Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert"

Transkript

1 Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte geben - Median oder Zentralwert ( x ), (Z) - für mindestens ordinal skalierte Daten - der Wert einer Verteilung, die bei Anordnung der Werte nach ihrer Größe die Verteilung genau in der Mitte in zwei gleich große Teile teilt - bei einer geraden Anzahl von Fällen wird die Ausprägung der beiden in der Mitte liegenden Fälle gemittelt - hat den minimalsten Abstand zu den anderen Werten : n / x. Stelle : ( n / ) x. Stelle x x Stellenwer t Stellenwer t Median Mittelwert oder arithmetisches Mittel ( x ) - für metrische Daten - der Wert, der als Durchschnitt den Schwerpunkt der Verteilung darstellt - ist nicht robust gegenüber Außreißern Symmetrisch: Linkssteil: Rechtssteil: Bimodal: Modus Median Mittelwert Modus < Median < Mittelwert Mittelwert < Median < Modus Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert Mittelwert bei gruppierten Daten: - bei gruppierten Daten, kennt man nur die Häufigkeitsverteilung von zu Messwertklassen zusammengefassten Daten - der Mittelwert wird über die geschätzten Klassenmitten errechnet Untergrenze Obergrenze Klassenmit te : Klassenmitte Anschließend wird jeweils die geschätzte Klassenmitte mit der Anzahl der Fälle in dieser Klasse multipliziert. Dies wird für alle Klassen aufsummiert und dann durch die Anzahl der Fälle geteilt.

2 Aufgaben:.Die folgende Liste enthält das Alter von neun Personen. 4; 55; 3; 8; 59; 4; 38; 4; 78 Bestimme Modus, Median und Mittelwert. Modus: D = 4 Median: 8; 3; 38; 4; 4; 4; 55; 59; 78 : n / 9 / 4,5 5. Stelle x 4 Mittelwert: x 9 x 46, - 4 Jahre, ist der Wert der am häufigsten vorkommt - mindestens die Hälfte der Personen ist jünger bzw. älter als 4 Jahre - im Durchschnitt sind alle Personen 46, Jahre alt. Eine Befragung von 45 Haushalten ergab folgende Verteilung zu dem Merkmal Anzahl an TV-Geräten: Anzahl TV-Geräte Häufigkeit Berechne Modus, Median und Mittelwert. Die Anzahl der TV-Geräte hat metrisches Skalenniveau, da man sagen kann hat doppelt so viele Fernseher wie Y. Daher können der Modus, der Median und auch das arithmetische Mittel berechnet werden.

3 D = : N / 45 /,5 3. Stelle (0* 48) (*56) (*43) (3* 6) (4*7) 45,63 3. Bei einem 4- tägigen Radfahrurlaub notierte einer der Teilnehmer die täglich am Tachometer angezeigte Kilometerleistung: a) Berechne Modus, Median und Mittelwert dieses Merkmales b) Welche Verteilungsform liegt vor? a) D = 55 Km (häufigste Ausprägung) 30;3;4;48;53;55;55;60;64;66;73;75;85;0 : n / 4 / 7 7. Stelle : ( n / ) x 7 x 8 x 57,5 Km (4 / ) ,5km 8 8. Stelle x 60km 4 x = 60 Km b) Linksteil, weil Modus < Median < Mittelwert 4.)Mittelwert bei gruppierten Daten: - bei gruppierten Daten, kennt man nur die Häufigkeitsverteilung von zu Messwertklassen zusammengefassten Daten

4 - der Mittelwert wird über die geschätzten Klassenmitten errechnet Zum Beispiel: 5 Jahres Altersklassen f() über Für die Schätzung der Klassenmitte wird jeweils die Untergrenze und die Obergrenze der jeweiligen Klasse addiert und danach halbiert. Klassenmit te 8 3 : 5 Anschließend wird jeweils die geschätzte Klassenmitte mit der Anzahl der Fälle in dieser Klasse multipliziert. Dies wird für alle Klassen aufsummiert und dann durch die Anzahl der Fälle geteilt: (936* 5) (976* 40) (883*55) (5*70) (9*85) ,9 5. (3P) Die Tabelle stellt die Häufigkeiten einer Stichprobe der erzielten ECTS der von 0 Studenten des 3.Fachsemesters in Studiengang BA VW im WS 0/ dar. ECTS Häufigkeit

5 a. Berechnen Sie bitte die Entsprechende Lagemaße und formulieren Sie jeweils dazu einen Satz ohne statistische Begriffe..5P b. Stellen Sie die kumulierte Verteilung möglichst genau grafisch dar. P c. Welche Verteilungsform liegt vor? 0.5P a. D = 7 ECTS (häufigste Ausprägung) : n / 0/ Stelle x : ( n / ) 60 x 6 x 3ECTS (0/ ) 3 3 3ECTS 6 6. Stelle 0*4 6* *8 x 0, 75ECTS 0 x = 0,75 ECTS c. Rechtssteil, weil Mittelwert < Median < Modus 6. ( Punkte) In einer Befragung von 0 Jugendlichen wurde die Anzahl von Minuten, die Jugendliche pro Tag vor dem Computer verbringen, erfasst. 5; 35; 60; 5; 90; 40; 75; 43; 60; 68; 9; 4; 80; 74; 34; 46; 30; 3; 33; 00 a. Berechnen Sie bitte für dieses Merkmal alle geeignete Lagemaße und verwenden Sie in Ihren Antwortsätzen keine statistischen Begrifflichkeiten..5 Punkte b. Um was für eine Verteilungsform handelt es sich hierbei? Bitte begründen Sie Ihre Antwort aufgrund der ermittelten Lagemaße. 0.5 Punkte a) D = 60 min (häufigste Ausprägung) 5;5;33;40;43;46;60;60;68;74;9;3;30;34;35;4;75;;80;90;00 : n / x : ( n / ) 0 x 8,5min x 0/ 7 0. Stelle (0/ ) ,5min. Stelle

6 x 98,5min 0 x = 98,5 min b) Linksteil, weil Modus < Median < Mittelwert

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur Gesamtpunktzahl der Statistik I-Klausur: 12 Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur 03.07.2015 Name, Vorname: Matrikelnr.: Um die volle Punktzahl zu erhalten, müssen Sie bei den Berechnungen

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Beschreibung univariater Verteilungen

Beschreibung univariater Verteilungen Inhaltsverzeichnis Beschreibung univariater Verteilungen... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-4)... 4 1. Verteilungsformen... 4 2. Masse der zentralen Tendenz (Mittelwerte)... 5 Einleitung...

Mehr

Müller-Benedict: Übungsaufgaben Statistik

Müller-Benedict: Übungsaufgaben Statistik Thema: Skalenniveaus Aufgabe 1: Ordnen Sie bitte die folgenden Merkmale den verschiedenen Skalierungen und Merkmalstypen zu: Einkommen Haarfarbe Alter soziale Stellung Körpergröße Geschlecht Beruf Schultypen

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Kennwerte eindimensionaler Häufigkeitsverteilungen

Kennwerte eindimensionaler Häufigkeitsverteilungen Kennwerte eindimensinaler Häufigkeitsverteilungen - Einführung - Statistische Kennwerte vn Verteilungen sind numerische Maße mit der Funktin, zusammenfassend einen Eindruck vn 1) dem Schwerpunkt, 2) der

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1.

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1. Schüler Nr. Statistik I (7) Schuljahr /7 Mathematik FOS (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben, wenden Sie sich bitte an die betreuenden Lehrkräfte!) Tabelle : Die Tabelle wurde im Rahmen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Komische Handyrechnungen

Komische Handyrechnungen 1 Folie Komische Handyrechnungen Vor den Herbstferien wurde eine Befragung in einer Klasse über die monatliche Handyrechnung durchgeführt. Aufgrund der erhobenen Daten werden nun folgende Behauptungen

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden.

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden. Aufgabe 1: Nehmen Sie Stellung zu den nachfolgenden Behauptungen (richtig/falsch mit kurzer Begründung): a) Die normierte Entropie ist gleich Eins, wenn alle Beobachtungen gleich häufig sind. b) Bei einem

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

b = = 122.

b = = 122. Lösungsskizze zur Probeklausur im Fach Statistik I am 7.1.2010 Gesamtpunktzahl: 60 Aufgabe 1 (12 Punkte): Ein Unternehmen, das Möbel herstellt, hat eine Niederlassung in Deutschland, eine in Frankreich

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Übungsaufgaben Statistik - Lösungen

Übungsaufgaben Statistik - Lösungen Thema: Skalenniveaus Aufgabe : Ordnen Sie die folgenden Merkmale den verschiedenen Skalierungen und Merkmalstypen zu: Einkommen Haarfarbe Alter soziale Stellung Körpergröße Geschlecht Beruf Schultypen

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Didaktik der Stochastik (Leitidee: Daten und Zufall)

Didaktik der Stochastik (Leitidee: Daten und Zufall) Didaktik der Geometrie und Stochastik WS 09 / 10 15. 1. 2010 Didaktik der Stochastik (Leitidee: Daten und Zufall) 7. Beschreibende Statistik 7.1 Zum Begriff Stochastik : Seit den Fünfziger Jahren werden

Mehr

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5.

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5. Lösung Aufgabe A1 Detaillierter Lösungsweg: Schritt 1: Prüfung, ob die gegebene Messreihe sortiert ist, In diesem Beispiel ist dies der Fall und wir haben insgesamt 22 Messungen. Schritt 2: Berechnen des

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen.

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen. Department of Sport Science and Kinesiology Block 1 Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Gerda Strutzenberger Block I Mittwoch 15.2.2012 13:00 bis 14:50 Grundlagen, Skalenniveau

Mehr

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 6 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise : In der folgenden Tabelle ist eine Teilstichprobe zu den Studierenden in

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Begriffe zur Statistik-Vorlesung

Begriffe zur Statistik-Vorlesung Begriffe zur Statistik-Vorlesung 1. Vorlesung Grundgesamtheit gesamte zu beobachtende Menge, über die man eine Aussage machen möchte; z.b. alle Studenten der FH BRS Stichprobe Teil der GGH; nutze ich,

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge Aufgabe 1: Anlässlich der Fußball-Europameisterschaft veröffentlichte das Statistische Bundesamt unter der Überschrift "EM 2012: Die Teilnehmer in Zahlen" statistische Merkmale der Teilnehmerstaaten. Die

Mehr

Statistik I im Sommersemester 2006

Statistik I im Sommersemester 2006 Statistik I im Sommersemester 2006 Themen am 23.4.2007: Univariate Häufigkeitsverteilungen I Darstellung univariater Verteilungen in Häufigkeitstabellen Verteilungsfunktionen und Quantile Grafische Darstellungen

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur GRUPPE B - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur GRUPPE B - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE B - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer Statistik I WS 2014/2015 Prof. Dr. Walter Krämer Organisatorisches Dozenten: Vorlesung: Prof. Dr. Walter Krämer Übungen: Dipl.-Stat. Marianthi Neblik cand.stat. Eva-Maria Becker cand.stat. Nicole Dauzenroth

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen?

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen? STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme 1 Kurze Wiederholung Warum nur zwei grafische Darstellungsformen? Im Rahmen der Vorlesungen haben wir kurz eine ganze Reihe grafischer Darstellungsformen

Mehr

Statistik Tutorium SS Aufgabensammlung

Statistik Tutorium SS Aufgabensammlung Statistik Tutorium SS 2007 Felix Holter Felix.Holter@web.de Aufgabensammlung 1. Begriffsdefinition: Statistische Masse, Merkmalsträger, Merkmal und Merkmalsausprägung 2. Welche unterschiedlichen Merkmale

Mehr

2 Statistische Maßzahlen

2 Statistische Maßzahlen 2 Statistische Maßzahlen Übersicht 2.1 Quantile, speziellmedian, QuartileundPerzentile... 25 2.2 Modus, Median, arithmetischesmittel... 28 2.3 Arithmetisches,geometrisches,harmonischesMittel... 31 2.4

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Testklausur Finanzmathematik / Statistik

Testklausur Finanzmathematik / Statistik Testklausur Finanzmathematik / Statistik Aufgabe - Grundlagen 0 a) Nennen Sie die charakteristische Eigenschaft einer geometrischen Zahlenfolge. b) Für eine geometrische Zahlenfolge seien das Glied a 0

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)

Übungsklausur zur Vorlesung Statistik I (WiSe 2003/2004) Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.

Mehr

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen.

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen. Aufgabenstellung Klausur Methoden der Marktforschung 0.08.004 Der Automobilhersteller People Car verkauft eine neue Variante seines Erfolgsmodells Wolf zunächst nur auf einem Testmarkt. Dabei muss das

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr