit.auc *logit.auc.se))) Biostatistische Methoden 17 Biostatistische Methoden Parametrische Ansätze Geschätzte binormale ROC Kurven im Beispiel Beispiel: Binormale ROC Kurve Schätzung von den Parametern µ D, σd 2, µ D und σ 2 D liefert durch plug-in Schätzung von ROC und AUC. Problem: Ansatz nicht invariant! Im Beispiel ergibt sich ÂUC e = 0.758, ÂUC e = bzw. ÂUC e = mit geschätzten ROC Kurven ROC(t) = Φ( Φ 1 (t)) bei untransformierteaten ROC(t) = Φ( Φ 1 (t)) bei log-transformierteaten ROC(t) = Φ( Φ 1 (t)) bei wurzel-transformierteaten TPF original log transformed sqrt transformed FPF Biostatistische Methoden 19 Biostatistische Methoden 20

6 3. Der ROC-GLM Schätzer Ein neuerer, sehr orgineller Ansatz zur Schätzung von parametrischen ROC Kurven verwendet von Platzierungswerten abgeleitete Größen und binäre Regression. Da nur die Ränge der Daten eingehen, ist dieser Ansatz invariant bzgl. monoton wachsenden Transformationen der Daten. Es gibt keine Verteilungsannahmen für die Testergebnisse, nur eine parametrische Form für die ROC Kurve. Gibt es keine Bindungen, so gehen letztendlich nur die Größen I[Y D,i Y D,j ] ein, denen wir ja schon bei der Berechnung des empirischen AUC Wertes begegnet sind. Idee des ROC-GLM Schätzer Sei U it = I[S D(Y D,i ) t] eine binäre Variable, die angibt, ob der Platzierungswert der i-ten Beobachtung größer als t ist oder nicht. Dann gilt: E(U it ) = P (U it = 1) = P (S D(Y D,i ) t) = ROC(t) was stark an binäre Regressionsmodelle erinnert. Die binormale ROC Kurve erhält man bekanntlich durch ROC(t) = Φ(a + bφ 1 (t)) d.h. Φ 1 (E(U it )) = a + bφ 1 (t). Biostatistische Methoden 21 Biostatistische Methoden 22 ROC-GLM Schätzung Nach Fixierung einer Menge T = {t 1,..., t nt }, t i (0, 1), können die Parameter a und b also geschätzt werden durch binäre Probit-Regression mit Intercept, Responsevariable Ûit = I[Ŝ D(Y D,i ) t] und Kovariable Φ 1 (t). Auch komplexere parametrische Modelle Wahl von T Liegen keine Bindungen vor, so ist T = {1/,..., ( 1)/} eine naheliegende Wahl. In diesem Fall ergeben sich ( 1) Beobachtungen {Ûit, t T, i = 1,..., } = {I[Y D,i Y D,j ]} g(e(u it )) = s lassen sich so leicht schätzen. α s h s (t) für i = 1,...,, j = 1,..., 1. Alternativ kann auch eine kleinere Menge T gewählt werden, was bei n T 50 i.a. nur einen geringen Einfluss auf die Effizienz des Verfahrens hat. Biostatistische Methoden 23 Biostatistische Methoden 24

7 Varianzschätzungen Die Standardfehler von â und ˆb (bzw. daraus abgeleiteter Größen wie ÂUC = Φ(â/ 1 + ˆb 2 ), die sich aus der GLM- Prozedur ergeben, können nicht verwendet werden, da diese die kranken Beobachtungen als fest ansehen. Ferner werden die Standardfehler von n T abhängen. Ansätze, die sowohl die Variabilität der kranken als auch der gesunden Individuen berücksichtigen, basieren entweder auf asymptotischen Abschätzungen oder verwenden Bootstrap- Resampling Methoden. Anwendung auf den Beispieldatensatz Unter Annahme eines binormalen Modells für die ROC Kurve ergibt sich â = 1.253, ˆb = und ÂUC e = Der verwendete R-Code lautet: ind <- matrix(nrow=length(cases),ncol=length(controls)-1, NA) for(i in 1:length(cases)) for(j in 1:length(controls)-1) ind[i,j] <- (cases[i] >= controls[j]) t <- c((length(controls)-1):1)/length(controls) y <- as.vector(t(ind)) x <- rep(qnorm(t), length(cases)) glm1 <- glm(y~x, family=binomial (link=probit)) print(glm1$coef) Biostatistische Methoden 25 Biostatistische Methoden 26 Empirische und ROC-GLM Schätzung True positive rate False positive rate Biostatistische Methoden 27

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr

Fall-Kontroll Studien und Selection Bias. 1.4 Fall-Kontroll Studien: Vorbemerkungen

Fall-Kontroll Studien und Selection Bias. 1.4 Fall-Kontroll Studien: Vorbemerkungen 1.4 Fall-Kontroll Studien: Vorbemerkungen Fall-Kontroll Studien und Selection Bias Fall-Kontroll Studien versuchen in gewisser Weise, eine Kohortenstudie zu imitieren, aber auf das oft zeit- und kostenaufwendige

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Definition: Erneuerungsprozess Sei {T n, n N} eine Folge unabhängiger, nichtnegativer Zufallsvariablen mit Verteilungsfunktion F, mit F () < 1. Dann heißt

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Bootstrap: Konfidenzintervalle

Bootstrap: Konfidenzintervalle Resampling Methoden Dortmund, 2005 (Jenő Reicigel) Bootstrap: Konfidenintervalle Konfidenintervall Sei T ein Schäter für θ, und nehmen wir an, dass die Verteilung von T θ bekannt ist. Notwendige Bedingung

Mehr

limhatewerzeoelhiniii

limhatewerzeoelhiniii limhatewerzeoelhiniii Vorwort 13 Kapitel 1 Einleitung 15 1.1 Wozu brauchen wir Statistik? 16 1.2 Medizinische Statistik 16 1.3 Beschreibende und schließende Statistik 17 1.4 Das Buch in Kürze 17 Kapitel

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Permutationstests II.

Permutationstests II. Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Permutationstests II. 1. Zwei-Stichprobentest auf Variabilität 2. Mehrere Stichproben: Vergleich von Mittelwerten 3. Kurzer Exkurs: Präzision von Monte

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Prof. Dr. Marc Gürtler WS 015/016 Prof. Dr. Marc Gürtler Klausur zur 10/1 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 015/016 Aufgabe 1: (11+5+1+8=56

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Klassen diskreter Variablen

Klassen diskreter Variablen Modelle diskreter Variablen Klassen diskreter Variablen binär multinomial Weitere Klassifizierung multinomialer diskreter Variablen: kategorial y = 1, falls Einkommen < 3000 e. y = 2, falls Einkommen zw.

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe 1 Aufgabe UE-II.1 Generieren Sie je 1000 Stichproben (samples) mit Umfang 5/30/100/500 für die Normalverteilung N(µ, σ 2 ) = N(4,

Mehr

Einführung in Bootstrap

Einführung in Bootstrap Kapitel 5 Einführung in Bootstrap Literatur zum Thema: - Efron B, Tibshirani RJ: An Introduction to the Bootstrap (1993) - Hall P: The Bootstrap and Edgeworth Expansion (1992) - Davison AC: Recent Developments

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

Lösung parametrischer Bootstrap

Lösung parametrischer Bootstrap Lösung parametrischer Bootstrap Aus Statistik II ist der Momentenschätzer für die Exponentialverteilung bekannt: ˆλ = 1 x = 1 1 n n 1 x. i Damit ergibt sich der Schätzer ˆλ = 1/mean(x) 0.00289 aus den

Mehr

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0 8 Lineare Modelle In diesem Abschnitt betrachten wir eine spezielle Klasse von statistischen Modellen, in denen die Parameter linear auftauchen Wir beginnen mit zwei Beispielen Beispiel 8 (lineare Regression)

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Januar 2011 1 Vergleich zweier Erwartungswerte Was heißt verbunden bzw. unverbunden? t-test für verbundene Stichproben

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

unendlich-dimensionalen lästigen Parameter auffassen.

unendlich-dimensionalen lästigen Parameter auffassen. Näherungen mit Bootstrap Werner Stahel, Seminar für Statistik, ETH Zürich, 8. 4. 2009 Dieser Text kann dazu dienen, die Ideen des Bootstrap zusammenzufassen. Es fehlen hier Beispiele. 1 Fragestellung a

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer Wahrscheinlichkeit und Statistik BSc D-INFK. a) (iii) b) (ii) c) (i) d) (ii) e) (ii) f) (iii) g) (ii) h) (i) i) (ii) j) (i). Für ein heruntergeladenes Dokument

Mehr

Nichtparametrische statistische Methoden

Nichtparametrische statistische Methoden Herbert Büning / Götz Trenkler Nichtparametrische statistische Methoden 2., erweiterte und völlig überarbeitete Auflage w DE G_ Walter de Gruyter Berlin New York 1994 Inhaltsverzeichnis Vorwort zur zweiten

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Allgemeine lineare Modelle

Allgemeine lineare Modelle 262 Merkpunkte Allgemeine lineare Modelle Multiple lineare Regression mit nicht-normalen Zufallsabweichungen bilden eine harmlose" Verallgemeinerung der multiplen lin. Regr. Beispiele: Gumbel-Regression,

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Kendall s Tau. Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt:

Kendall s Tau. Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt: Kendall s Tau Betrachte Paare von Beobachtungen (x i, y i ) und (x j, y j ) Ein Paar heißt: konkordant, diskordant, falls x i < x j und y i < y j oder x i > x j und y i > y j falls x i < x j und y i >

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

5 Allgemeine Verfahren zum Testen von Hypothesen

5 Allgemeine Verfahren zum Testen von Hypothesen 5 Allgemeine Verfahren zum Testen von Hypothesen 5.1 Likelihood Schätzung für multivariate Daten Statistisches Modell: Einfache Zufallsstichprobe X 1,..., X n (unabhängige Wiederholungen von X IR d ).

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

T-Test für unabhängige Stichproben

T-Test für unabhängige Stichproben T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 2018 Grundbegriffe der Statistik statistische Einheiten = Objekte an denen interessierende Größen erfaßt werden z.b. Bevölkerung einer Stadt; Schüler einer bestimmten Schule; Patienten

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Teil XI. Hypothesentests für zwei Stichproben. Woche 9: Hypothesentests für zwei Stichproben. Lernziele. Beispiel: Monoaminooxidase und Schizophrenie

Teil XI. Hypothesentests für zwei Stichproben. Woche 9: Hypothesentests für zwei Stichproben. Lernziele. Beispiel: Monoaminooxidase und Schizophrenie Woche 9: Hypothesentests für zwei Stichproben Patric Müller Teil XI Hypothesentests für zwei Stichproben ETHZ WBL 17/19, 26.06.2017 Wahrscheinlichkeit und Statistik Patric

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen

Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen Alexander Siemer Abteilung Medizinische Statistik Universität Göttingen 47. Biometrisches Kolloquium

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Teil VIII Hypothesentests für zwei Stichproben

Teil VIII Hypothesentests für zwei Stichproben Woche 9: Hypothesentests für zwei Stichproben Teil VIII Hypothesentests für zwei Stichproben WBL 15/17, 22.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner

Mehr

Das Zweistichprobenproblem

Das Zweistichprobenproblem Kapitel 5 Das Zweistichprobenproblem In vielen Anwendungen will man überprüfen, ob sich zwei oder mehr Verfahren, Behandlungen oder Methoden in ihrer Wirkung auf eine Variable unterscheiden. Wir werden

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205 9.1 Einfluss und Robustheit 205 9 Robuste Methoden 9.1 Einfluss und Robustheit a Sensitivität. Eine Beobachtung hinzufügen. Effekt? Einfache Regression: β = i(x i x)y i i (x i x) 2 = i x iy i β = β+ x,

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Forschungsstatistik II

Forschungsstatistik II Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-3 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik II Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Erneuerungs- und Semi-Markov-Prozesse

Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Für den Poisson-Prozess und (reguläre) diskrete Markov-Prozesse impliziert die Markov-Eigenschaft, dass die Zwischenzeiten bzw. Verweildauern exponentialverteilt

Mehr

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele Woche 7: Maimum-Lielihood-Schätzung Patric Müller ETHZ Teil IX Verteilungen an Daten anpassen ( fitten ): Maimum-Lielihood-Schätzung WBL 17/19, 12.06.2017 Wahrscheinlicheit

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr