Der Eulersche Polyedersatz

Größe: px
Ab Seite anzeigen:

Download "Der Eulersche Polyedersatz"

Transkript

1 Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen) Polytops P. Beispiel für einen f-vektor: Wenn P ein n Simplex ist, also eine konvexe Hülle von n + 1 affin unabhängigen Punkten, dann entsprechen die k Seiten von P genau den (k + 1) elementigen ( ) Teilmengen der n+1 Eckenmenge von P, daher ist f k (P) = = (n+1)! k +1 (k+1)!(n k)!. Zum Beispiel sieht der f Vektor eines 5 Simplex also so aus: (6, 15, 20, 15, 6). Die naheliegende Frage, welche d Tupel natürlicher Zahlen als f Vektoren konvexer Polytope auftreten, ist sehr schwierig und bis heute (zumindest in dieser allgemeinen Form) ungelöst. Im Folgenden wird eine notwendige Bedingung besprochen, welche die f Vektoren konvexer Polytope erfüllen müssen, nämlich der Eulersche Polyedersatz.

2 Eulerscher Polyedersatz für beliebige Dimension Satz (Beweis nur in Dim. 3) (Eulerscher Polyedersatz) Sei (f 0,f 1,...,f n 1 ) der f Vektor eines n Polytops. Dann gilt: n 1 ( 1) k f k = 1 ( 1) n. k=0 Setzt man f n := 1, so kann man diese Formel auch so schreiben: n ( 1) k f k = 1. k=0 Beweis vom Satz in dim n können Sie, (wenn sie wollen freiwillig) im Skript von Johann Linhart finden. Wir werden den Satz nur für n = 3 beweisen: in diesem Fall lautet der Satz: f 0 f 1 +f 2 = 2, oder in traditionelle Form geschrieben: E }{{} #Ecken K }{{} #Kanten + }{{} F = 2. #Facetten

3 Beispiel: Würfel Am einfachen Beispiel des Würfels sieht man, dass es Polyeder gibt, bei denen in jeder Ecke gleich viele Kanten zusammenlaufen (nämlich 3), und jede Fläche von gleich vielen Kanten berandet wird (nämlich 4). Es gilt also für jeden Würfel: E = 8 F = 6 K = 12 Wir sehen hier auch, dass die Polyederformel gilt: = 2.

4 Satz (Eulerscher Polyedersatz für Dimension 3) Sei P = conv(x 1,...,x k ) ein 3-dimensionales Polytop, d.h., dim(aff(x 1,...,x k )) = 3. Dann gilt: E }{{} #Ecken K }{{} #Kanten + }{{} F = 2. #Facetten Bemerkung. 19 verschiedene Beweise von dem Satz kann man auf eppstein/junkyard/euler/ finden.

5 Beweis Wir vereinfachen die Situation, indem wir das Polyeder in die Ebene projezieren. Dazu benutzen wir die Zentralprojektion: wir plazieren den Punkt O und die Ebene E wie auf dem niedrig-dimensionalen Bild: O Wichtig ist, dass der Punkt O außerhalb des Polytops nah genug zu einem inneren Punkt (z.b. Schwerpunkt) einer ausgewählten E (Grau auf dem Bild) Facette liegt. abei wird diese ausgewählte Facette entfernt und das ntstehende Gebilde flach in die Ebene ausgebreitet. enn der Punkt O nah genug zum Polytop ist, werden lle anderen Facetten bijektiv auf die Ebene abgebildet. as Bild jeder Facette ist ein Polygon (2-dimensionales olytop). Die Anzahl der Ecken, Kanten und Facetten leibt gleich, weil die entfernte Facette der äußeren, uasi unendlichen Fläche zugeordnet wird. Das Bild ieser Projektion wird Polyedernetz genannt. Hier eine Skizze für den Würfel:

6 Wir können nun den Polyedersatz von Euler mit Induktion über die Anzahl der Kanten K beweisen: nduktionsanfang: K = 1 Es gibt nur 2 verschiedene etze die dies erfüllen (auch wenn wir krumme Kanten ulassen, was bei uns nicht der Fall ist:) Für beide gilt die Beziehung. Im ersten Fall ist E = 2, F = 1 und K = 1. Im zweiten Fall ist E = 1, F = 2 und K = 1. Induktionsschritt von K auf K +1: Sei a ein Netz mit K +1 Kanten, E Ecken und F Flächen. zu zeigen ist also: E +F = K +2. Wir unterscheiden 3 Fälle. 1. Fall: Die neue Kante ist eine sogenannte Schlinge (wie im zweiten Fall bei der Skizze oben), das heisst die Anzahl der Flächen erhöht sich um eins ( F = F +1 ) und die Anzahl der Ecken bleibt gleich. (E = E). Dann gilt: E +F = E +(F +1)? = (K +1)+2 E +F = K +2 gilt nach Induktionsvoraussetzung. 2. Fall: Die neue Kante verbindet zwei vorhandene Ecken, dadurch wird eine vorhandene Fläche in zwei Flächen zerlegt. Das heisst F = F +1 und E = E. Wie im Fall 1 gilt wieder die Polyederformel.

7 3. Fall: Die neue Kante verbindet eine neue und eine vorhandene Ecke. Das heisst E = E +1 und die Anzahl der Flächen bleibt gleich ( F = F ) E +F = (E +1)+F? = (K +1)+2 E +F = K +2 gilt nach Induktionsvoraussetzung,

8 Reguläre Polyeder Def. Ein reguläres Polyeder ist ein konvexes Polyeder mit folgenden zusätzlichen Eigenschaften: (a) Jede Fläche eines regulären Polyeders ist ein reguläres n-eck. Das heißt alle Seitenlängen/alle Winkel des n-ecks sind gleich. ( n 3 ). (b) An jeder Ecke eines regulären Polyeders treffen genau m Kanten zusammen. ( m 3 )

9 Beispiele von regulären Polyedern: Platonische Körper Benannt sind die Platonischen Körper nach dem griechischen Philosophen Platon ( ca v. Chr.). Für ihn war die Tatsache, dass es nur fünf dieser Körper geben kann, so bedeutend, dass er sie in seiner Lehre den vier antiken Elementen bzw. dem Kosmos zuordnete: Tetraeder - Feuer, Würfel - Erde, Oktaeder - Luft, Ikosaeder - Wasser, Dodekaeder - Kosmos.

10 6 20

11 Satz über platonische Körper. Die fünf platonischen Körper sind die einzigen regulären Polyeder (bis auf Isometrie oder Ähnlichkeitstransformation) Beweis: Wir gehen nun von einem allgemeinen regulären Polyeder RP mit E Ecken, F Facetten und K Kanten aus. n und m seien wie in der Definition des regulären Polyeders: Jede Fläche ist ein reguläres n-eck, und an jeder Ecke treffen genau m Kanten zusammen. Mit Hilfe von n und m lassen sich folgende Beziehungen herstellen: Da an jeder Ecke von RK genau m Kanten angrenzen, zählt Em alle Kanten, aber jede genau zweimal, da sie ja genau zwei Ecken hat. Desweiteren hat jede Fläche F genau n Begrenzungskanten. Daher ist F n die Anzahl aller Kanten, wieder wird jede Kante doppelt gezählt. Jede Kante begrenzt genau zwei Flächen. Also ergibt sich: K = E m 2 (1) F = 2 K n (2)

12 K = E m 2 F = 2 K n Da die Eulersche Polyederformel für alle konvexen Polyeder gilt, insbesondere auch für das reguläre Polyeder RP. Wir setzen also in die Formel ein und erhalten folgende Gleichung: 2 = E E m K n. Wir bringen die rechte Seite auf den gemeinsamen Nenner 2 n. 2 = 2nE nme+4 K 2n. Wir ersetzen das verbleibende K noch einmal durch E m 2 aus (1): 2 = 2nE nme+2e m 2n. Vereinfacht ergibt sich: 2 = E 2n (2n mn+2m). Wir betrachten nun den Ausdruck im Inneren der Klammer näher: 2n mn+2m. Betrachten wir dazu den Ausdruck (n 2) (m 2) : (n 2) (m 2) = nm 2m 2n+4.Man sieht, dass 3 Produkte mit negativem Vorzeichen aus Klammerausdruck darin vorkommen. Das heißt, man kann den Klammer Ausdruck 2n mn+2m umformen auf 4 (n 2) (m 2) und erhält die neue Gleichung: 2 = E 2n( 4 (n 2) (m 2) ) = 4n E = ( 4 (n 2) (m 2) ). (1) (2)

13 = 4n E = ( 4 (n 2) (m 2) ). Da die Zahl 4n E offensichtlich positiv ist, muß auch die rechte Seite der Gleichung positiv sein und es ergibt sich folgende Ungleichung: 4 > (n 2) (m 2). Desweiteren wissen wir aus der Definition, dass n,m 3 gelten muss. Wenn man nun für n 2 = a und für m 2 = b setzt, sieht man, dass a 1 und b 1 gelten muss. Also: Für welche a,b N ist a b < 4 erfüllt? Für (a,b) gibt es, wie man leicht sieht, nur die folgenden Möglichkeiten: (1,1),(1,2),(1,3),(2,1),(3,1) Daraus ergeben sich für n und m folgende Möglichkeiten für die (n,m) - Paare: (3,3),(3,4),(3,5),(4,3),(5,3): das sind genau 5 platonischen Körper. 6 20

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel Platonische Körper.nb 1 Beweis der xistenz von genau 5 platonischen Körpern anhand der ulerschen Polyederformel Daniel Bauernfeind, 0355507 Dietmar Kerbl, 0355750 Dodekaeder Tetraeder Ikosaeder Würfel

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Der Eulersche Polyedersatz in beliebiger Dimension

Der Eulersche Polyedersatz in beliebiger Dimension Der Eulersche Polyedersatz in beliebiger Dimension Rolf Stefan Wilke 17. Juli 2007 Definition. Sei P R d ein Polytop der Dimension d. Es bezeichne f k (P ) die Anzahl der k-dimensionalen Seitenflächen.

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

3 Planare Graphen die Eulersche Polyederformel

3 Planare Graphen die Eulersche Polyederformel 3 Planare Graphen die Eulersche Polyederformel Planare Graphen sind solche Graphen, die sich ohne Überkreuzungen von Kanten in eine Ebene zeichnen lassen. Wir nehmen hierbei an, dass die Knoten als Punkte

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.37 2018/04/26 14:09:00 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.4 Anordnungseigenschaften Am Ende der letzten Sitzung hatten wir begonnen uns mit den konvexen Teilmengen des

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 11 Aussagen, Beweise, vollständige Induktion 15 Man kann die Methode der vollständigen Induktion auch auf vielfältige Weise einsetzen, um geometrische Aussagen zu beweisen Hier ein prominentes Beispiel

Mehr

Bastelbogen platonische Körper

Bastelbogen platonische Körper E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.

Mehr

Reguläre Polyeder und ihre Symmetriegruppen. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin

Reguläre Polyeder und ihre Symmetriegruppen. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin Reguläre Polyeder und ihre Symmetriegruppen Teilnehmer: Anna Bobenko Aymara Fehéri Mehdi Hassan Hamzé Pascal Gussmann Tuyen Vu Xuan Herder-Oberschule Heinrich-Hertz-Oberschule Herder-Oberschule Heinrich-Hertz-Oberschule

Mehr

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten. 11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau Reguläre Polyeder Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau export(plot): Die fünf Platonischen Körper plot(canvas(layout=horizontal,width=16*unit::cm,

Mehr

7 Graphentheorie. Beispiele. Die folgende Liste gibt Beispiele für Graphen mit einer zweielementigen Eckenmenge E = {A, B} an.

7 Graphentheorie. Beispiele. Die folgende Liste gibt Beispiele für Graphen mit einer zweielementigen Eckenmenge E = {A, B} an. 7 Graphentheorie Definition. Ein Graph ist ein Paar (E, K) bestehend aus einer Eckenmenge E und einer Kantenmenge K, zusammen mit einer Zuordnung, die jedem Element der Menge K genau zwei Elemente der

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli Reguläre Polyeder Vortrag von Dr. Hans-Gert Gräbe, apl. Professor für Informatik, Univ. Leipzig, und Leipziger Schülergesellschaft für Mathematik (LSGM) e.v. im Wissenschaftssommer Leipzig, 1. Juli 2008

Mehr

Diskrete Kurven und Flächen

Diskrete Kurven und Flächen Vorlesung 18 Diskrete Kurven und Flächen 18.1 Polygonale Kurven in der Ebene Definition 18.1. Eine offene, orientierte polygonale Kurve P n im R 2 ist ein ebener Polygonzug bestehend aus 1. n voneinander

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Teilgebiete der Abbildungsgeometrie

Teilgebiete der Abbildungsgeometrie Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Finite Elemente. bzw. F + E K = 1. (1)

Finite Elemente. bzw. F + E K = 1. (1) Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 25 Finite Elemente Übung 2 Aufgabe 6 (Eulerscher Polyedersatz für Triangulierung)

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 6. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 6. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 6 Dr. Hermann Dürkop E-Mail: info@ermanus.de 1 3.3 Der Eulersche Polyedersatz Wir wollen kurz das Gebiet der Graphen verlassen und uns gewissen 3- dimensionalen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 3: Das Matching-Polytop Diskutieren Sie folgende Fragen in der

Mehr

Das Bastelbogenproblem

Das Bastelbogenproblem Das Bastelbogenproblem JProf. Dr. Petra Schwer Tag der Mathematik, 7. März 2015, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Die Platonischen Körper

Die Platonischen Körper Die Platonischen Körper Ablauf: 1. Die Studenten erklären den Schülern kurz, wer Platon war, wann und wo er gelebt hat und womit er sich beschäftigt hat. 2. Anschließend wird den Schülern erklärt was Platonische

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

3.3 Der Seitenverband

3.3 Der Seitenverband Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 217 3.3 Der Seitenverband Wir setzen die Untersuchung der Relation ist Seite von auf der Menge aller konvexen Polytope in einem gegebenen

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen 222 Diskrete Geometrie (Version 3) 12. Januar 2012 c Rudolf Scharlau 3.4 Kombinatorische Äquivalenz und Dualität von Polytopen Dieser Abschnitt baut auf den beiden vorigen auf, indem er weiterhin den Seitenverband

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 3: Das Matching-Polytop Diskutieren Sie folgende Fragen in der

Mehr

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 17.05.2000 Sekundärpolytop und 6 bistellare Operationen In diesem Kapitel werden

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Beispiellösungen zu Blatt 50

Beispiellösungen zu Blatt 50 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 50 Aufgabe 1 Finde alle natürlichen Zahlen mit der Eigenschaft, dass die Differenz

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Was und wie zählt man im Alltag und in der modernen Mathematik?

Was und wie zählt man im Alltag und in der modernen Mathematik? Was und wie zählt man im Alltag und in der modernen Mathematik? Wolfgang Lück (Bonn) Greifswald Januar 2014 Hinweis Dies ist keine Vorlesung. Dies ist ein interaktiver Vortrag. Mitmachen und Mitdenken

Mehr

Simpliziale Bäume. Cora Welsch. Seminar SS2015 WWU Münster

Simpliziale Bäume. Cora Welsch. Seminar SS2015 WWU Münster Seminar SS2015 WWU Münster Übersicht abstrakter Simplizialkomplex Geometrische Realisierung Bäume Wirkung auf einen Baum abstrakter Simplizialkomplex Denition (abstrakter Simplizialkomplex) Ein abstrakter

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper -1- 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer: in der Mathematik

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen

Mehr

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 )

( 1) k k 2. k=0. n n(n + 1) ( 1) k k 2 + ( 1) n+1 (n + 1) 2. k=0. + ( 1) n+1 (n + 1) 2 n(n + 1) + (n + 1) 2 ) Musterlösung zum 9. Blatt 8. Aufgabe: Sei n eine natürliche Zahl. Vermuten Sie eine Formel für ( ) k k und beweisen Sie diese durch vollständige Induktion. Lösung: Für jede natürliche Zahl n sei a n =

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper - 1 - RF + KP 1/2012 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer:

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer mafi@upb.de Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2 Technische Universität Berlin Jörg Rambau 2.4.2 Motivation und Beispiele Wir wollen hier den Begriff der Triangulierungen von

Mehr

Beweise und Widerlegungen

Beweise und Widerlegungen Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F

Mehr

Paare und Kartesische Produkte

Paare und Kartesische Produkte Paare und Kartesische Produkte Aufgabe 1. Stellen Sie das Tripel (a, b, c) als Paar und als Menge dar. Hinweis: Verwenden Sie Farben. Lösung von Aufgabe 1. (a, b, c) = ((a, b), c) Paar Darstellung (a,

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014 Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................

Mehr

EULER-CHARAKTERISTIK KONVEXER POLYEDER

EULER-CHARAKTERISTIK KONVEXER POLYEDER MINI-IKM 1998 EULER-CHARAKTERISTIK KONVEXER POLYEDER Eberhard-Karls-Universität Tübingen, März 1998 Richard Bödi Inhalt 1. Der euklidische Raum, affine Räume...........................................1

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $ $Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 9. Übungsaufgaben 2007-01-23 1. Beweisen Sie geometrisch, daß die Addition von Vektoren in der Ebene assoziativ ist. Beweis. Man zeichnet die entsprechenden Parallelogramme. 2. Der

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

DARSTELLENDE GEOMETRIE I

DARSTELLENDE GEOMETRIE I DARSTELLENDE GEOMETRIE I VON DR. RUDOLF BEREIS Professor und Direktor des Instituts für Geometrie an der Technischen Universität Dresden Mit 361 Abbildungen AKADEMIE-VERLAG BERLIN 1964 h. INHALT Hinweise

Mehr

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild: IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

Fritz Ostermann Elemente der Raumeinheit (RE) im n-dimensionalen kartesischen Vektorraum

Fritz Ostermann Elemente der Raumeinheit (RE) im n-dimensionalen kartesischen Vektorraum Fritz Ostermann 20. 09. 2016 Elemente der Raumeinheit (RE) im n-dimensionalen kartesischen Vektorraum R 1 = < e 1 > R Ursprung O Anzahl der Ecken: 2 BegrÄndung: O, E 1, wobei e 1 = OE 1 ist. Anzahl der

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr