6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km"

Transkript

1 Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf diesen ein Kaft aus von: F F ( F = F ) F = G G: Gavitationskonstante G = N /kg Auf asse wikt die gleiche Kaft in ugekehte Richtung. Beispiel: ond ond ( ) g = 78 k = kg = G.6 s = Die Gavitationsbeschleunigung ist auf de ondobefläche etwa sechsal kleine als auf de Edobefläche. Be.: hiebei wude vewendet, dass das Gavitationsfeld außehalb eine hoogenen Kugel identisch ist zu Feld de i Kugelzentu veeinigten Kugelasse 6 g Beispiel: Ede Ede ( E ) E = 678 k E = kg F = G E E = G E E = = g s Edbeschleunigung g = 9.8 /s gilt nu auf de Edobefläche! (nit quadatisch ab it de Abstand zu Edittelpunkt) Eigenschaften de Gavitation: auschließlich attaktiv (es gibt keine negativen assen) kann dahe nicht abgeschit weden ist die schwächste de 4 Fundaentalwechselwikungen (die Gavitations-WW zwischen Elektonen und Potonen ist 0 40 al schwäche als die Coulob-WW!) ist die stäkste übe kosische Distanzen wikende WW ( wegen de / Abhängigkeit und de fehlenden Abschiung)

2 6.. Gavitationspotential Wi betachten das Gavitationsfeld eine Punktasse a Uspung (die auf einen Pobeasse p a t ausgeübte Kaft). Die potentielle Enegie i Gavitationsfeld ist Epot = W = F( ') d ' Potential: potentielle Enegie, hie it 0 0 (das Potential i Unendlichen wid auf Null gesetzt) V ( ) F( ') d ' = Bei adiale Integationspfad ( ) : F d ' p ' p ' ' ' ' V ( ) = G d ' = G d ' ' Das Potential hängt also nu vo Betag des Abstands ab: 0 Dait: G V ( ) = p Potential des Gavitationsfelds eine Punktasse Es gilt wie ie: F = V ( ) V() Be.: ähnlich wie das elektostatische Potential auf die Ladung wid anchal das Gavitationspotential auf die asse des Pobeköpes noiet. G Vg ( ) = V ( ) = p V() Dann ist die Gavitationsbeschleunigung: g = V ( ) g 0 p V ( ) = G d ' = ' p G

3 Planetenbewegungen Bewegung de Planeten i Gavitationsfeld de onne (Bescheibung gilt allgeein fü die Bewegung von Köpen in eine Zentalkaftfeld) Es gelten die Keple schen Gesetze (69): 0 < e < p p + e e Ellipse b a p p a = ; b = e e. Die Planeten bewegen sich auf Ellipsen-Bahnen. Die onne befindet sich in eine de Bennpunke de Ellipse. Die Vebindungslinie onne-planet übesteicht in gleichen Zeiten gleiche Flächen. Die Quadate de Ulaufzeiten vehalten sich wie die Kuben de goßen Halbachsen de Ellipsen e = p / Paabel Zu : an kann zeigen, dass die Bahnen von Köpen in eine /-Potential ie Kegelschnitte sind, die sich in Polakoodinaten bescheiben lassen duch p = + ecosϕ p und e sind Paaete, die die Fo de Kuve bestien ϕ e > p / ( + e) b / Hypebel a / p p a = ; b = e e alle geschlossene Bahnen sind Keise ode Ellipsen Fälle: e = 0 = p (Keisbahn) Zu : Es gilt Dehipulsehaltung l = p = konst.

4 06 07 onne v α Planet Fläche da Die in de Zeit dt übestichene Fläche ist da = v dt sinα v = v dt = dt = ldt Da de Dehipuls (und die asse) konstant sind, ist auch da/dt konstant! in beiden Fällen (falls ) : it Also: P Pω = G ω = G >> Die Ulauffequenz ist unabhängig von P! ω = π wid dies zu: τ 4π τ = G P π = G τ Zu : Betachten Planet auf Keisbahn (einfachste Fall) F g p v = ω Es gilt: Zentipetalkaft = Gavitationskaft (uhende Beobachte) Zentifugalkaft = -Gavitationskaft (itbewegte Beobachte) Zahlenwete: Bahnadien und Ulaufzeiten onnenasse: = kg Ede = τ = 65d eku = τ = 88d Jupite = τ =.6a Pluto = τ = 49a

5 6. chwepunktsyste Bisheige Behandlung gilt nu näheungsweise (fü die Bewegung eine asse u eine seh viel gößee asse); tatsächlich keisen zwei sich gegenseitig anziehende Köpe u ihen geeinsaen chwepunkt. s s chwepunkt: + = + Relativkoodinaten i chwepunktsyste: s = s s Hiefü gilt: + = 0 Dait lauten die Käftegleichgewichte: ω = G + s = (de chwepunkt i chwepunktsyste liegt i Uspung) 08 Veeinfachung des Pobles: s s = Definiee Koodinate Dann ist: s = + = = ( ) s s s Dait wid das Käftegleichgewicht: ω = G + (Abstand de Köpe) Hat die Fo eines Ein-Köpe-Pobles a = F wenn an die effektive asse einfüht: Hieit ehält an: µ ω = G µ = + 09 ω = G + Dait ist das Zwei-Köpe-Poble (zwei assen keisen ueinande) auf ein Ein-Köpe-Poble (eine asse keist in eine Zentalkaftfeld) zuückgefüht woden!

6 Die Keisfequenz de Bewegung de beiden Köpe ueinande ist also 0 Keisfequenz: ω + E = G + ω = G G µ = ω = τ = 6.67*0 /s, 7 d Die zuvo angegebene Foel fü die Keisfequenz gilt nu fü seh ungleiche assen; bei ähnlichen assen ist sie göße! 6.4 Gezeiten Köpe in eine inhoogenen Gavitationsfeld efahen Gezeitenkäfte. Wi betachten das yste Ede-ond (Uspung i Edittelpkt.) Ede assen: chwepunkt: ond 4 E = 5.98*0 kg Edadius: 0 = 678 k Abstand Ede-ond: E 0 + = = + + = 466 k E E = k = 7.5*0 kg Auf de Ede wiken die Gavitationskaft des onds sowie Tägheitskäfte. Annahe: das Gavitationsfeld des onds sei hoogen, d.h. es gelte übeall g = G Die Beschleunigung auf de Edobefläche ist dann (i otieenden yste: ages = g + G ω ( ) Gavitation Ede Gavitation ond ( ω ) Zentifugalbeschleunigung Wegen de Wahl des Koodinatensystes gilt:: ω ω ( ω ) = ω Fü te auf de Edobefläche in eine Ebene senkecht zu Dehachse gilt ebenfalls: ω ω ( ω ) = ω

7 Dait wid die Beschleunigung: it a = g + G + ω ω ges ω + = G = G E E + ages = g +ω wid dies: I Falle eines hoogenen Gavitationsfelds des onds wäe die Beschleunigung auf de Edobefläche in de Ebene senkecht zu Dehachse übeall gleich goß und adial ausgeichtet! Andes ausgedückt: die otsabhängige Zentifugalbeschl. und das hoogene Gavitationsfeld addieen sich (in diese Ebene) zu eine otationssyetischen Feld. Abe: das Gavitationsfeld des onds ist nicht hoogen! Die Abweichung vo ittleen Feld füht zu eine tsabhängigkeit de Beschleunigung auf de befläche. Abweichung: g = G ( ) G Hängt von de Richtung von ab! Ede Zwei einfache Fälle:. g = G G Zeigt zu Edittelpunkt!. = ± a Zf + g azf + g = ± ( + fü ondabgewandte eite)

8 4 5 Dait: also ± g = G ( ± ) = G ( ) ± ± ± g G G = G ( - fü ond- abgewandte eite) Füht auf de Ede zu Wassebegen und tälen: Ede Zwei Wassebege! ond Die Ede otiet schnelle als das yste Ede-ond die Wassebege wanden, Ebbe und Flut wechseln i Abstand von 6 h Resultat: G g G Gesatunteschied: 7 G.7*0 g

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch)

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch) Winte 05/06, Pof. Thoas Mülle, IEKP, KIT Aufgabenblatt 9; Übung a 3. Janua 006 Mittwoch. Fliehkaft Auf ein Wasseteilchen an de Obefläche wiken die Schwekaft g und die Fliehkaft ω x. Die senkecht zu Resultieenden

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Aufgaben zu Kräften zwischen Ladungen

Aufgaben zu Kräften zwischen Ladungen Aufgaben zu Käften zwischen Ladungen 75. Zwei gleich geladenen kleine Kugeln sind i selben Punkt an zwei langen Isoliefäden aufgehängt. Die Masse eine Kugel betägt g. Wegen ihe gleichen Ladung stoßen sie

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Inhalt: Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2018/2019 1

Inhalt: Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2018/2019 1 Inhalt: 1.. 3. 4. 5. 6. Einleitung Keplesche Gesetze Das Gavitationsgesetz Täge Masse und schwee Masse Potentielle Enegie de Gavitation Beziehung zwischen de Enegie und de Bahnbewegung Physik, WS 018/019

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

Wirbel in Hoch- und Tiefdruckgebieten auf der Nord- bzw. Südhalbkugel

Wirbel in Hoch- und Tiefdruckgebieten auf der Nord- bzw. Südhalbkugel Skipt 3 Wo, 8/9 0 4 (i) Coiolis-Kaft: F C = m ω & ' Die Coiolis-Kaft wikt nu auf MP/Köpe, die sich bezüglich des otieenden BS/NIS bewegen, also nu dann, wenn & ' 0 und wenn ω und & ' nicht die gleiche

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu Einneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die Einheitsvektoen

Mehr

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung.

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung. . Dynaik 9 Nachechnen: v / a / t 0 Die Dynaik befat ich it den Uachen de Beweun. a t k/ N. Axioe. Täheitpinzip (Galileo, 564-64 Newton, 64-77) Ein ich elbt übelaene Köpe bewet ich eadlini leichföi. Reaktionpinzip

Mehr

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation

HTL Kapfenberg Gravitation Seite 1 von 7. Gravitation HTL Kapfenbeg Gavitation Seite 1 von 7 Pichle oland oland.pichle@htl-kapfenbeg.ac.at Gavitation Matheatische / Fachliche Inhalte in Stichwoten: Gavitationskaft, Gavitationsfeldstäke, Gavitationspotenzial,

Mehr

Mögliche Lösung. Erde und Mond

Mögliche Lösung. Erde und Mond echanik X Gavitation und Planetenbewegungen Ede und ond Die Schwepunkte (ittelpunkte) von ond und Ede haben i Duchchnitt die Entfenung von 84000k. Schlagen Sie die aen von ond und Ede in de Foelalung nach

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die inheitsvektoen

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Feienkus Expeimentalphysik 1 1 Übung 1 - Mustelösung 1. Spungschanze 1. Die maximale Höhe nach Velassen de Spungschanze kann übe die Enegieehaltung beechnet weden, de Bezugspunkt sei im Uspung am Abspungpunkt.

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse Rezipokes Quaatgesetz un Stabilität von planetaischen Bahnen Einige analytische Egebnisse ) Die Kepleschen-Gesetze sin Folgen e Tatsache, ass ie Gavitationskaft einem umgekehten Quaatgesetz folgt Wi ween

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! hysik 1 / Klausu Ende SS 0 Heift / Kutz Name: Voname: Matikel-N: Unteschift: Fomeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenechne! Heftung nicht lösen! Kein zusätzliches

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

4. Newton'sches Gravitationsgesetz, Planetenbewegung und Kepler'sche Gesetze

4. Newton'sches Gravitationsgesetz, Planetenbewegung und Kepler'sche Gesetze 4. Newton'sches Gavitationsgesetz, Planetenbewegung und Keple'sche Gesetze Das Newton'sche Gavitationsgesetz Bislang tat hatten wi die Schwekaft, die auf eine Masse nahe de Edobefläche wikt, in de Fo F

Mehr

Dreht sich die Erde? Foucaultsches Pendel

Dreht sich die Erde? Foucaultsches Pendel 0 Gavitation Deht sich die de? oucaultsches Pendel Pendel a Nodpol Pendel deht sich unte de Pendel weg koplette Dehung a Tag, d.h. 5 o po Stunde Nachtag Rotation Rostock Θ o 54.05 de Winkelgeschwindigkeit

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Das Kepler-Problem. Max Camenzind - Akademie HD - Mai 2016

Das Kepler-Problem. Max Camenzind - Akademie HD - Mai 2016 Das Keple-Poble Max Caenzind - Akadeie HD - Mai 06 Das Zweiköpe-Poble In de Physik bezeichnet an als Zweiköpe-Poble die Aufgabe, die Bewegung zweie Köpe, die ohne äußee Einflüsse nu iteinande wechselwiken,

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

Bezugssysteme neu beleuchtet

Bezugssysteme neu beleuchtet Bezugssysteme neu beleuchtet D. Holge Hauptmann Euopa-Gymnasium Wöth Bezugsysteme neu beleuchtet, Folie 1 Kleine Vobemekung Beim Bezugssystemwechsel: ändet sich die mathematische Bescheibung das physikalische

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

7.1 Schwerkraft oder Gewichtskraft 7.2 Gravitation Massenanziehung 7.3 Federkraft elastische Verformung 7.4 Reibungskräfte

7.1 Schwerkraft oder Gewichtskraft 7.2 Gravitation Massenanziehung 7.3 Federkraft elastische Verformung 7.4 Reibungskräfte Inhalt 1 7 Veschiedene Käfte 7.1 Schwekaft ode Gewichtskaft 7. Gavitation Massenanziehung 7.3 Fedekaft elastische Vefomung 7.4 Reibungskäfte 7.4.1 Äußee Reibung zwischen Festköpeobeflächen 7.4.1.1 Haftung

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts (3) O. on de Lühe und U. Landgaf Beispiele zu Ipuls- und Enegiesatz - Rakete Eine Rakete it de Masse fliegt it de Geschindigkeit i leeen, käftefeien Rau

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens PDD.S.Metens Theoetische Physik I Mechanik J. Untehinninghofen, M. Hummel Blatt 7 WS 28/29 2.2.28. Runge-enz-Vekto.EinMassenpunktdeMassemmitdemDehimplus bezüglichdes (4Pkt. Kaftzentums bewege sich in einem

Mehr

10 Gravitation. Vorbereitungsseminar zur Klausur Dienstag Klausur zur Vorlesung Dienstag

10 Gravitation. Vorbereitungsseminar zur Klausur Dienstag Klausur zur Vorlesung Dienstag Vobeeitungsseina zu Klausu Dienstag..009 Klausu zu Volesung Dienstag 0..009 jeweils 9 Uh Seinaau Alte Bibliothek 0 Gavitation Deht sich die de? Foucaultsches Pendel Pendel a Nodpol Pendel deht sich unte

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I 16. 03. 2016 1. Aufgabe (9 Punkte) Die Obefläche eines Teleskopspiegels soll duch Quecksilbe ealisiet weden. Das Quecksilbe befindet sich in

Mehr

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf Kontolle Physik-Leistunskus Klasse 11 6.11.015 Radialkaft, Wuf 1. Vate und Sohn sind mit dem Rad untewes, de eine mit einem 8e, de andee mit einem e Rad. Als es dunkel wid, schalten beide ihe Lampen an,

Mehr

Von Kepler III zu Kepler III

Von Kepler III zu Kepler III Von Keple III zu Keple III Joachi Hoffülle jh.schule@googleail.co Luitpold-Gynasiu München Seeaust. 80538 München Voaussetzungen: F a t Geschwindigkeit als Göße it Betag und Richtung Vetautheit it de Beechnung

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Lösungen zu Übungsblatt 6

Lösungen zu Übungsblatt 6 PN - Physik fü Cheike und Biologen Pof. J. Lipfet WS 07/8 Übungsblatt 6 Lösungen zu Übungsblatt 6 Aufgabe Geini VIII. Nach de Flug des Sputnik-Satelliten entwickelte sich schnell ein Wettlauf ins Weltall.

Mehr

Dreht sich die Erde? Foucaultsches Pendel

Dreht sich die Erde? Foucaultsches Pendel 10b Gavitation 1 Deht sich die Ede? Foucaultsches Pendel Pendel a Nodpol Pendel deht sich unte de Pendel weg 1 koplette Dehung a Tag, d.h. 15 o po Stunde Nachtag Rotation Rostock Θ o 54.05 de Winkelgeschwindigkeit

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas Pof. D. Nobet Ham 1/7. Das eale Gas Das eale Gas Fü die Bescheibung des ealen Gases weden die Gasteilchen betachtet als - massebehaftet - kugelfömig mit Duchmesse d - Wechselwikungen auf Gund von Diol-Diol-Wechselwikungen

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

d) Was ist an dieser Form des Vergleiches nicht korrekt?

d) Was ist an dieser Form des Vergleiches nicht korrekt? Im Banne de Dunklen Mateie - die ätselhafte Rotation de Galaxien - Vesion "light" fü zweistündige Astonomiekuse (übeabeitet von Hemann Hamme) Die im Kosmos vohandene Dunkle Mateie einnet an den Täge de

Mehr