Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Komplexe Funktionen für Studierende der Ingenieurwissenschaften"

Transkript

1 Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden Funktionen a fz z 4 + z 2, b fz sin z, bestimme man: c fz z sin z z 2, d fz coth z Lage und Art der endlichen Singularitäten, die zugehörigen Residuen und die ersten drei nichtverschwindenden Summanden der Laurentreihe um z, die für große z konvergiert. Lösung: a Die Singularitäten von fz z 4 + z 2 z 2 z 2 + z 2 z 2 + sind gegeben durch die Nennernullstellen, die keine Zählernullstellen sind: z i und z 2 i sind Pole. Ordnung und z 3 ist Pol 2. Ordnung. Res f; z z 4 + z 2 zi 4z 3 + 2z zi 4i 3 + 2i i 2 Res f; z 2 z + i z 4 + z 2 z i z 2 z i z i i 2 2i i 2 Res f; z 3 z 2! z 4 + z z 2 z 2 + z 2z z z Die Laurent-Entwicklung im Außengebiet z > ergibt sich durch: fz z 4 + z 2 z 4 + /z z 2 z + z z 4 z + 6 z 8

2 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 2 b fz sin z n 2n +! z 2n+ z 3!z + 3 5!z + 5 n } {{ } :a n Die einzige Singularität z ist wesentlich mit Res f; z a. c fz z sin z z 3 z 2 z 2 3! z5 5! + z7 7! + Die einzige Singularität z ist hebbar mit Res f; z a. d Die Singularitäten von fz coth z cosh z sinh z z3! z3 5! + z5 7! + ergeben sich aus: sinh z e z e z e x+iy e x iy 2 2 e x cos y + i sin y e x cos y i sin y 2 cos y sinh x + i sin y cosh x. Die Lösungen sind gegeben durch y kπ, k Z und x. Die Nennernullstellen z k ikπ sind einfach und auch keine Zählernullstellen, denn sinh z zikπ cosh ikπ cos kπ. Also sind z k Pole. Ordnung und man erhält cosh z cosh z Res f; z k. sinh z zz k cosh z zz k Es gibt kein Außengebiet ohne Singularitäten.

3 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 3 Aufgabe 22: Gegeben sei die Funktion fz z 4 + 4z 3 + 8z 2 + 6z + 6. a Man bestimme mit Hilfe von Laurent-Reihenentwicklungen die Partialbruchzerlegung von f. b Man berechne mit Hilfe des Residuensatzes das Integral fz dz für den Kreis c : z + 2 2i 3. c Lösung: a Aus der Faktorisierung z 4 + 4z 3 + 8z 2 + 6z + 6 z 2 + 4z z + 2iz 2iz ergeben sich die Nennernullstellen z 2i, z 2i, z 2 2. Damit sind z und z Pole. Ordnung und z 2 ist Pol 2. Ordnung. Der Hauptteil der Laurententwicklung in z k, k, besitzt damit die Form hz, z k a,k z z k, wobei a,k Resfz; z k gilt. Für z 2i ergibt sich Resfz; 2i z 2iz z 2i 4i 8i 4i 2i Zum gleichen Ergebnis führt die Taylor-Reihenentwicklung des holomorphen Anteils von f : fz z + 2i z 2iz }{{} g z, holom. z + 2i g 2i + g 2iz + 2i + mit g 2i Resfz; 2i. Insgesamt erhält man also

4 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 4 Für z 2i ergibt sich entsprechend fz z 2i fz + g } z {{ + 2i 2i + }{{}} Nebenteil hz, 2i z + 2iz }{{} g 2 z, holom. z 2i g 22i + g 22iz 2i + mit g 2 2i Resfz; 2i. Insgesamt erhält man also fz + g } z {{ 2i 22i + }{{}} Nebenteil hz, 2i Für den Pol 2. Ordnung z 2 2 erhält man den Hauptteil der Laurent-Reihe um z 2 über die Taylor-Reihenentwicklung des holomorphen Anteils von f : fz z z } z 2 {{ + 4 } g 3 z, holom. Nach kurzer Rechnung erhält man g 3 2 4, fz g g 3 2z g 3 2z g Resfz; 2 4 z g 2 z /2 + }{{}}{{} Nebenteil hz, 2 Die komplexe Partialbruchzerlegung lautet deshalb: fz hz, 2i + hz, 2i + hz, 2 z + 2i z 2i + 4 z z + 2. Als reelle Partialbruchzerlegung ergibt sich: b Von den Singularitäten von f fz 2z z z z + 2. z 2i, z 2i, z 2 2. liegt nur z und z 2 innerhalb von c. Damit ergibt sich nach dem Residuensatz dz 2πi Resf; 2i + Resf; 2 2πi z 4 + 4z 3 + 8z 2 + 6z + 6 c

5 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 5 Aufgabe 23: Klausuren SoSe8 und WiSe8/9 Man berechne unter Verwendung des Residuenkalküls die folgenden Integrale a b c d 2π, x 5/2 + 3x 3/2 + 36x/2 2 + cos x, x 4 + x 2 + 9, cos3x x 2 6x +. Lösung: a b c x 5/2 + 3x 3/2 + 36x/2 x /2 x 2 + 3x + 36 x /2 x + 4x + 9 2πi Res e 2πi/2 x /2 x + 4x + 9 ; 4 + Res x /2 x + 4x + 9 ; 9 πi + π π 3 3 2π 2 + cos x dz 2 + z + /z/2 iz 2 dz i z 2 + 4z + z z i z + 2 3z dz 3 z }{{} fz 2πi 2 i Res f; π π 3

6 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 6 d x 4 + x x + ix ix + 3ix 3i }{{} x 2 + x fx 2πi i + ii i 2 + 3i + 3i cos3x x 2 6x + e 3ix Re x Re e 3ix x 3 + ix 3 i }{{} fx Re 2πi Resf; 3 + i Re Re πe 3+9i πe 3 cos 9 2πi Resf; i + Resf; 3i π e 3i3+i 2πi 3 + i 3 i π 2

7 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 7 Aufgabe 24: Klausur SoSe6 Gegeben sei die durch fz z + 3 z 3 z 2 7z + 5 definierte Funktion. a Man bestimme den Typ aller Singularitäten von f. b Man berechne die Residuen aller Singularitäten. c Man gebe die komplexe Partialbruchzerlegung von f an mit Hilfe von Laurent- Reihenanteilen. d Man skizziere die Konvergenzbereiche der verschiedenen Reihenentwicklungen um z. e Man berechne die Laurent-Reihe um z, die im Punkt z 5 konvergiert. f Man berechne fz dz. z 2+2i 2 g Man berechne fx. Lösung: a fz Damit besitzt f : in z 3 eine hebbare Singularität und z + 3 z 3 z 2 7z + 5 z + 3 z + 3z 2 4z + 5 z + 3 z + 3z 2 iz 2 + i in z 2 2 i und z i jeweils einen Pol. Ordnung. z + 3 b Res f; 3 z 2 iz 2 + i, z 3 Res f; 2 i z 2 + i z2 i 2i i, 2 Res f; 2 + i z 2 i z2+i 2i i 2 c fz Resf; 2 i hz; 2 i + hz, 2 + i z 2 i i 2z 2 i i 2z 2 + i + Resf; 2 + i z 2 + i

8 Komplexe Funktionen, R. Lauterbach/K. Rothe, SoSe 24, Blatt 6 8 d Skizze: Da z 2 z 2 i 5 z 3 z gibt es nur zwei Konvergenzgebiete, die Kreisscheibe z < 5 und das Außengebiet 5 < z. e Gesucht ist die Laurent-Reihe im Außengebiet, denn f g z z 5 5 > 5 i fz 2z 2 i i 2z 2 + i i 2 z 2 i z 2 + i i 2z 2 i/z 2 + i/z i 2 i k 2 + i k 2z z k z k k k i 2 i k 2 + i k 2 z. k+ z 2+2i 2 k fz dz 2πi Resf; 2 i 2πi i 2 π fx 2πi Resf; 2 + i 2πi i 2 π Abgabetermin: zu Beginn der Übung

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Themen Potenzreihen Laurentreihen Residuenkalkül

Themen Potenzreihen Laurentreihen Residuenkalkül 5 Reihenentwicklungen und der Residuensatz Themen Potenzreihen Laurentreihen Residuenkalkül folgen 5.1 Potenzreihen und Taylorreihen Satz Sei und sei f(z) = a n (z z 0 ) n, a n, n=0 R = 1 lim sup n a n,

Mehr

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 207 Dr. Hanna Peywand Kiani Hörsaalübung 5 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Laurent-Reihen, isolierte Singularitäten 6.

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 12. Übungsblatt Karlsruher Institut für Technologie KIT) Institut für Analysis Priv.-Do. Dr. P. C. Kunstmann Dipl.-Math. D. Roth SS 0 5.07.0 Aufgabe 60 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom

Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 Lösungsvorschläge Version vom Studienbegleitende Prüfung / Modulprüfung / Diplomprüfung Funktionentheorie I SS 2010 svorschläge Version vom 2382010 Aufgabe 1 (2+2 Punkte) a) Sei f : C C gegeben durch f(z) := 5 5i 1 2i + ez z Geben

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge

Übungen zur Vorlesung Funktionentheorie Sommersemester Klausurvorbereitungsblatt Lösungsvorschläge UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Dr. Tobias Mai M.Sc. Felix Leid Übungen zur Vorlesung Funktionentheorie Sommersemester 7 Klausurvorbereitungsblatt Lösungsvorschläge (5) Bestimmen

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz

Ferienkurs Analysis 3 für Physiker. Laurentreihen und Residuensatz Ferienkurs Analysis 3 für Physiker Laurentreihen und Residuensat Autor: Benjamin Rüth Stand:. Mär 204 Inhaltsvereichnis Inhaltsvereichnis Inhaltsvereichnis Singularitäten 3 2 Laurentreihen 4 2. Laurententwicklung...............................

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 018 Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt komplexe Funktionen, K.Rothe,

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT!

Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Fachbereich Mathematik der Universität Hamburg SoSe 17 Dr. Hanna Peywand Kiani 13.07.2017 Klausurberatung Komplexe Funktionen für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Dateien

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Funktionentheorie Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 Funktionentheorie - Zusammenfassung Grundlagen Komplexe Funktion f (z)

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale,

Anleitung zu Blatt 7 Komplexe Funktionen. Isolierte Singularitäten, Residuensatz, reelle Integrale, Department Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Anleitung u Blatt 7 Komplexe Funktionen Isolierte Singularitäten, Residuensat, reelle Integrale, Die ins Net gestellten Kopien

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt Institut für Analysis SS207 PD Dr. Peer Christian Kunstmann 4.07.207 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v 1.3 2016/06/22 16:12:36 hk Exp $ 3 Meromorphe Funktionen und der Residuenkalkül 3.3 Hauptteile und Residuen Am Ende der letzten Sitzung hatten wir die Laurententwicklung einer holomorphen

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

1 für n = 2, 3, 4,...,

1 für n = 2, 3, 4,..., Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch. Aufgabe 3. Zeigen

Mehr

Laurentreihen und Singularitäten

Laurentreihen und Singularitäten Laurentreihen und Singularitäten Wichtig: Zu jeder Laurentreihe das Konvergenzgebiet angeben! Wichtig: Ob man eine Laurentreihe verwenden kann um damit Singularitäten klassifizieren und Residuen berechnen

Mehr

Komplexe Funktionen. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg

Komplexe Funktionen. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg Komplexe Funktionen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 12. Juni 2009 Reihenentwicklung komplexer Funktionen

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

Aufgaben zu Kapitel 32

Aufgaben zu Kapitel 32 Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3. Zeigen Sie, dass die Summe der n-ten Einheitswurzeln für n immer null ergibt und interpretieren Sie dieses Ergebnis für n 3 geometrisch.

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Korbinian Singhammer Stand: 28. Februar 25 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Was ist Funktionentheorie?

Mehr

Mathematik III für Physiker. Vorlesung

Mathematik III für Physiker. Vorlesung Mathematik III für Physiker Wintersemester /3 Vorlesung..3 Satz 6 (iduensatz) Sei f holomorph in G := C \ {z,..., z N } und G ein geschlossener, stückweise stetig dierenzierbarer Weg. Dann gilt f(ξ)dξ

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

für Studierende der Fachrichtungen el, kyb, phys, mech

für Studierende der Fachrichtungen el, kyb, phys, mech Fachbereich Mathematik Universität Stuttgart Prof. Dr. M. Griesemer Höhere Mathematik III 07.09.200 Prüfung (Nachtermin) für Studierende der Fachrichtungen el, kyb, phys, mech Vorname: Matrikelnummer:

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Bernhard Lamel und Gerald Teschl SS27 Bemerkung: Die meisten Beispiel sind aus dem Buch von K. Jähnich, Funktionentheorie, Springer. 1. Beweise folgende Eigenschaften des

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 8. Laurentreihen, isolierte Singularitäten, meromorphe Funktionen D-MATH Funktionentheorie HS 208 Prof. Michael Struwe Lösungen Serie 8 Laurentreihen, isolierte Singularitäten, meromorphe Funktionen. Bestimmen Sie die Laurentreihenentwicklung der folgenden Funktionen:

Mehr

Ferienkurs Analysis 3 für Physiker. Funktionentheorie

Ferienkurs Analysis 3 für Physiker. Funktionentheorie Ferienkurs Analysis 3 für Physiker Funktionentheorie Autor: Benjamin Rüth, Maximilian Jokel Stand: 9. März 26 Inhaltsverzeichnis Inhaltsverzeichnis Grundlagen der Funktionentheorie 3. Holomorphe Funktionen............................

Mehr

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) =

1. Aufgabe 9 Punkte. Musterlösung Analysis III f. Ing., 09. Oktober Partialbruchzerlegung: 4 z 1 1. (z 1)(z +3) = Musterlösung Analysis III f. Ing., 09. Oktober 0. Aufgabe 9 Punkte Partialbruchzerlegung: (z )(z +3) z z +3 Um eine im Ringgebiet < z < 5 konvergente Laurent-Reihe zu erhalten, entwickelt man den Term

Mehr

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden.

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 13. es kann keine allgemein gültige Aussage getroffen werden. D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe). Wenn man zwei beliebig oft differenzierbare Funktionen addiert, dann werden ihre Taylorreihen an einem Punkt

Mehr

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Proseminar Komplexe Analysis 1

Proseminar Komplexe Analysis 1 Proseminar Komplexe Analysis 1 Michael Kunzinger und Gerald Teschl WS215/16 Bemerkung: Die meisten Beispiele sind aus dem Buch von K. Jänich, Funktionentheorie, Springer. 1. Bereiten Sie eine Kurzpräsentation

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

TU Dortmund. Residuensatz und Anwendungen

TU Dortmund. Residuensatz und Anwendungen TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Ferienkurs Analysis 3 - Funktionentheorie

Ferienkurs Analysis 3 - Funktionentheorie Ferienkurs Analysis 3 - Funktionentheorie Ralitsa Bozhanova, Max v. Vopelius 12.08.2009 1 Grundbegriffe und Differenzierbarkeit 1.1 R-lineare und C-lineare Abbildungen C C Da C sowohl VR über R als auch

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

5 Meromorphe Funktionen

5 Meromorphe Funktionen $Id: mero.tex,v.8 202/06/26 9:08:48 hk Exp $ $Id: residuum.tex,v.3 202/06/26 9:5:40 hk Exp hk $ 5 Meromorphe Funktionen 5.2 Laurentreihen In der letzten Sitzung hatten wir Laurentreihen eingeführt und

Mehr

Komplexe Taylor-Reihe

Komplexe Taylor-Reihe Komplexe Taylor-Reihe Eine in einem Gebiet D analytische Funktion f lässt sich in jedem Punkt a D in eine Taylor-Reihe entwickeln: f (n) (a) n! (z a) n. Taylor-Reihe - Komplexe Taylor-Reihe Eine in einem

Mehr

Laurent-Reihen und isolierte Singularitäten

Laurent-Reihen und isolierte Singularitäten Laurent-Reihen und isolierte Singularitäten Seminar Analysis III (SoSe 203) Pascal Niehus - Vortrag vom 27.05.203 - Kontaktdaten: Name: Studiengang: Fächer: E-Mail: Pascal Niehus BfP Mathematik, Physik

Mehr

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit)

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit) Mathematik (ET) UE WS 2014/2015 1. Übungsblatt 1. Berechnen Sie (a) die Bogenlänge der Kurve : x(t) = (b) den Gradient von f(x,y,z) = 4x y 2 +5z. ( t 7+t 2 ) mit 1 t 3, 2. Berechnen Sie das Kurvenintegral

Mehr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr

Klausur zur Vorlesung Funktionentheorie Sommersemester Mittwoch, , 9:00 12:00 Uhr UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Klausur zur Vorlesung Funktionentheorie Sommersemester 2012 Mittwoch, 1.8.2012, 9:00 12:00 Uhr Willkommen

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

4 Funktionen mit isolierten Singularitäten

4 Funktionen mit isolierten Singularitäten 4 Funktionen mit isolierten Singularitäten Funktionen wie z +z 2, z tanz oder z e /z sind mit Ausnahme einzelner Punkte in C holomorph. In diesem Abschnitt untersuchen wir solche Funktionen in der Nähe

Mehr

Musterlösung zu Übungsblatt 12

Musterlösung zu Übungsblatt 12 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 8. Dezember 17 HS 17 Musterlösung zu Übungsblatt 1 Die folgenden Aufgabe entwickelt Techniken, um mit Möbiustransformationen (auch gebrochen-lineare

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Laurent-Reihe. Eine in einem Kreisring D : r 1 < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe. c n (z a) n. f (z) =

Laurent-Reihe. Eine in einem Kreisring D : r 1 < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe. c n (z a) n. f (z) = Laurent-Reihe Eine in einem Kreisring D : r < z a < r 2 analytische Funktion f kann in eine Laurent-Reihe f (z) = n= c n (z a) n entwickelt werden, die in D absolut konvergiert. Laurent-Reihe - Laurent-Reihe

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Mitschrieb zu Höhere Mathematik III: Fachrichtungen Physik, Elektroingenieurwesen und Geodäsie

Mitschrieb zu Höhere Mathematik III: Fachrichtungen Physik, Elektroingenieurwesen und Geodäsie Mitschrieb zu Höhere Mathematik III: Fachrichtungen Physik, Elektroingenieurwesen und Geodäsie Dr. Müller-Rettkowski und Diplomphysiker Jochen Bitzer Vorlesung Wintersemester 2002/2003 Letzte Aktualisierung

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

9 Ergänzungen zur Funktionentheorie

9 Ergänzungen zur Funktionentheorie 9 Ergänzungen zur Funktionentheorie 9. Herausziehen von Polen und Nullstellen Das folgende Lemma hatten wir an zahlreichen Stellen verwendet, ohne es jemals streng bewiesen zu haben. Lemma 9. Die Funktion

Mehr