Lösungen zu Aufgabenblatt 6

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu Aufgabenblatt 6"

Transkript

1 Fachbereich Informatik Prof. Dr. Peter Becker Vorlesung Graphentheorie Operations Research Wintersemester 2004/05 3. Januar 2005 Lösungen zu Aufgabenblatt 6 Aufgabe 1 (Modellierung von LPs) Formulieren Sie die folgenden Probleme als LP: (a) Eine Schuhfabrik will je ein Modell eines Damen- und Herrenschuhs produzieren. Die 40 Angestellten und 10 Maschinen sollen so eingesetzt werden, daß der Gewinn maximal wird. Nebenbedingungen und Zielfunktion ergeben sich aus der folgenden Tabelle: Damenschuhe Herrenschuhe verfügbar Herstellungszeit [h] Maschinenbearbeitung [h] Lederbedarf [qdm] Reingewinn [EUR] (b) In einem Betrieb werden Schafe und Kühe gehalten. Für höchstens 40 Kühe und 90 Schafe sind Ställe vorhanden. Eine Kuh braucht mindestens 1 ha, ein Schaf mindestens 0.25 ha Weideland, wovon 50 ha vorhanden sind. Pro Jahr stehen 1650 Personenarbeitsstunden zur Versorgung zur Verfügung. Eine Kuh braucht 30, ein Schaf 10 Personenarbeitsstunden pro Jahr. Der Reingewinn ist zu maximieren. Er beträgt 200 EUR/Kuh und 40 EUR/Schaf. (c) Ein Haus mit 1000 qm Bodenfläche soll möglichst preisgünstig mit Bodenbelag ausgestattet werden, dessen Reinigungskosten jährlich 7000 EUR nicht übersteigen darf. Dabei sind mindestens 300 qm mit Parkett C (Preis: 60 EUR/qm, jährl. Reinigungskosten: 4 EUR/qm) auszustatten, während für den Rest die zwei Kunstoffsorten A (Preis: 30 EUR/qm, Reinigungskosten: 9 EUR/qm) und B (Preis: 40 EUR/qm, Reinigungskosten: 8 EUR/qm) zur Verfügung stehen. (a) Damenschuhe: x 1, Herrenschuhe: x 2 Maximiere: 16x x 2 20x x x 1 + 5x x x und den Vorzeichenbedingungen x 1 0, x 2 0.

2 (b) Schafe: x 1, Kühe: x 2 Maximiere: 40x x 2 x 1 90 x 2 40 frac14x 1 + x x x und den Vorzeichenbedingungen x 1 0, x 2 0. (c) Bodenbeläge in m 2 : A, B, C Minimiere: 30A + 40B + 60C A + B + C = A + 8B + 4C 7000 C 300 und den Vorzeichenbedingungen A 0, B 0, C 0. Aufgabe 2 (Transformation von LPs) Überführen Sie das LP Minimiere z = 3x 1 4x 2 2x 1 + 3x 2 7, x 1 2x 2 4, 3x 1 + 2x 2 = 6 x 1 0, x 2 IR (nicht vorzeichengebunden) in ein Maximumproblem mit Nebenbedingungen und Vorzeichenbedingungen (vgl. S. 156 des Skripts). Durch die Multiplikation der Zielfunktion mit 1 erhält man ein Maximierungsproblem. Maximiere z = 3x 1 + 4x 2 Durch Multiplikation beider Seiten mit 1 wird die Ungleichung x 1 2x 2 4 überführt in x 1 + 2x 2 4 Die Gleichung 3x 1 + 2x 2 = 6 wird ersetzt durch zwei Gleichungen mit bzw.. Letztere wird anschließend durch die Multiplikation mit 1 in eine -Ungleichung überführt. 3x 1 + 2x 2 6 3x 1 2x 2 6 Anschließend ersetzt man in der Zielfunktion sowie in allen Nebenbedingungen x 2 durch zwei Variablen x + 2 und x 2 mit x 2 = x + 2 x 2.

3 Ergebnis: Maximiere: z = 3x 1 + 4x + 2 4x 2 2x 1 + 3x 2 7 x 1 + 2x + 2 2x 2 4 3x 1 + 2x + 2 2x 2 6 3x 1 2x x 2 6 und den Vorzeichenbedingungen x 1 0, x + 2 0, x 2 0. Aufgabe 3 (Transformation von LPs) Überführen Sie die LPs von Aufgabe 1 (a) und (c) in die Normalform (vgl. S. 161 des Skripts). Für jede Ungleichung wird eine nichtnegative Schlupfvariable eingeführt, die die Differenz zur rechten Seite der Ungleichung repräsentiert. (a) Maximiere 16x x 2 20x 1 10x 2 +x 3 = x 1 5x 2 +x 4 = x 1 +15x 2 +x 5 = 4500 und den Vorzeichungenbedingungen x 1,..., x 5 0. (c) Maximiere: 30A 40B 60C A +B +C = A +8B +4C +D = 7000 C E = 300 und den Vorzeichungenbedingungen A,..., E 0. Aufgabe 4 (Grafische Lösung von LPs) Lösen Sie die LPs von Aufgabe 1 (a) und (c) grafisch. Hinweis: Benutzen Sie die = Nebenbedingung in 1 (c) um das Problem auf zwei Entscheidungsvariablen zu reduzieren. Schwierigkeitsgrad: f ür 1 (a) einfach, f ür 1 (c) m üssen ie den Hinweis beachten (a) x1 = 250, x2 = 200 ist die optimale Lösung mit z =

4 800 x2 20x x2 = x1 + 5x2 = 2000 Zielfunktion 300 6x1 + 15x2 = x1 (c) Mit der Gleichung A + B + C = 1000 erhält man C = 1000 A B. Wenn wir dies in alle Nebenbedingungen und die Zielfunktion einsetzen, erhalten wir ein dynamisches Programm mit nur noch zwei Variablen. Wir erhalten dann: Minimiere z = A 20B sowie A, B 0. 5A + 4B 3000 A + B 700 A = 600, B = 0, C = 400 ist dann die optimale Lösung.

5 B A+4B=3000 Zielfunktion A+B= A

Lineare und kombinatorische Optimierung

Lineare und kombinatorische Optimierung Lineare und kombinatorische Optimierung Theorie, Algorithmen und Anwendungen Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2017/18 Peter Becker (H-BRS) Lineare

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

6 Lineare Optimierung

6 Lineare Optimierung 6 Lineare Optimierung Um die Aufgabenstellung deutlich zu machen, beginnen wir mit einem (natürlich sehr vereinfachten) Beispiel: Produtionsplan einer (zugegebenermaßen sehr leinen) Schuhfabri. Hergestellt

Mehr

Substitutionsverfahren

Substitutionsverfahren Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie) (Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Übungsaufgaben. Teil Bergstadt-Gymnasium Ma/Inf (WPII-8) (ht) aufgabe_2017_05_12. Teil 2

Übungsaufgaben. Teil Bergstadt-Gymnasium Ma/Inf (WPII-8) (ht) aufgabe_2017_05_12. Teil 2 1 Gegeben ist das System linearer Ungleichungen: 2x + y 4 (1) x 2y 7 (2) 1.1 Bestimme rechnerisch den Schnittpunkt der zugehörigen Geraden! 1.2 Bestimme graphisch das Lösungsgebiet! 1 Lösungen 1 1.1 1.1.1

Mehr

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel, R. Mattmüller Spieltheorie

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14.

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Spieltheorie Nash-Gleichgewichts-Berechnung Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel,

Mehr

Lineare Optimierungsaufgaben - eine Einführung

Lineare Optimierungsaufgaben - eine Einführung Lineare Optimierungsaufgaben - eine Einführung Aufgabenstellung, Beispiele, graphisches Lösen und Trafo auf Normalform Vortragsskript von Lorenz Fischer Operations Research bedeutet die Suche nach einer

Mehr

Optimierung Optimization. Vorlesung 01

Optimierung Optimization. Vorlesung 01 Optimierung Optimization Vorlesung 01 Organisatorisches skopalik@mail.upb.de Büro: F1.209 (Sprechstunde nach Vereinbarung) Vorlesung: Freitags, 11:15 12:45, F0 053 Übungen: Dienstags, 13:15 14:00, F0 053

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006

Mehr

Klausur zur Vorlesung Operations Research im Sommersemester 2009

Klausur zur Vorlesung Operations Research im Sommersemester 2009 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Operations Research im Sommersemester 2009 Hinweise:

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)

Mehr

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372 Kapitel 3 Simplex-Verfahren Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/18 104 / 372 Inhalt Inhalt 3 Simplex-Verfahren Primaler Simplexalgorithmus Unbeschränktheit

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

F u n k t i o n e n Lineare Optimierung

F u n k t i o n e n Lineare Optimierung F u n k t i o n e n Lineare Optimierung Das Simplex-Verfahren läuft die Ecken des Polyeders ab, bis es an einer Optimallösung angekommen ist. 1. Einführung Während des 2. Weltkrieges und in den darauf

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel - Lineare Optimierung Sascha Kurz Jörg Rambau 8. August Lösung Aufgabe.. Da es sich um ein homogenes

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet.

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. Lineare Optimierung Dr. Bommhardt. Das ervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Gleichungen und Ungleichungen n der Wirtschaft sind häufig

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

6. Softwarewerkzeuge für die Lineare Programmierung

6. Softwarewerkzeuge für die Lineare Programmierung 6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2018/19) wird bearbeitet am 31.10.2018 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Material zum Projekt Lineare Optimierung

Material zum Projekt Lineare Optimierung Material zum Projekt Lineare Optimierung Hinweise zur Bearbeitung der Aufgaben Behandeln Sie bitte zur Lösung dieser Aufgaben die Unterkapitel des Themas Lineare Optimierung der Reihe nach, da diese aufeinander

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann Lösungen 11. Übungsblatt Lineare Optimierung 1.Aufgabe: a) Phase-I-Methode: Wir betrachten das Hilfs-LOP unter den Nebenbedingungen HF (v 1, v 2 ) = HF

Mehr

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung ARL HANSER VERLAG Peter Stingl Operations Research Linearoptimierung -446-228-6 wwwhanserde 2 Lineare Optimierungsprobleme x 2 6 P P sentartete Ecke ( 4) x +x 2 5 PPPPPPPPPPPPPPP X x + x 2 7 2x +x 2 8

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Aufgabe (Seite 371)

Aufgabe (Seite 371) Aufgabe. (Seite 7) h) Die Gerade g hat die Steigung und geht durch den Punkt P ( 9 / ). Die Gerade g geht durch die beiden Punkte Q ( - / - ) und Q ( - / 5 ). Wie lautet die Normalform der Geraden h, welche

Mehr

8. Lineare Optimierung

8. Lineare Optimierung 8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

1.4 Aufgaben. 2002/2003

1.4 Aufgaben. 2002/2003 .4 Aufgaben. 00/003 Aufgabe. Eine Firma stellt zwei Sorten A und B einer Meterware her. Pro Meter entstehen folgende Kosten und Erlöse in Euro: Rohstoffkosten Bearbeitungskosten Verkaufserlös A 6 3 5 B

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 12 Aufgabe 37 Auf einem Güterumschlagplatz werden

Mehr

Optimierung I, SS 2008

Optimierung I, SS 2008 Aufgabe. ca. 4 Punkte Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Math. M. Ritter, Dipl.-Inf. Dipl.-Math. S. Borgwardt Optimierung I, SS 2008 Übungsblatt Um gegen die

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Allgemeines zur Vorlesung

Allgemeines zur Vorlesung Operations Research Peter Becker Fachbereich Informatik FH Bonn-Rhein-Sieg peter.becker@fh-bonn-rhein-sieg.de Vorlesung Master Computer Science Spezialisierung Wirtschaftsinformatik Wintersemester 2007/08

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2006/07 05.03.2007 Dr. Priska Jahnke Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht A t t Τ = α Y t Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Matrizen als Modellierungswerkzeug Speyer, Juni 24 - Beispiele mathematischer Medellierung Seite Matrizen als

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2 Höhere Mathematik für Bachelorstudiengänge I.2 Wir nehmen an, dass die LOA bereits in Normalform vorliegt: Maximiere c x, wobei A x = b sowie x 0 mit A R m n, b R m und c R n. Neben b 0 nehmen wir noch

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151 Inhaltsverzeichnis 1 Kernkonzepte der linearen Optimierung... 1 1.1 Einführung... 1 1.2 Grundlegende Definitionen... 8 1.3 Grafische Lösung... 10 1.4 Standardform und grundlegende analytische Konzepte...

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Inhaltsverzeichnis Grundlagen der Linearen Optimierung

Inhaltsverzeichnis Grundlagen der Linearen Optimierung Inhaltsverzeichnis 4 Grundlagen der Linearen Optimierung 1 4.1 Grundbegriffe............................. 1 4.1.1 Lineare Optimierung..................... 1 4.1.2 Das Grundmodell eines linearen Optimierungsproblems

Mehr

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt Inhalt Lineare Optimierung Standardform und kanonische Form Der Simplex-Algorithmus Dualität Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? 54:

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) das Thema der Vorlesung Die Anwendung der Methoden der Mehrkriterienoptimierung bei der Lösung der ökonomischen Entscheidungsprobleme

Mehr