Von Winkelfunktionen zur Dreiecksgeometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Von Winkelfunktionen zur Dreiecksgeometrie"

Transkript

1 Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)). Dies knn mn nutzen, um durch periodische Fortsetzung uf gnz Ê 0 1 x die Funktionen sin(φ) und cos(φ) zu definieren. Mit dem Stz des Pythgors gilt offensichtlich 0P = 1 = sin (φ)+cos (φ). Diese Formel wird ls trigonometrischer Pythgors bezeichnet. Übung 1 Mn skizziere die Funktionen sin(φ) und cos(φ). Dbei verwende mn zum Messen von Winkeln die Konvention, dss ein rechter Winkel ds Mß π ht. Übung Mn beweise, dss gelten. cos(φ) = sin(φ+ π ), cos(φ) = cos( φ) und sin(φ) = sin( φ) Dreiecksberechnung mit Winkelfunktionen Wie der Nme schon vermuten lässt, eignen sich trigonometrische Funktionen in besonderer Weise zur Berechnung von und in Dreiecken. In rechtwinkligen Dreiecken AB mit AB = π gilt (schon llein wegen der Ähnlichkeit zu einem Dreieck mit A = 1 und der Definition der Winkelfunktionen) c = b cos(α) und = b sin(α), wobei wir wie üblich die Bezeichnungen = B und α = AB usw. verwenden. Uns interessieren ber Formeln die in llen Dreiecken gelten. This mteril belongs to the Public Domin KoSemNet dt bse. It cn be freely used, distributed nd modified, if properly ttributed. Detils re regulted by the retive ommons Attribution License, see For the KoSemNet project see 1

2 .1 Erweiterter Sinusstz Ein llgemeines Dreieck wird durch die Höhe in rechtwinklige Teildreiecke zerlegt. Es gilt lso insbesondere b h c und dmit b sin(α) = h c = sin(β) α c β sin(α) = b sin(β) = c sin(γ). A H c B Frge: Welchen Wert ht sin(α) m llgemeinen Dreieck? Wir suchen eine geometrische Interprettion. Sei o.b.d.a. α < π. Dnn können A wir nch dem Peripheriewinkelstz A uf dem Umkreis des Dreiecks α A AB verschieben, ohne α (und ) zu ändern. Wählen wir A so, dss α BA = π ein rechter Winkel ist. M Dnn gilt mit der Umkehrung vom Stz des Thles für den Umkreismittelpunkt M BA und somit B sin(α) = A B = R, Es gilt lso der erweiterte Sinusstz wobei R der Umkreisrdius des Dreiecks ist. sin(α) = b sin(β) = c sin(γ) = R.. Additionstheoreme I Die Innenwinkel im Dreieck erfüllen α+β+γ = π. Dmit ergeben sich uf elementre Weise Additionstheoreme für Winkelfunktionen sin(α+β) = sin(π α β) = sin(γ) und entsprechend cos(α+β) = cos(γ) unter der Nebenbedingung α+β < π. Um dies schöner zu gestlten, wenden wir den erweiterten Sinusstz n. Es gilt R sin(γ) = c = AH c + BH c = b cos(α)+ cos(β) = R(sin(β) cos(α)+sin(α) cos(β)) wobei H c der entsprechende Höhenfußpunkt ist. Wir hben lso

3 sin(α+β) = sin(α) cos(β)+sin(β) cos(α) bewiesen. Insbesondere ergibt sich die Doppelwinkelformel sin(α) = sin(α) cos(α). Um entsprechende Beziehungen für den osinus zu bekommen, müssen wir entweder verstehen, wrum ds Additionstheorem für lle α, β Ê gilt, oder eine bessere geometrische Interprettion für den osinus finden. Wir werden letzteres tun. An der Stelle soll nur vorb uf die Doppelwinkelformel für den osinus hingewiesen werden. Es gilt Ein Beweis erfolgt in Abschnitt.7.. Flächeninhlt cos(α) = cos (α) sin (α) = cos (α) 1. Auch der Flächeninhlt ist eine Invrinte des Dreiecks. Wir wollen die unsymmetrischen Formel A = 1 h umformen. Es gilt A = 1 h = 1 b sin(γ) und wegen dem erweiterten Sinusstz b = 4R sin(α) sin(β). Somit ergibt sich A = R sin(α) sin(β) sin(γ) = bc 4R..4 Zusmmenhng zu Inkreisrdius und Umfng Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhlbierenden. Diese zerlegen wie in der Skizze ds Dreieck in drei Teilflächen ABW, BW und AW, die Höhen der Teildreiecke sind jeweils die Rdien des Inkreises. Dmit ergibt sich eine einfche Flächenformel A = pr, in der p = 1 (+b+c) der hlbe Umfng des Dreiecks ist. Mit dem Sinusstz folgt ws sich mit den Doppelwinkelformeln = R sin(α), b = R sin(β), c = R sin(γ) sin(α) = sin cos p = R(sin(α)+sin(β)+sin(γ)), r r W r A und cos(α) = cos ( β ) 1 B

4 über die Zwischenschritte = R(sin(α)+sin(β)+sin(α+β)) = R(sin(α)+sin(β)+sin(α) cos(β)+sin(β) cos(α)) = R(sin(α(1+cos(β)+sin(β(1+cos(α)) ( ( ( ) ( ) ( ) α β β β = 4R sin cos cos +sin cos cos ) ) ( ( ) β ( ( ) ( ) α β β = 4R cos cos sin cos +sin cos ) ( ( ) ( ) α β α+β = 4R cos cos sin = 4R cos cos cos umformen lässt in und mit A = pr in p = 4R cos cos cos r = 4R sin sin sin..5 osinusstz Etws us der Rolle fällt der osinusstz, er ist unsymmetrisch, soll ber trotzdem nicht unerwähnt bleiben. Es gilt mit dem Stz des Pythgors b h c α A H c c und dmit der osinusstz = h c + H c B = b AH c + H c B = b +(c AH c ) AH c = b +c c AH c B = b +c bccos(α). Der osinusstz ist nichts wirklich Neues. Er ergibt sich wie so vieles us dem Sinusstz, wie folgende Übung zeigt (zeigen soll). Übung Mn folgere den osinusstz us dem Sinusstz und dem trigonometrischen Pythgors (ls Definition der osinus-funktion)..6 Höhen und Höhenbschnitte Die Höhen eines Dreiecks erfüllen h c = b sin(α) = R sin(α) sin(β). 4

5 Führt mn die hlbe Höhensumme ls neue Hilfsgröße ein, so ergibt sich dmit q = 1 (h +h b +h c ) = R (sin(α) sin(β)+sin(β) sin(γ)+sin(γ) sin(α)). Mit den Formeln us Abschnitt. und.4 erhält mn dmit A = sin(α) sin(β) sin(γ), R q = sin(α) sin(β)+sin(β) sin(γ)+sin(γ) sin(α), R p R = sin(α)+sin(β)+sin(γ). Ähnliche Beziehungen gelten uch für die osini der Winkel. Aufgbe 1 ) mcht deutlich, dss für die Höhenbschnitte die Beziehungen und AH = R cos(α), BH = R cos(β), H = R cos(γ), HH = R cos(β) cos(γ), HH b = R cos(γ) cos(α), HH c = R cos(α) cos(β) gelten. Insbesondere ist ds Produkt der Höhenbschnitte konstnt, AH HH = BH HH b = H HH c = 4R cos(α) cos(β) cos(γ)..7 Additionstheoreme II Wir gehen wieder vor wie in Abschnitt., ersetzen nur den erweiterten Sinusstz durch die Formeln us dem vorigen Abschnitt. Es gilt R cos(γ) = H = H c HH c = b sin(α) R cos(α) cos(β) = R (sin(α) sin(β) cos(α) cos(β)) und dmit cos(α+β) = cos(α) cos(β) sin(α) sin(β), vorusgesetzt, dss α+β < π ist. Übung 4 Mn komplettiere den Beweis durch jeweils eine Skizze für den Fll γ < π und γ > π. Aufgben Aufgbe 1 Mn zeige in einem Dreieck AB (mit den üblichen Bezeichnungen) die folgenden Beziehungen: 5

6 ) AH = R cos(α), HH = R cos(β) cos(γ) für den Höhenschnittpunkt H und den Höhenfußpunkt H B. b) Der Fußpunkt der Winkelhlbierenden AW teilt die Seite B im Verhältnis sin(γ) : sin(β). c) sin(α)+sin(β)+sin(γ) sin(α) sin(β) sin(γ) = R r d) ( WURZEL, ι1) R(cos(α)+cos(β)+cos(γ)) = R+r. Aufgbe (A41145,[]) Mn beweise, dss ein Dreieck genu dnn rechtwinklig ist, wenn für seine Innenwinkel α, β und γ sin (α)+sin (β)+sin (γ) cos (α)+cos (β)+cos (γ) = gilt. Aufgbe In einem Dreieck AB gelten stets die folgenden drei Ungleichungen ) b) sin sin sin ) ( ) β cos cos cos 4 c) 0 < sin(α)+sin(β)+sin(γ) Aufgbe 4 (A1715, [1] A85) Mn beweise folgenden Stz: Sind u den Umfng, R der Umkreis- und r der Inkreisrdius des Dreiecks AB, so gilt R > 1 ur. Ist ds Dreieck insbesondere rechtwinklig, so gilt sogr R 1 ur. Aufgbe 5 Die durch die Fußpunkte der Dreieckstrnsverslen gebildeten Dreiecke werden ls Fußpunktdreiecke bezeichnet. Die Trnsverslen des Ausgngsdreicks sind dnn wieder (ndere) Trnsverslen des Fußpunktdreiecks. So sind die Seitenhlbierenden eines Dreiecks gleichzeitig Seitenhlbierende seines Mittendreiecks. Mn zeige: Die Höhen eines Dreiecks AB bilden Winkelhlbierende seines Höhenfußpunktdreiecks H H b H c. 6

7 Aufgbe 6 Der Umkreis des Höhenfußpunktdreiecks ht den Rdius 1 R. Litertur [1] Mthemtischer Lesebogen Junge Mthemtiker, Heft 80 Bezirkskbinett für ußerunterrichtliche Tätigkeit, Rt des Bezirkes Leipzig, 1987 [] WURZEL, 5/97, [] omments to do: convert pictures Attribution Section wirth (Dec 004): ontributed to KoSemNet grebe ( ): Prepred long the KoSemNet rules 7

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen.

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen. Über die sog. «Ein-Frnken-pro-Todesfll» -Kssen. Eine versicherungstechnische Studie von HEINRICH JECKLIN (Zürich). (AIs Mnuskript eingegngen m 25. Jnur 1940.) In der versicherungstechnischen Litertur finden

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner Definition Teilverhältnis Definition Teilverhältnis Üung Kpitel 5: Teilverhältnisse und Ähnlihkeit Definition Teilverhältnis λ λ T T llgemeiner T λ T T T T T ist innerer Teilpunkt, flls λ > 0 T ist äußerer

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Technische Mechanik I

Technische Mechanik I Repetitorium Technische Mechnik I Version 3., 9.. Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen ottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische ufgbentypen

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse Mthemtik für Volkswirte Mthemticl Methods for Economists Josef Leydold Institute for Sttistics nd Mthemtics WU Wien Wintersemester 05/6 009 05 Josef Leydold This work is licensed under the Cretive Commons

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung.

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung. Reinigung 146 Bei Verschmutzung oder Bildverschlechterung muss der Projektor gereinigt werden. Schlten Sie den Projektor vor der Reinigung us. Reinigung der Projektoroberfläche Reinigen Sie die Projektoroberfläche

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5;

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5; Überblick: Teil C Systemnhe Softwreentwicklung Einordnung: Zeiger (Pointer) Literl: Drstellung eines Wertes 0110 0001 12 Progrmmstruktur und Module Vrible: Bezeichnung chr ; eines Dtenobjekts Behälter

Mehr

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN Der beste Umzug, den wir je htten. Privtumzüge Überseeumzüge Senioenumzüge Kunsttrnsporte Lgerung ERWIN WEDMANN Erwin Wedmnn Euromovers erfolgreiche Koopertion seit über 20 Jhren Heute zählt die EUROMOVERS

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

04.12.15. 2. Rahmen und Bogen

04.12.15. 2. Rahmen und Bogen Gekrümmte Blken werden ls Bogen bezeichnet. Rhmen sind Trgwerke, die us strr verbundenen gerden Blken oder Bogen zusmmengesetzt sind. Die Schnittlsten können wie bei gerden Blken us Gleichgewichtsbetrchtungen

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik FACHHOCHSCHLE Bielefeld 9. Juli 2007 Fchbereich Elektrotechnik Professor Dr.Ing.hbil. K. Hofer Klusur zu LEISTNGSELEKTRONIK ND ANTRIEBE (LEA) Berbeitungsduer: Hilfsmittel: 3.0 Zeitstunden Vorlesungsskriptum,

Mehr

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag Relschule 01 Mthemtik wwwmtheverlgcom Mthemtik-Verlg Vorwort: Sehr geehrte Schülerinnen und Schüler, mit diesem Prüfungsheft können Sie sich gezielt und systemtisch uf die Relschulbschlussprüfung in Mthemtik

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master)

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master) Interntionle Ökonomie I Vorlesung 3: Ds Riccrdo-Modell: Komprtive Vorteile und Produktivität (Mster) Dr. Dominik Mltritz Vorlesungsgliederung 1. Einführung 2. Der Welthndel: Ein Überblick 3. Ds Riccrdo-Modell:

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6 FH Augsburg Ingenieurmthemtik Stoffumfng.Semester - Lektionen Grundbegriffe 4 5 6 Differenzition 7 8 9 0 Höhere Funktionen 4 Koordinten, Gerde, Steigung Funktionen und Grphen, Umkehrfunktion Trigonometrische

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten.

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten. Folie 1 Trnsortvorgänge im Vkuum Trnsortvorgänge im Vkuum, ± kein thermodynmisches Gleichgewicht d.h. Druck-, Temertur- und/oder Konzentrtionsgrdienten 1. Diffusion Diffusionsstrom entsrechend dem Diffusionsgesetz:

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007 Endliche Automten Prof. Dr. W. Vogler Sommersemester 2007 1 INHALTSVERZEICHNIS i Inhltsverzeichnis 1 Wörter und Monoide 1 2 Endliche Automten 4 3 Anwendung: Diophntische Gleichungen 9 4 Minimierung endlicher

Mehr

-25/1- DIE RÖHRENDIODE

-25/1- DIE RÖHRENDIODE -25/1- DIE RÖHRENDIODE ufgben: Messverfhren: Vorkenntnisse: Lehrinhlt: Litertur: ufnhme der Kennlinie einer Röhrendiode und einiger rbeitskennlinien. Bestimmung des Exponenten der Schottky-Lngmuirschen

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Hinweise zur Berechnung von statisch bestimmten Systemen

Hinweise zur Berechnung von statisch bestimmten Systemen Hinweise zur Berechnung von sttisch bestimmten Systemen. Knn ds System eindeutig us sttisch bestimmten Grundsystemen ufgebut werden, ohne Hilfsfesseln einzuführen? Wenn j, Teilsysteme ncheinnder entsprechend

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Aluminium - Spezialprofile

Aluminium - Spezialprofile Aluminium - Spezilprofile fc lu & future components Entwicklungs- und Hndels GmbH A-3100 St. Pölten Porschestrße 23 Tel.: +43 (0)2742/730 93 Fx.: +43 (0)2742/730 93-30 office@lu-future.com www.lu-future.com

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Exportmodul Artikel-Nr.: 20208

Exportmodul Artikel-Nr.: 20208 Seite 1 / 5 V5.32 Exportmodul Artikel-Nr.: 20208 Erweiterungsmodul für ds ELV-TimeMster Komplettsystem Hndbuch und Beschreibungen Ab der Version 5 befinden sich die Kurznleitung und ds gesmte Hndbuch ls

Mehr

Informationen zu den gemeinsamen Fächern im Zentralabitur 2010 in Berlin und Brandenburg. Nr. 1 Mathematik

Informationen zu den gemeinsamen Fächern im Zentralabitur 2010 in Berlin und Brandenburg. Nr. 1 Mathematik Ministerium für Bildung, Jugend und Sport Sentsverwltung für Bildung, Wissenschft und Forschung Informtionen zu den gemeinsmen Fächern im Zentrlbitur 00 in Berlin und Brndenburg Nr..0.009 Beispielufgben

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Leitfden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Stnd: 20.01.2012 Gültig b: 01.01.2012 Inhltsverzeichnis 1 Benötigte Dten... 3 2 Netzentgelte... 4 2.1 Entgelt für Entnhme

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr