Die Thetafunktion. Björn Walker und ϑ(τ, z) ist in z sowie in τ eine analytische Funktion, denn:

Größe: px
Ab Seite anzeigen:

Download "Die Thetafunktion. Björn Walker und ϑ(τ, z) ist in z sowie in τ eine analytische Funktion, denn:"

Transkript

1 Die Thetafunktion Björn Walker und Definition der Thetafunktion Folgende Reihe wird als Thetafunktion bezeichnet: ϑ(τ, z) : e πi(n τ+nz) ϑ(τ, z) ist in z sowie in τ eine analytische Funktion, denn: Im(τ) > 0, z C Sei τ : u + iv (v > 0), z x + iy. Dann gilt e πi(nτ+nz) e Re(πi(nτ+nz)) e π(nv+ny). Ist nun τ fest und z aus einem beliebigem Kompaktum, so ist (n v + ny) n v für fast alle n Z. Somit ist q n mit q : e π v < eine konvergente Majorante als Teilreihe einer geometrischen Reihe. Die Thetareihe konvergiert also lokal gleichmäßig und ist deshalb holomorph in z. Ist nun z fest und τ aus einem beliebigen Kompaktum der oberen Halbebene, dann gibt es eine Konstante K > 0 mit (n v + ny) n K für fast alle n. Man erhält eine lokale Majorante wie oben mit q e π K, also ist Theta auch in τ holomorph. Außerdem ist die Thetafunktion gerade in z, also ϑ(τ, z) ϑ(τ, z), wie man leicht der Reihendarstellung entnimmt: ϑ(τ, z) e πi(n τ+n( z)) e πi(( n) τ+( n)z) ϑ(τ, z) () Mit der Thetafunktion lässt sich nun die Existenzaussage des Satzes von Abel beweisen. Satz von Abel Eine elliptische Funktion f zu gegebenen Gitter L und Nullstellen a,..., a n und Polstellen b,..., b n existiert genau dann, wenn gilt: n a i i n b i mod L i

2 Es reicht, die Existenz einer ganzen Funktion σ : C C zu zeigen mit I σ(z + w) e az+b σ(z); w L; a, b C, wobei a und b nur von w, nicht jedoch von z abhängen dürfen. II σ hat genau eine einfache Nullstelle z 0 mod L. Nehmen wir nun noch o.b.d.a an, daß a j b j, so ist die gesuchte Funktion gefunden: n σ(z 0 + z a j ) f(z) : σ(z 0 + z b j ) j Denn offenbar hat f das gewünschte Null- und Polstellenverhalten. Außerdem gilt für w L: f(z + w) n j n j f(z) σ(z 0 + z a j + w) σ(z 0 + z b j + w) e a(z 0+z a j )+b σ(z 0 + z a j ) e a(z 0+z b j )+b σ(z 0 + z b j ) P ea( bj P a j ) f(z) Mithilfe der Thetafunktion kann ein solches σ für bestimmte Gitter konstruiert werden. Hierzu werden wir ϑ(τ, z) nur als Funktion im zweiten Argument auffassen, weshalb ich die Notation ϑ τ (z) : ϑ(τ, z) verwende. Betrachte nun Gitter der Form L Z + τz, Im(τ) > 0. Damit ϑ τ (z + ) ϑ τ (z) da e πin und ϑ τ (z + τ) e iπ(n τ+n(z+τ)) e iπ((n+) τ τ+(n+)z z) e πi(τ+z) e iπ((n+) τ+(n+)z) e πi(τ+z) ϑ τ (z) ( ) Somit ergibt sich als allgemeines Transformationsverhalten gegenüber den Gitterpunkten (wobei k, l Z): ϑ τ (z + kτ + l) ϑ τ (z + kτ) ϑ τ (z + (k )τ)e πi(τ+(z+(k )τ)) ϑ τ (z + (k )τ)e πi((k )τ+z)) ϑ τ (z)e πi(k τ+kz) wie sich induktiv ergibt (wegen n k k n ). Die Thetafunktion erfüllt die Eigenschaft I.

3 Die Thetafunktion hat mod L genau eine einfache Nullstelle. Um das zu zeigen, wählen wir eine um p C verschobene Grundmasche F p, auf deren Rand F p sich keine Nullstelle von Theta befindet (man beachte, dass die Nullstellenmenge von Theta diskret ist in C, da ansonsten Theta nach dem Identitätssatz identisch verschwinden würde, was offenbar nicht der Fall ist). Damit ist es vernünftig, das folgende Nullstellenzählende Integral zu betrachten: Z.z.: πi F p ϑ τ (z) ϑ τ (z) dz Dies liefert die gewünschte Aussage über die Nullstelle, da Theta als holomorphe Funktion keine Pole besitzt. Sei hierzu g(z) : ϑ τ (z) ϑ τ (z). Dann ist g(z + τ) g(z) πi, wegen g(z + τ) g(z) ϑ τ (z + τ) ϑ τ (z + τ) ϑ τ (z) ϑ τ (z) πiϑ τ (z + τ) + e πi(τ+z) ϑ τ (z) ϑ τ (z + τ) πi, wie sich aus der Transformationsformel ( ) ergibt. Weiter folgt für das Integral über g(z): e πi(τ+z) ϑ τ (z) ϑ τ (z + τ) F p g(z) dz p p g(z) dz + p+τ p+τ+ g(z) dz g(z) g(z + τ) dz πi p+ τ p+ τ + F p Man beachte: p+τ+ g(z) dz + p p+τ wegen g(z) g(z + ). g(z) dz 0 p 3

4 Die Nullstelle ist übrigens +τ, denn nach ( ) gilt ϑ τ ( + τ ) ϑ τ ( τ () ϑ τ ( + τ ϑ τ ( + τ ). + τ) Die Thetafunktion genügt also der Eigenschaft II. {}}{ e πi(τ+ τ) ϑ τ ( τ ) ϑ τ ( + τ + ) Somit haben wir nun für jedes Gitter der Form Z+τZ eine Funktion σ gefunden, wie sie für die Existenzaussage des Satzes von Abel benötigt wird, nämlich gerade die zugehörige Thetareihe. Glücklicherweise lassen sich alle anderen Gitter auf diesen Fall zurückführen. Sei ein beliebiges Gitter L Z + w Z gegeben, sowie eine Nullstellenmenge a,..., a n und Polstellenmenge b,..., b n mit a i b i mod L. Da für jede echt komplexe Zahl z gilt Im(z) > 0 oder Im(z ) > 0 nehmen wir o.b.d.a. an, dass für τ : w gilt Im(τ) > 0 (wäre τ R, dann wären und w abhängig über R, da τ w ). Wir betrachten das zugehörige Gitter L : Z+τZ. Für dieses gilt nun die Kongruenz a i b i wie man sofort sieht. Nach unserem bisherigem Ergebnis existiert also eine elliptische Funktion g(z) zu L mit Nullstellen a,..., a n Polstellen b,..., b n w. Dann ist aber f(z) : g( z ) elliptisch zu L, denn: ) und f(z + ) g( z + ) g( z + ) g( z ) f(z) f(z + w ) g( z + w ) g( z ± τ) g( z ) f(z) Offenbar hat f auch das gewünschte Null- und Polstellenverhalten, wegen f(a i ) g( a i ) und f(b i ) g( b i ). Weitere Anwendung der Thetafunktion Betrachte folgende Thetareihen als holomorphe Funktionen auf der oberen Halbebene (sprich Im(z) > 0): ϑ(z) ϑ(z) ϑ(z) e πin z ( ) n e πin z e πi(n+ ) z 4

5 Diese sind wohldefiniert, wie aus der Jacobischen Thetatransformationsformel (JTF) folgt, welche hier nicht weiter erläutert wird (vergleiche Vortrag von Johannes Jaerisch). z i e πi(n+w)z e πin z +πinw z, w C; Im(z) > 0 Natürlich ließe sich die Konvergenz auch wie bei der anfänglichen Thetareihe zeigen. Weiterhin genügen die Reihen selber den folgenden Transformationsformeln: a)ϑ(z + ) ϑ(z) d)ϑ( z ) z i ϑ(z) b) ϑ(z + ) ϑ(z) e) ϑ( z z ) ϑ(z) i c) ϑ(z + ) e π i z 4 ϑ(z) f) ϑ( z ) i ϑ(z) Unten stehende Rechnungen belegen dies. a) ϑ(z + ) c) ϑ(z + ) d) ϑ( z ) e) ϑ( z ) ( ) n {}}{ e πin e πinz ϑ(z) e πi(n+ ) e πi(n+ ) z b) analog {}}{ e πi(n +n) e π i 4 e πi(n+ )z e π i 4 ϑ(z) e πin ( z ) (JT F mit w0) e πin e πin ( z ) (JT F mit w ) z i ϑ(z) z ϑ i f) folgt nach e) mittels Ersetzen von z durch z. Mit diesem Wissen folgt nun für die Funktion f(z) : ( ϑ(z) ϑ(z) ϑ(z) ) 8, dass sie das gleiche Transformationsverhalten aufweist wie die Diskriminante, also f(z + ) f(z) und f( z ) z f(z). 5

6 Wie in einem anderem Vortrag gezeigt wurde, unterscheidet sich f somit nur um einen Konstanten Faktor von der Diskrimanten. Somit lässt sich also die Diskriminante mithilfe obiger Thetareihen darstellen. Es gilt: (z) (π) 8 ( ϑ(z) ϑ(z) ϑ(z) ) 8. 6

7 Quellen E. Freitag,R. Busam: Funktionentheorie, Springer, 3. Auflage 000 David Munford: Tata lectures on Theta, Birkhäuser, 983 7

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Modulformen, Teil 1. 1 Schwach modulare Funktionen

Modulformen, Teil 1. 1 Schwach modulare Funktionen Vortrag zum Seminar zur Funktionentheorie, 3.3.2 Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie

Mehr

1 Die bedingt konvergente Eisensteinreihe

1 Die bedingt konvergente Eisensteinreihe Die Dedekind sche η - Funktion Ausarbeitung zum Vortrag vom 05.0.202 Jan Umlauft, 28337 In dieser Arbeit wird die Dedekind sche η - Funktion eingeführt und ihr Transformationsverhalten unter Modulsubstitutionen

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen Die j-funktion, Abschätzung der Fourierkoeffizienten Vortrag zum Seminar zur Funktionentheorie, 0.04.00 Felix Voigtländer Diese Ausarbeitung beschäftigt sich zunächst mit der j-funktion. Diese stellt einerseits

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen

Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen Stefan Bleß Seminar zur Funktionentheorie II 07. Januar 013 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

Musterlösung zur Serie 11

Musterlösung zur Serie 11 D-MATH, D-PHYS Funktionentheorie HS 203 Prof. J. Teichmann Musterlösung zur Serie. (a) Die Identitätsfunktion ϕ : Ω C, ϕ(z) = z erfüllt die Bedingungen von Satz 4.7, weshalb es eine holomorphe Funktion

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

9 Ergänzungen zur Funktionentheorie

9 Ergänzungen zur Funktionentheorie 9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

1 Die vier Sätze von LIOUVILLE

1 Die vier Sätze von LIOUVILLE Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 3.06.005 Marcel Carduck Es sei stets Ω ein Gitter in C und (ω 1, ω ) eine Basis von Ω. Weiter bezeichne P := (u; ω 1, ω ) := {u + λ 1

Mehr

RWTH Aachen Lehrstuhl A für Mathematik. Seminar in Funktionentheorie I Prof. Dr. A. Krieg

RWTH Aachen Lehrstuhl A für Mathematik. Seminar in Funktionentheorie I Prof. Dr. A. Krieg RWTH Aachen Lehrstuhl A für Mathematik Seminar in Funktionentheorie I Prof. Dr. A. Krieg Amal Dajour Datum: 24..2 Vortrag zum Seminar zur Funktionentheorie, 24..2 Amal Dajour In diesem Kapitel lernen wir

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen Vortrag zum Seminar zur Funktionentheorie II, 7..23 Jonas Gallenkämper Ziel dieses Seminarbeitrags ist, das Fagnano-Integral zu berechnen und dessen Zusammenhang zu speziellen Gittern, sowie weitere entsprechende

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

Elliptische Funktionen

Elliptische Funktionen Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw. Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

7. Diskriminante und Spitzenformen

7. Diskriminante und Spitzenformen SE: Modulformen, Vortrag 7 7. Diskriminante und Spitzenformen Zusammenfassung In diesem Vortrag soll eine alternative Methode angegeben werden, Modulformen zu konstruieren. Bisher haben wir die Modulformen

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

2. Dirichlet-Reihen. Arithmetische Funktionen

2. Dirichlet-Reihen. Arithmetische Funktionen 2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

1 Das Additionstheorem und Folgerungen

1 Das Additionstheorem und Folgerungen Das Additionstheorem der -Funktion und elliptische Kurven Vortrag zum Seminar zur Funktionentheorie, 05.11.2007 Cornelia Wirtz Ziel dieses Vortrages ist es, das Additionstheorem der Weierstraß schen -Funktion

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Funktionentheorie II SS 2004

Funktionentheorie II SS 2004 Funktionentheorie II SS 2004 Internetbegleitung http://www.mathi.uni-heidelberg.de/~dan/teaching/ss2004/ Übungen zur Funktionentheorie II Blatt 1 SS 2004 Abgabetermin: Freitag, 07.05.2004, 11.15 Uhr (in

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

Modulare Funktionen. 1 Bekannte Definitionen

Modulare Funktionen. 1 Bekannte Definitionen Vortrag zum Seminar zur Funktionentheorie, 28.03.2011 Jonas Gallenkämper Dieser Vortrag führt modulare Funktionen sowie Modulformen ein und vermittelt einige Beobachtungen im Zusammenhang mit Gittern über

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Die Modulgruppe SL(2, Z)

Die Modulgruppe SL(2, Z) Die Modulgruppe SL(2, Z Corina Mettler Universität Freiburg (Schweiz 18.Oktober 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Die Modulgruppe 1 2.1 Möbiustransformationen............................. 1 2.2

Mehr

Geometrische Form des Additionstheorems

Geometrische Form des Additionstheorems Geometrische Form des Additionstheorems Jae Hee Lee 29. Mai 2006 Zusammenfassung Der Additionstheorem lässt sich mithilfe des Abelschen Theorems elegant beweisen. Dieser Beweis und die Isomorphie zwischen

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.5 2016/11/10 16:04:56 hk Exp $ 2 Riemannsche Flächen 2.1 Definition und erste Beispiele Riemannscher Flächen Am Ende der letzten Sitzung hatten wir schließlich den Begriff einer Riemannschen

Mehr

j-funktion und Fourierentwicklung 1 j-funktion

j-funktion und Fourierentwicklung 1 j-funktion j-funktion und Fourierentwicklung Ausarbeitung zum Seminar zur Funktionentheorie, 3.03.0 Stefan Bennink Dieses Seminar wird die j-funktion einführen und darüber hinaus Eisensteinreihen als spezielle Fourierreihen

Mehr

2 Der Weierstraßsche Produktsatz

2 Der Weierstraßsche Produktsatz 4 Kapitel Meromorphe Funktionen Der Weierstraßsche Produktsatz Unser nächstes Problem soll sein, zu einer vorgegebenen Menge von Punkten eine holomorphe Funktion zu suchen, die genau in den Punkten Nullstellen

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.6 2016/11/16 12:37:19 hk Exp $ 2 Riemannsche Flächen 2.2 Karten und holomorphe Funktionen auf Flächen Am Ende der letzten Sitzung hatten wir einige der Grundeigenschaften holomorpher

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve

Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve Volker Kamps, Matrikelnummer: 2134437 8. Februar 2005 Inhaltsverzeichnis

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen Vortrag zum Seminar zur Funktionentheorie 10. 12. 2007 Corinna Wübling Dieser Vortrag beschäftigt sich mit Dirichlet-Reihen. Im ersten Abschnitt werden die Dirichlet-Reihen definiert und typische Beispiele

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.12 2016/12/01 19:00:20 hk Exp $ 2 Riemannsche Flächen 2.4 Direkte Limites und Halme von Garben Am Ende der letzten Sitzung hatten wir die Windungspunkte einer holomorphen Funktion

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Komplexe Analysis 2 SS Harald Woracek

Komplexe Analysis 2 SS Harald Woracek Komplexe Analysis 2 SS 2007 Harald Woracek Inhaltsverzeichnis Der Primzahlsatz. Die Riemannsche Zetafunktion................... 4.2 Beweis von Satz.0.7........................ 9 2 Elliptische Funktionen

Mehr

Basen. Inhaltsverzeichnis

Basen. Inhaltsverzeichnis Vortrag zum Seminar zur Funtionentheorie, 15.07.2009 Benjamin Laumen Diese Ausarbeitung beruht auf Kapitel III, Paragraph 4 Unterpunt 1 3 aus dem Buch: Elliptische Funtionen und Modulformen von M. Koecher

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Die Gewichtsformel. Inhaltsverzeichnis

Die Gewichtsformel. Inhaltsverzeichnis Vortrag zum Seminar zur Funktionentheorie, 07..20 Stefan Bleß Inhaltsverzeichnis Eisenstein-Reihen 2 2 5 2. Die Grundlagen................................ 5 2.2 Ordnung einer modularen Funktion....................

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Funktionentheorie I : WS Die Γ Funktion

Funktionentheorie I : WS Die Γ Funktion Funktionentheorie I : WS -5 Die Γ Funktion Dr. Rolf Busam Materialien zur Vorlesung Funktionentheorie I, WS -5. Eine kleine Formelsammlung zur Γ Funktion. Definition: Ist H r := { z C ; Re z > } die rechte

Mehr

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i

16. Januar 2010 Pascal Gollin ( ) dz z + 1 = 1 2π. ie it 1 + e it + 1 dt = = j( 1, γ) f( 1) 2πi = 1 8 2πi = π 4 i Übungsblatt 10 zur Funktionentheorie im WiSe 09/10 Prof. Dr. Christoph Schweigert Übungsgruppe 1 Aufgabe 1 1.a) (t) = 1 + exp(it) für 0 t 2 π. (z+1)(z 1) = π 3 4 i Ich betrachte f(z) = 1 (z 1) 3. Als Quotient

Mehr

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4.

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4. Satz (VEKDF, Teil II) Sei D C und f : D C eine holomorphe Funktion. Dann ist f in einer Umgebung von jedem Punkt a D durch eine Potenzreihe darstellbar. Das bedeutet: Es gibt einen Kreis K um a und a 0,

Mehr

Gaußsche Summe und die Theta-Reihe. 1 Gaußsche Summe

Gaußsche Summe und die Theta-Reihe. 1 Gaußsche Summe Gaußsche Summe und die Theta-Reihe Vortrag zum Seminar zur Funktionentheorie, 25.6.212 Jan Testrut In diesem Paragrafen werden zunächst Dirichletsche Charaktere begrifflich erweitert und die neuen, sich

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Musterlösung zu Übungsblatt 12

Musterlösung zu Übungsblatt 12 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 8. Dezember 17 HS 17 Musterlösung zu Übungsblatt 1 Die folgenden Aufgabe entwickelt Techniken, um mit Möbiustransformationen (auch gebrochen-lineare

Mehr

Komplexe Taylor-Reihe

Komplexe Taylor-Reihe Komplexe Taylor-Reihe Eine in einem Gebiet D analytische Funktion f lässt sich in jedem Punkt a D in eine Taylor-Reihe entwickeln: f (n) (a) n! (z a) n. Taylor-Reihe - Komplexe Taylor-Reihe Eine in einem

Mehr

Etwa mehr zu Exponential- und Logarithmusfunktion

Etwa mehr zu Exponential- und Logarithmusfunktion Etwa mehr zu Exponential- und Logarithmusfunktion Will man einen Logarithmus definieren, so liegt es nahe, diesen als Umkehrfunktion zur Exponentialfunktion zu definieren. Solch eine kann es aber nicht

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6 3.3. KONVERGENZKRITERIEN 67 und l n+1 wiederum als kleinsten Wert, so dass A 2n+2 = A 2n+1 + l n+1 k=l n < A. Alle diese Indizes existieren und damit ist eine Folge {A k } k N definiert. Diese Folge konvergiert

Mehr

Harmonische und Holomorphe Funktionen

Harmonische und Holomorphe Funktionen Harmonische und Holomorphe Funktionen Jonathan Bischoff LMU München illertal am 14.12.2014 Jonathan Bischoff Harmonische und Holomorphe Funktionen 1/14 Definition harmonische Funktion Sei G R 2 ein Gebiet.

Mehr

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) = Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern Vortrag zum Seminar Fourieranalysis, 7..007 Corinna Schaaf Bisher haben wir Fourierreihen, die auf dem orus {x R : π x < π} definiert sind, betrachtet. Es ist jedoch auch möglich, Fourierreihen auf der

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr