4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0

Größe: px
Ab Seite anzeigen:

Download "4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0"

Transkript

1 Wirbelvektor: Der Wirbelvektor ist definiert durch ω= v Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung ( w )=0 folgt: ω=0 Wirbellinien sind Kurven, deren Tangente in jedem Punkt parallel zum Wirbelvektor ist. Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-1

2 Die Wirbellinien, die zu einem bestimmten Zeitpunkt durch eine Kurve gehen, bilden eine Wirbelfläche. ω Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-2

3 Zirkulation Die Zirkulation ist definiert als Linienintegral der Geschwindigkeit längs einer geschlossenen Kurve: Γ= v d s C Der Integralsatz von Stokes verknüpft die Zirkulation mit dem Wirbelvektor: S ω n ds= S ω S v d s=γ n S Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-3

4 Wirbelsätze von Helmholtz: Wegen ( ϕ)=0 für alle skalaren Felder ϕ folgt durch Bilden der Rotation aus der Impulsgleichung: v t Damit gilt für den Wirbelvektor: (v ( v ) )=0 ω t = (v ω ) Ist der Wirbelvektor in einem Gebiet null, so bleibt er dort für alle Zeiten null. Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-4

5 Mit (v ω )=v( ω) ω ( v)+(ω )v (v )ω folgt wegen ω=0 und v=0 : ω +(v )ω=(ω )v t Integration über ein mitschwimmendes Volumen ergibt: d dt V (t ) ω dv = (ω )v dv V (t ) Ist der Wirbelvektor in einem mitschwimmenden Volumen null, so bleibt er für alle Zeiten null. Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-5

6 Wirbelsatz von Kelvin: Aus dem Transport-Theorem für Kurvenintegrale folgt für die zeitliche Änderung der Zirkulation über eine mitschwimmende geschlossene Kurve: d Γ dt Mit der Impulsgleichung folgt: = d dt C (t ) v d s= C (t ) ( v t +(v )v ) d s ( v C (t ) t +(v )v ) d s= ρ 1 0 C (t ) p d s=0 Damit ist gezeigt: d Γ dt =0 Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-6

7 Die Zirkulation über eine mitschwimmende geschlossene Kurve ist zeitlich konstant. Wirbelröhre: Wirbellinien, die zu einem bestimmten Zeitpunkt durch eine geschlossene Kurve gehen, bilden eine Wirbelröhre. n n n S 3 S 2 S 1 Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-7

8 Für ein Volumen V, das durch eine Fläche S 3 auf einer Wirbelröhre und zwei Flächen S 1 und S 2, die die Wirbelröhre schneiden, begrenzt wird, gilt: 0= V ω dv = ω n ds + ω n ds + ω n ds S 1 S 2 S 3 Das Integral über S 3 ist null, da dort der Wirbelvektor senkrecht zum Normalenvektor ist. Mit n 1 = -n auf S 1 und n 2 = n auf S 2 folgt: S 1 ω n 1 ds= S 2 ω n 2 ds Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-8

9 Der Wirbelfluss durch jede Querschnittsfläche einer Wirbelröhre hat den gleichen Wert. Daraus folgt, dass Wirbelröhren im Inneren der Strömung weder beginnen noch enden können. Wirbelröhren bilden daher entweder geschlossene Kurven, oder sie sind unendlich lang. Ist C eine beliebige geschlossene Kurve auf der Wirbelröhre, die die Wirbelröhre umfasst, dann gilt: Γ= C v d s= S ω n ds, C = S Die Zirkulation über jede Kurve, die die Wirbelröhre umfasst, hat daher den gleichen Wert. Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik 3.4-9

10 Wirbelfäden: Wird eine Wirbelröhre auf eine Linie zusammengezogen, wobei der Betrag des Wirbelvektors gegen Unendlich geht, so dass die Zirkulation konstant bleibt, entsteht ein Wirbelfaden. Die Zirkulation gibt die Wirbelstärke des Wirbelfadens an. ds s O x - s x C v P Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik

11 Für die Geschwindigkeit, die ein Wirbelfaden im Punkt P induziert, gilt das Gesetz von Biot und Savart (siehe z. B. Karamcheti, Kap. 18.7): v(x)= Γ 4 π C ( x s ) d s x s 3 Für eine positive Zirkulation ergibt sich das Vorzeichen des Beitrags eines infinitesimalen Streckenelements zur Geschwindigkeit nach der Rechthandregel. Prof. Dr. Wandinger 3. Grundlagen der Aerodynamik Aeroelastik

Fluidmechanik II. Fluidmechanik II, N. A. Adams

Fluidmechanik II. Fluidmechanik II, N. A. Adams Fluidmechanik II Wintersemester 2013/2014 Vorlesung: Zeit: Montag17:00-18:30 Ort: MW 0001 Übung (ab 21.10.) Zeit: Montag18:35-19:20 Ort: MW 0001 Gruppenübung siehe Web Manuskript und Übungsunterlagen:

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart 1. Wirbelströmungen 1.2 Gesetz von Biot-Savart Das Biot-Savart-Gesetz ist formuliert für unbeschränkte Gebiete. Wie können Ränder beschrieben werden (z.b. feste Wände)? Randbedingung für eine reibungsfreie

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Wie man Flügel endlicher Länge berechnet

Wie man Flügel endlicher Länge berechnet 3. Flügel endlicher Länge Reduzierte Frequenz: Beim Flügel endlicher Länge wird als Referenzlänge c ref zur Definition der reduzierten Frequenz in der Regel die Profiltiefe an der Flügelwurzel gewählt.

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik I 7. 02. 205 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung Handout zum Vortrag über Euler- und Navier-Stokes-Gleichungen, Potential- und Wirbelströmungen von Niels Bracher. 1 Ideale Fluide 1.1 Kontinuitätsgleichung Die hydrodynamische Kontinuitätsgleichung beschreibt

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik

Physik-Department. Ferienkurs zur Experimentalphysik Physik-Department Ferienkurs zur Experimentalphysik Daniel Jost 27/08/13 Technische Universität München Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Gleichungen der Magnetostatik........................ 1

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Ferienkurs Analysis 3

Ferienkurs Analysis 3 Ferienkurs Analysis 3 Vektoranalysis Zensen Carla, Heger aniel, Kössel Fabian, Ried Tobias 21. ärz 21 Inhaltsverzeichnis 1 Untermannigfaltigkeiten des R n 3 1.1 Charakterisierung von Untermannigfaltigkeiten...............

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

3. Akustische Energie und Intensität

3. Akustische Energie und Intensität Aus der Energiebilanz lässt sich durch Berücksichtigung von Gliedern zweiter Ordnung eine Bilanzgleichung für die akustische Energie gewinnen. Etwas einfacher kann diese Energiegleichung aus der linearisierten

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form.

Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form. Version 14. Dezember 2011 1. Kontinuitätsgleichung Fluide sind Zustände von Materie in denen keine (Gase) oder nur sehr kleine Scherkräfte (Flüssigkeiten) auftreten. Sie besitzen keine starre Form. Die

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Mathematische Formeln

Mathematische Formeln Mathematische Formeln Vektorfeld E(r ), skalares Feld f(r ) Kartesische Koordinaten x, y, Ortsvektor r =(x, y, ) =xe x + ye y + e = re r Linienelement: ds = dx e x + dy e y + d e Volumenelement dv = dx

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 14. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Dynamik der Fluide 2 1.1 Kontinuitätsgleichung.................................

Mehr

Wegintegral, Kurven- oder Linienintegral 2. Art

Wegintegral, Kurven- oder Linienintegral 2. Art Wegintegral, Kurven- oder inienintegral 2. Art Gegeben ist ein Vektorfeld ( ) P(,) Q(, ) und eine Kurve in Parameterdarstellung ((t),(t)), a t b. Ein Punkt bewegt sich unter dem Einfluss des Vektorfeldes

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

55 Integralsätze in der Ebene

55 Integralsätze in der Ebene 262 IX. Integralsätze 55 Integralsätze in der Ebene 55.1 Wegintegrale skalarer Funktionen. a) Für einen Weg γ C 1 st ([a,b],rn ) und eine stetige Funktion f C((γ)) wird durch γ f ds := γ f(x)ds(x) := b

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte)

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte) Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Klassishe Theoretishe Physik III WS 2014/2015 Prof. Dr. A. Shnirman Blatt 7 Dr. B. Narozhny Lösungen 1. 2D Leitershleifen:

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einführung in die Theoretische Physik 6. Teil: Mechanik flüssiger und gasförmiger Körper Siegfried Petry 17. Januar 013 I n h a l t : 1 Gleichgewichtszustände flüssiger und gasförmiger Körper 1.1 Der Druck

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen jetzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale) Gleichungen für die magnetische lussdichte,

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

(ii) Die Massedichte ρ(r, t) [siehe Definition (6.1)] ist konstant und diesselbe für alle Fluid-Elemente und alle Zeiten t.

(ii) Die Massedichte ρ(r, t) [siehe Definition (6.1)] ist konstant und diesselbe für alle Fluid-Elemente und alle Zeiten t. Kapitel 7 Das ideale Fluid 7.1 Definition Definition 7.1 Das ideale Fluid ist durch folgende Eigenschaften definiert: (i) Es ist inkompressibel. Ein Tropfen verändert in der Bewegung seine Form nicht.

Mehr

Satz von Gauss, Fluss und Divergenz

Satz von Gauss, Fluss und Divergenz Satz von Gauss, Fluss und Divergenz F - - - 4 - - L Das Vektorfeld F beschreibe die Geschwindigkeit in einer Flüssigkeit, die über die Ebene fließt. Der Fluss von F über L ist die in Einheitszeit fließende

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

Relativistische Beziehungen Hochfrequenzgrundlagen

Relativistische Beziehungen Hochfrequenzgrundlagen Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) 1 Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Kapitel 11: Vektoranalysis Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 10. Juni 2008) Felder Definition 11.1 Ein Skalarfeld

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Vektoranalysis [MA2004]

Vektoranalysis [MA2004] Technische Universität München WS 4/5 Zentrum Mathematik Blatt 5 Prof. Dr. Simone Warzel Michael Fauser Vektoranalysis [MA4] Tutoraufgaben Besprechung am 3..5 und 4..5 T 5. Elektrostatik Es seien N elektrische

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN I INHALTSVERZEICHNIS Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN 1 1.1 Skalare und Vektoren 1.2 Art von Vektoren 1.3 Summe und Differenz von Vektoren 1.4 Parallele Vektoren 1.5 Betrag eines Vektors

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr