Lineare Algebra in der Oberstufe

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra in der Oberstufe"

Transkript

1 Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April / 32

2 Übersicht Ziel dieses Kapitels Wiederholung des Schulstoffs zur Linearen Algebra der Oberstufe Schaffung einer gemeinsamen inhaltlichen Basis Inhalte: Lage von Punkten, Geraden & Ebenen in der Ebene, im Raum Abstände & Winkel Das Skalarprodukt & Orthogonalität Das Vektorprodukt Gauß-Verfahren zum Lösen von Gleichungssysteme Stefan Ruzika 1: Schulstoff 16. April / 32

3 Wiederholen Vertiefen Ausprobieren Textvorlage dieses Kapitels: Lambacher Schweizer Mathematik Qualifikationsphase Leistungskurs/Grundkurs Ernst Klett Verlag 2015 Das alte Mathe-Buch auskramen und lesen! Alte Aufgaben rechnen (zusätzlich zu den Übungsaufgaben)! Geogebra: Anschauung schulen! Stefan Ruzika 1: Schulstoff 16. April / 32

4 Punkte in der Ebene bzw. im Raum x 2 x 2 ( 3 P 1 = = (3, 4) 4) 4 P 1 = 3 3 x 1 x 1 a) in der Ebene R 2 x 3 b) im Raum R 3 Punkte in der Ebene bzw. im Raum können wir durch Angabe der Koordinaten spezifizieren. Stefan Ruzika 1: Schulstoff 16. April / 32

5 Abstände von Punkten x 2 Q P x 1 Wie berechnet man die Länge der Strecke PQ? Idee: zweimal Satz des Pythagoras anwenden x 3 Die Strecke PQ. Stefan Ruzika 1: Schulstoff 16. April / 32

6 Abstände von Punkten x 2 Q P x 1 Wie berechnet man die Länge der Strecke PQ? Idee: zweimal Satz des Pythagoras anwenden x 3 Die Strecke PQ. Den Abstand zweier Punkte P = (p 1, p 2, p 3 ) und Q = (q 1, q 2, q 3 ) berechnen wir durch PQ := ( 3 ) 1 2 (q 1 p 1 ) 2 + (q 2 p 2 ) 2 + (q 3 p 3 ) 2 = (q i p i ) 2 i=1 Stefan Ruzika 1: Schulstoff 16. April / 32

7 Vektoren Vektor: Tupel reeller Zahlen mit a) Richtung und b) Länge In der Ebene (in R 2 ): z. B. ( #» 3 OP = 4) Ortsvektor Der Ortsvektor (im Raum) 2 #» OP = 1 3 x 2 O #» OP P x 1 hat die Länge (auch: den Betrag) = 14 und den Gegenvektor #» OP = ( Stefan Ruzika 1: Schulstoff 16. April / 32 )

8 Vektoren Vektoren beschreiben Verschiebungen im Koordinatensystem. x 2 #» a x 1 Mit ( Vektoren ( kann ( man rechnen: ) ( a) + = = 4) 1) ) ( ( ) ( b) 2 = = 4) 2 4 8) Vektor + Vektor Reelle Zahl Vektor

9 Vektoren Vektoren beschreiben Verschiebungen im Koordinatensystem. x 2 #» b #» a x 1 Mit ( Vektoren ( kann ( man rechnen: ) ( a) + = = 4) 1) ) ( ( ) ( b) 2 = = 4) 2 4 8) Vektor + Vektor Reelle Zahl Vektor

10 Vektoren Vektoren beschreiben Verschiebungen im Koordinatensystem. x 2 #» a + #» b #» b #» a x 1 Mit ( Vektoren ( kann ( man rechnen: ) ( a) + = = 4) 1) ) ( ( ) ( b) 2 = = 4) 2 4 8) Vektor + Vektor Reelle Zahl Vektor Stefan Ruzika 1: Schulstoff 16. April / 32

11 Vektoren Vektoren beschreiben Verschiebungen im Koordinatensystem. x 2 x 2 #» a + #» b #» b 5 #» a #» a x 1 #» a x 1 Mit ( Vektoren ( kann ( man rechnen: ) ( a) + = = 4) 1) ) ( ( ) ( b) 2 = = 4) 2 4 8) Vektor + Vektor Reelle Zahl Vektor Stefan Ruzika 1: Schulstoff 16. April / 32

12 Linearkombination Einen Ausdruck wie λ #» v + µ #» w + ν #» u, wobei λ, µ, ν reelle Zahlen (sogenannte Koeffizienten) sind, heißt Linearkombination der Vektoren #» v, #» w, #» u, Stefan Ruzika 1: Schulstoff 16. April / 32

13 Linearkombination Einen Ausdruck wie λ #» v + µ #» w + ν #» u, wobei λ, µ, ν reelle Zahlen (sogenannte Koeffizienten) sind, heißt Linearkombination der Vektoren #» v, #» w, #» u, Frage: Für welche Werte gilt ( ( 3 0 λ + µ = 0? 4) 1) Stefan Ruzika 1: Schulstoff 16. April / 32

14 Linearkombination Einen Ausdruck wie λ #» v + µ #» w + ν #» u, wobei λ, µ, ν reelle Zahlen (sogenannte Koeffizienten) sind, heißt Linearkombination der Vektoren #» v, #» w, #» u, Frage: Für welche Werte gilt ( ( 3 0 λ + µ = 0? 4) 1) Und wie sieht es mit aus? λ λ λ = 0? 2 11 Stefan Ruzika 1: Schulstoff 16. April / 32

15 Linearkombination 2 Vektoren #» v, #» w heißen kollinear, wenn es eine reelle Zahl λ R gibt, so dass gilt: #» v = λ #» w Diese Bedingung ist äquivalent zu: #» v λ #» w = #» 0. Wir sagen: #» v und #» w sind linear abhängig. Kollinearität zweier Vektoren: der eine ist ein Vielfaches des anderen. Stefan Ruzika 1: Schulstoff 16. April / 32

16 Geraden Jede Gerade g lässt sich durch eine Gleichung der Form #» x = #» p + λ #» u, (λ R) beschreiben. Dabei nennen wir #» p Stützvektor und #» u Richtungsvektor. x 2 g x 1

17 Geraden Jede Gerade g lässt sich durch eine Gleichung der Form #» x = #» p + λ #» u, (λ R) beschreiben. Dabei nennen wir #» p Stützvektor und #» u Richtungsvektor. x 2 #» p g x 1

18 Geraden Jede Gerade g lässt sich durch eine Gleichung der Form #» x = #» p + λ #» u, (λ R) beschreiben. Dabei nennen wir #» p Stützvektor und #» u Richtungsvektor. x 2 #» u g #» p x 1 Stefan Ruzika 1: Schulstoff 16. April / 32

19 Geraden 7 Liegt der Punkt A = 5 auf der Geraden g : #» 3 5 x = 1 + λ 2? Die Punkte A = 2 und B = 6 liegen auf einer Geraden. 5 2 Bestimmen Sie eine Gleichung dieser Geraden. Beachte: Die Gleichung zur Beschreibung einer Geraden ist nicht eindeutig. Eine Gerade g kann also durch mehrere Gleichungen beschrieben werden. Stefan Ruzika 1: Schulstoff 16. April / 32

20 Lagebeziehungen von Geraden Zwei Geraden g und h im Raum können identisch sein. sich in einem gemeinsamen Punkt schneiden. zueinander parallel sein. zueinander windschief sein. Stefan Ruzika 1: Schulstoff 16. April / 32

21 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Stefan Ruzika 1: Schulstoff 16. April / 32

22 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Stefan Ruzika 1: Schulstoff 16. April / 32

23 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Wenn ja: g und h sind identisch. Stefan Ruzika 1: Schulstoff 16. April / 32

24 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Wenn ja: g und h sind identisch. Wenn nein: g und h sind parallel. Stefan Ruzika 1: Schulstoff 16. April / 32

25 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Wenn ja: g und h sind identisch. Wenn nein: g und h sind parallel. Wenn nein: Hat die Gleichung #» p + λ #» u = #» q + µ #» v eine Lösung? Stefan Ruzika 1: Schulstoff 16. April / 32

26 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Wenn ja: g und h sind identisch. Wenn nein: g und h sind parallel. Wenn nein: Hat die Gleichung #» p + λ #» u = #» q + µ #» v eine Lösung? Wenn ja: g und h schneiden sich. Stefan Ruzika 1: Schulstoff 16. April / 32

27 Lagebeziehungen von Geraden So bestimmt man die Lagebeziehung zweier Geraden g : #» x = #» p + λ #» u und h : #» x = #» q + µ #» v : Sind die Richtungsvektoren #» u und #» v parallel zueinander? Wenn ja: Liegt der Punkt P mit Ortsvektor #» p auf der Geraden h? Wenn ja: g und h sind identisch. Wenn nein: g und h sind parallel. Wenn nein: Hat die Gleichung #» p + λ #» u = #» q + µ #» v eine Lösung? Wenn ja: g und h schneiden sich. Wenn nein: g und h sind windschief. Stefan Ruzika 1: Schulstoff 16. April / 32

28 Skalarprodukt & Orthogonalität Für #» a = a 1 a 2 a 3 und #» b = b 1 b 2 b 3 definieren wir das Skalarprodukt von #» a und #» b als #» #» 3 a b := a1 b 1 + a 2 b 2 + a 3 b 3 = a i b i. i=1 Beachte: Beim Skalarprodukt verknüpfen wir multiplikativ zwei Vektoren und erhalten ein Skalar (also eine reelle Zahl). Dies ist schon die zweite Bedeutung von, die wir in dieser Vorlesung kennenlernen. Stefan Ruzika 1: Schulstoff 16. April / 32

29 Skalarprodukt & Orthogonalität 0 #» #» #» a und b seien nachfolgend beide ungleich dem Nullvektor 0 = 0. 0 #» a und #» b heißen orthogonal, wenn #» a #» b = 0 Es gilt: 4 2 #» #» a b = 1 9 = ( 1) = Also: #» a und #» b sind orthogonal; wir schreiben dafür auch: #» a #» b. Stefan Ruzika 1: Schulstoff 16. April / 32

30 Skalarprodukt & Orthogonalität Eigenschaften (Rechenregeln) Für das Skalarprodukt von Vektoren #» a, #» b und #» c gilt: 1 #» #» #» a b = b #» a (Kommutativität) 2 r #» a #» b = r ( #» a #» b ) für jede reelle Zahl r R (Assoziativität) 3 ( #» a + #» b ) #» c = #» a #» c + #» b #» c (Distributivität) 4 #» a #» a = #» a 2 Stefan Ruzika 1: Schulstoff 16. April / 32

31 Skalarprodukt & Orthogonalität Eigenschaften (Rechenregeln) Für das Skalarprodukt von Vektoren #» a, #» b und #» c gilt: 1 #» #» #» a b = b #» a (Kommutativität) 2 r #» a #» b = r ( #» a #» b ) für jede reelle Zahl r R (Assoziativität) 3 ( #» a + #» b ) #» c = #» a #» c + #» b #» c (Distributivität) 4 #» a #» a = #» a 2 Typische Aufgaben: Überprüfung der Orthogonalität zweier gegebener Geraden. Bestimmung zueinander orthogonaler Vektoren. Bestimmung fehlender Koordinaten von orthogonalen Vektoren. Orthogonalität bei geometrischen Figuren. Beweis der vier oben genannten Eigenschaften. Stefan Ruzika 1: Schulstoff 16. April / 32

32 Winkel zwischen Vektoren Für den Winkel α zwischen den Vektoren #» a und #» b gilt: #» a #» b = #» a #» b cos(α) mit 0 α 180 Stefan Ruzika 1: Schulstoff 16. April / 32

33 Winkel zwischen Vektoren Für den Winkel α zwischen den Vektoren #» a und #» b gilt: #» a #» b = #» a #» b cos(α) mit 0 α 180 Sei #» a = 2 3 und #» b = 1 Vektoren #» a und #» b : cos(α) =. Dann gilt für den Winkel α zwischen diesen beiden #» #» a b #» a #» b = = Also gilt: α 54, 0 Stefan Ruzika 1: Schulstoff 16. April / 32

34 Gauß-Verfahren Eine der häufigsten Aufgaben der Linearen Algebra / der Mathematik Lineare Gleichungssysteme (LGS) lösen. Carl Friedrich Gauß wiki/file:carl Friedrich Gauß.jpg Wie löst man ein LGS? Lineare Algebra Warum ist das so richtig? Lineare Algebra Wie löst man ein LGS schnell? Numerik Wie löst man ein LGS stabil? Numerik Wo muss man LGS in der Praxis lösen? Schule, Analysis, Optimierung, Finanzmathematik, Computergrafik,... quasi immer mal wieder und überall! Stefan Ruzika 1: Schulstoff 16. April / 32

35 Gauß-Verfahren Der einfache Fall: Angenommen, es ist ein LGS in Zeilenstufenform gegeben: 2x 1 3x 2 + x 3 = 8 2x 2 + 5x 3 = 6 2x 3 = 4 Das lässt sich leicht lösen! Rechnung an der Tafel bzw. siehe Scan von Herrn Steinhauer Stefan Ruzika 1: Schulstoff 16. April / 32

36 Gauß-Verfahren Gauß-Verfahren zum Lösen linearer Gleichungssysteme 1 Bringe das LGS durch Äquivalenzumformungen auf Zeilenstufenform. 2 Löse die Gleichungen der Zeilenstufenform schrittweise von unten nach oben. LGS: 3x 1 + 6x 2 2x 3 = 4 3x 1 + 2x 2 + x 3 = x 1 + 5x 2 5x 3 = 9 Kurzschreibweise in Matrixform: Rechnung an der Tafel bzw. siehe Scan von Herrn Steinhauer Stefan Ruzika 1: Schulstoff 16. April / 32

37 Lösungsmengen linearer Gleichungssysteme Erinnern wir uns an die Schnittmengen von Geraden im R 2 : Die Schnittmenge entspricht der Lösungsmenge des LGS, das aus den beiden Geradengleichungen besteht. Lösungsmengen von LGS kein Schnittpunkt / keine Lösung ein Schnittpunkt / eine Lösung unendlich viele Schnittpunkte / unendlich viele Lösungen Beispiele an der Tafel bzw. siehe Scan von Herrn Steinhauer Stefan Ruzika 1: Schulstoff 16. April / 32

38 Ebenen im Raum Parameterform einer Ebene Jede Ebene E lässt sich durch eine Gleichung der Form #» x = #» p + λ #» u + µ #» v, (λ, µ R, #» u #» 0, #» v #» 0 ) beschreiben. Dabei nennen wir #» p Stützvektor, #» u und #» v Richtungs- oder Spannvektoren. Dabei dürfen #» u und #» v nicht kollinear (also nicht parallel zueinander) sein. Beispiele an der Tafel bzw. siehe Scan von Herrn Steinhauer Stefan Ruzika 1: Schulstoff 16. April / 32

39 Lagebeziehungen zwischen Ebenen und Geraden Eine Gerade g und eine Ebene E können einen gemeinsamen Punkt Durchstoßpunkt keinen gemeinsamen Punkt g parallel zu E unendlich viele gemeinsame Punkte g liegt in E haben. Dies folgt aus der Struktur der Lösungsmenge des LGS bestehend aus der Ebenen- und der Geradengleichung. Beispiele an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

40 Lagebeziehungen zwischen Ebenen und Geraden Wenn g und E sich schneiden, stellt sich die Frage, ob g E gilt. Dies gilt, wenn der Richtungsvektor von g zu den beiden Spannvektoren der Ebene orthogonal ist. Solch einen Vektoren nennen wir dann Normalenvektor der Ebene E. Beispiele an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

41 Normalengleichung einer Ebene Ist #» n ein Normalenvektor von E mit #» x = #» p + λ #» u + µ #» v, dann liegt ein Punkt X mit Ortsvektor #» x = OX #» genau dann in E, wenn #» x #» p orthogonal zu #» n ist. Normalengleichung der Ebene Jede Ebene E lässt sich durch eine Gleichung der Form ( #» x #» p ) #» n = 0 beschreiben (wobei #» n #» 0 gelten muss). Illustration an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

42 Koordinatengleichung einer Ebene Sei E durch ( #» x #» p ) #» n = 0 gegeben. #» x #» n #» p #» n = 0 #» x #» n = #» p #» n Sei #» x = x 1 x 2, #» n = a b und #» p #» n = d. Dann folgt aus #» x #» n = #» p #» n : x 3 b ax 1 + bx 2 + cx 3 = d Koordinatengleichung der Ebene Jede Ebene E lässt sich durch eine Gleichung der Form ax 1 + bx 2 + cx 3 = d beschreiben (wobei mindestens einer der Koeffizienten a, b, c ungleich 0 ist). Beachte (a, b, c) ist Normalenvektor von E. Stefan Ruzika 1: Schulstoff 16. April / 32

43 Lagebeziehung zwischen Ebenen und Geraden p 1 u 1 Seien g : #» x = p 2 + λ u 2 und E : ax 1 + bx 2 + cx 3 = d gegeben. p 3 u 3 Falls die Gleichung a(p 1 + λu 1 ) + b(p 2 + λu 2 ) + c(p 3 + λu 3 ) = d genau eine Lösung hat, so schneiden sich g und E, keine Lösung hat, so ist g parallel zu E unendlich viele Lösungen hat, dann g liegt in E Beispiel an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

44 Abstand eines Punktes von einer Ebene Unter dem Abstand eines Punktes R von einer Ebene E verstehen wir die kleinste Entfernung von R zu E. Sei #» r = #» OR und #» n Normalenvektor von E. Bestimmung des Abstand d von R zu E: Aufstellen der Gleichung einer zu E orthogonalen Geraden durch R, z. B. g : #» x = #» r + λ #» n. Berechnen der Koordinaten des Lotfußpunktes F der Lotgeraden g mit E. Berechnen des Betrags des Vektors RF #». Es gilt: d = RF #». Illustration und Beispiel an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

45 Abstand eines Punktes von einer Geraden Unter dem Abstand eines Punktes R von einer Geraden g verstehen wir die kleinste Entfernung von R zu g. Leiten Sie sich selbst her, wie man diesen Abstand bestimmt! Das nötige Wissen dazu haben Sie.... Die Berechnung einer Hilfsebene, die durch R geht und orthogonal zu g ist, könnte hilfreich sein. Stefan Ruzika 1: Schulstoff 16. April / 32

46 Schnittwinkel Schnittwinkel... Gerade Gerade: zwei Winkel der Größe α 90 und ein Winkel der Größe Ebene Ebene: Schnittwinkel α zweier Geraden, die in den Ebenen liegen und orthogonal zur Schnittgeraden sind. Dieser Winkel ist gleich dem Winkel zwischen den Normalenvektoren n #» 1 und n #» 2 der beiden Ebenen. Gerade Ebene: Fällt man das Lot einer Geraden g auf eine Ebene E, so erhält man eine Gerade g, die in E liegt. Unter dem Winkel zwischen g und E verstehen wir den Winkel zwischen g und g. Illustration an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

47 Schnittwinkel Berechnung von Schnittwinkeln Seien u #» 1 und u #» 2 Richtungsvektoren der Geraden g 1 und g 2 und seien n #» 1 und n #» 2 Normalenvektoren der Ebenen E 1 und E 2. Dann gilt für den Schnittwinkel α (0 α 90 ): von g 1 und g 2 : von E 1 und E 2 : von g 1 und E 1 : cos(α) = u #» 1 u #» 2 u #» 1 u #» 2 cos(α) = n #» 1 n #» 2 n #» 1 n #» 2 cos(90 α) = u #» 1 n #» 1 u #» 1 n #» 1 Beispiel an der Tafel Stefan Ruzika 1: Schulstoff 16. April / 32

48 Vektorprodukt Betrachte nun eine (multiplikative) Abbildung 1 : R 3 R 3 R 3 Vektorprodukt a 1 Seien #» a = a 2 und #» b = b 2. a 3 b 3 Dann heißt a #» #» 2 b 3 a 3 b 2 a b := a 3 b 1 a 1 b 3 a 1 b 2 a 2 b 1 das Vektorprodukt von #» a und #» b. Beachte: #» a #» b ist orthogonal zu #» a und zu #» b. b 1 Beispiel an der Tafel 1 Achtung! Das Zeichen hat hier zwei unterschiedliche Bedeutung. Leider wird in der Typografie standardmäßig für beide Bedeutungen dasselbe Zeichen verwendet. Stefan Ruzika 1: Schulstoff 16. April / 32

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

Ebenen in Normalenform

Ebenen in Normalenform Ebenen in Normalenform Normalenvektoren und Einheitsvektoren Definition Normalenvektor Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht auf einer Ebene steht (siehe Seite 12). Berechnung eines

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Michael Buhlmann Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Einleitung: Elemente der Vektorrechnung im dreidimensionalen reellen kartesischen x -x -x 3-Koordinatensystem sind Punkte P(p

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Leistungskurs Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches Lösen von

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs Lambacher Schweizer Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ott Deusch Mathematik für berufliche Gymnasien Lineare Algebra Vektorgeometrie Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab. Auflage 6 ISBN 978--8-68-5 Das Werk und seine Teile

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Lösungen der 1. Lektion

Lösungen der 1. Lektion Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Geometrie. Ingo Blechschmidt. 4. März 2007

Geometrie. Ingo Blechschmidt. 4. März 2007 Geometrie Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Geometrie 2 1.1 Geraden.......................... 2 1.1.1 Ursprungsgeraden in der x 1 x 2 -Ebene.... 2 1.1.2 Ursprungsgeraden im Raum..........

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Geometrie / Lineare Algebra

Geometrie / Lineare Algebra 6 Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail: klaus_messner@web.de,

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Mathe GK, Henß Klausur No. IV Thema: Geraden und Ebenen

Mathe GK, Henß Klausur No. IV Thema: Geraden und Ebenen Matheklausur No. IV Geraden und benen Geradengleichung Um eine Gerade zeichnen zu können, braucht man mindestens Punkte (Ortsvektoren), durch die die Gerade geht. Zur Bestimmung aller anderen Punkte auf

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Theorie 1 1 / 2 Grundbegriffe

Theorie 1 1 / 2 Grundbegriffe Theorie 1 1 / 2 Grundbegriffe Was ist ein Vektor? Wie lassen sich Vektoren darstellen? Theorie 1 2 / 2 Grundbegriffe Antwort : Ein Vektor ist die Menge aller gleichlangen, gleichgerichteten und gleichorientierten

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Vorkurs Mathematik Teil III. Lineare Algebra

Vorkurs Mathematik Teil III. Lineare Algebra Vorkurs Mathematik Teil III. Lineare Algebra Inhalt 0. Inhalt 1. Lineare Gleichungssysteme und Gauß-Verfahren. Vektorrechnung 3. Lagebestimmungen von Punkt, Geraden und Ebenen 4. Skalarprodukt, Längen

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Vorkurs Mathematik Teil III. Lineare Algebra

Vorkurs Mathematik Teil III. Lineare Algebra Vorkurs Mathematik Teil III. Lineare Algebra Inhalt 0. Inhalt 1. Vektorrechnung. Matrizenrechnung 3. Lineare Gleichungssysteme und Gauß-Verfahren 4. Lagebestimmungen von Punkt, Geraden und Ebenen 5. Skalarprodukt,

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen

Mehr

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)

Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

Lineare Algebra.

Lineare Algebra. Lineare Algebra www.schulmathe.npage.de Inhaltsverzeichnis 1 Koordinatengeometrie der Ebene 3 1.1 Länge einer Strecke............................... 3 1.2 Mittelpunkt einer Strecke...........................

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache

Mehr

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b = a b cosα = a 1 a 2 a 3 b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 b a 1. Betrag = Länge eines Vektors: a = a a = a 2 1 + a 2 2 + a 2 3 2. Winkel zwischen 2 Vektoren:

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene 5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:

Mehr

5. Ebenengleichungen. Dr. Fritsch, FGG Kernfach Mathematik Klasse 11-A18

5. Ebenengleichungen. Dr. Fritsch, FGG Kernfach Mathematik Klasse 11-A18 5. Ebenengleichungen Eine Ebene im Raum wird durch einen Punkt und zwei nicht parallele Richtungsvektoren bzw. durch drei Punkte, die nicht auf einer Geraden liegen, eindeutig festgelegt. vektorielle Parametergleichung:

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Berechnung des Abstandes eines Punktes P von einer Geraden

Berechnung des Abstandes eines Punktes P von einer Geraden Berechnung des Abstandes eines Punktes P von einer Geraden Vorgehen zur Bestimmung des Abstandes des Punktes P von der Gerade g: a) Aufstellen einer Hilfsebene E, die senkrecht auf der Geraden g steht

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung Mathematik LK M,. Kursarbeit LA I / An. Geometrie Lösung..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Inhaltsverzeichnis Bausteine Analytische Geometrie

Inhaltsverzeichnis Bausteine Analytische Geometrie Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Ebenengleichungen und Umformungen

Ebenengleichungen und Umformungen Ebenengleichungen und Umformungen. Januar 7 Ebenendarstellungen. Parameterdarstellung Die Parameterdarstellung einer Ebene ist gegeben durch einen Stützvektor r, der einen Punkt auf der Ebene angibt und

Mehr

Basiswissen Analytische Geometrie

Basiswissen Analytische Geometrie www.matheabitur.de Basiswissen Analytische Geometrie Alle Grundlagen und Rechentechniken der analytischen Geometrie S. und deren beschreibende Verfahren Wissenskatalog der Grundlagen. Lösen einfacher linearer

Mehr

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und  Untersuchen Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

eingesetzt in die Ebenengleichung

eingesetzt in die Ebenengleichung 25 5. Gegenseitige Lage von Geraden und Ebenen 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene Beispiel: ε: 2x + 3y + 4z - 24 = 0 g = P(6, -2, 2)Q(0,

Mehr