Musteraufgabe Austauschverfahren: Invertieren einer (3,3)-Matrix

Größe: px
Ab Seite anzeigen:

Download "Musteraufgabe Austauschverfahren: Invertieren einer (3,3)-Matrix"

Transkript

1 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 1 von 14 Musteraufgabe Austauschverfahren: Invertieren einer (3,3)-Matrix Aufgabe: Zu berechne man die Inverse - falls diese existiert! Vorab: Matrix ins Tableau T0 schreiben, mit sinnvoller (= problemangepasster) Beschriftung Hier gewählt: sj für Spalte j, zi für Zeile i T0 s1 s2 s3 z z z Tausch T0 T1 in 5 Schritten: Schritt 0: Pivot-Element aussuchen aus noch nicht getauschten Zeilen und Spalten 0 ist verboten 1 und -1 sind schön, weil keine (vielleicht überflüssigen) Brüche entstehen Nullen in Pivot-Zeile bzw. Pivot -Spalte ersparen Rechenarbeit (Die Pivots müssen nicht auf der Hauptdiagonalen stehen!) Hier gewählt: z3-s1 T0 s1 s2 s3 z z z Alle neu berechneten Werte werden in Tableau T1 eingetragen.

2 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 2 von 14 T0 s1 s2 s3 z z z Alle neu berechneten Werte werden in Tableau T1 eingetragen. Schritt 0 (weiter): Beschriftung des neuen Tableaus Entsprechend der Pivotwahl wird eine Zeilennummer gegen eine Spaltennummer getauscht, alles übrige bleibt wie im alten Tableau. Hier also: In T1 z3 s1 z z1 z z2 z s1 GRUNDREGEL für alle Neuberechnungen: Nach unseren Rechenformeln wird nur mit den Zahlen aus dem alten Tableau gerechnet (inklusive der Kellerzeile); die neuen Werte werden ins neue Tableau eingetragen, aber erst später verwendet.

3 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 3 von 14 z z1 z z2 z s1 GRUNDREGEL für alle Neuberechnungen: Nach unseren Rechenformeln wird nur mit den Zahlen aus dem alten Tableau gerechnet (inklusive der Kellerzeile); die neuen Werte werden ins neue Tableau eingetragen, aber erst später verwendet. Schritt 1: Neuberechnung Pivot-Element PE, also aus PE-alt berechnen PE-neu PE-neu =1/PE-alt (Kehrwert bilden) Rechnung hier: 1/1 = 1 z z1 z z2 z s1 1

4 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 4 von 14 z z1 z z2 z s1 1 Schritt 2: Neuberechnung Pivot-Zeilen-Elemente PZ, also aus PZi-alt berechnen PZi-neu PZi-neu = PZi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen ändern; Merkhilfe: Zeile = = = Minuszeichen Die neuen Werte werden gleich ins neue Tableau und in die Kellerzeile K unter dem alten Tableau eingetragen; unter dem Pivot wird ein Stern Q eingetragen Rechnungen hier: PZ2-neu = PZ2-alt/PE-alt = 1/1 = 1 PZ3-neu = PZ3-alt/PE-alt = 0/1 = 0 = 0 z z1 z z2

5 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 5 von 14 z z1 z z2 Schritt 3: Neuberechnung Pivot-Spalten-Elemente PS, also aus PSi-alt berechnen PSi-neu PSi-neu = + PSi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen nicht ändern; Merkhilfe: Spalte nach Zeile = erst dann = + = Pluszeichen Rechnungen hier: PS1-neu = + PS1-alt/PE-alt = +1/1 = 1 PS2-neu = + PS2-alt/PE-alt = +2/1 = 2 z z1 1 z z2 2

6 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 6 von 14 z z1 1 z z2 2 Schritt 4: Neuberechnung der restlichen Elemente, REst nach REchteck-REgel Formel: Rij-neu = PSi-alt*Kj + Rij-alt Dies ist anschaulich leicht zu merken und nachzuvollziehen. Durch die Wahl eines Elementes des Restes entsteht mit Blick auf den Stern in der Kellerzeile im Tableau ein Rechteck, bei dem drei Ecken mit Zahlen besetzt sind. Hier für R13=3: z z1 1 z z2 2 z z1 1 z z2 2 Hiervon braucht man außer dem gewählten Element die zwei anderen Ecken : z z1 1 z z2 2 Die anderen Ecken liegen in der Pivotspalte (in derselben Zeile wie das gewählte Restelement) und in der Kellerzeile (in derselben Spalte wie das gewählte Restelement). Diese beiden Werte werden multipliziert und das Ergebnis zum alten Wert addiert. Rechnung hier: R13-neu = PS1-alt *K3 + R13-alt = 1*0 + 3 = = 3 z z1 1 3 z z2 2

7 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 7 von 14 z z1 1 3 z z2 2 (Wdh.: Rechnung hier: R13-neu = PS1-alt *K3 + R13-alt = 1*0 + 3 = = 3) Für die übrigen Reste geht es entsprechend weiter: z z1 1 3 z z2 2 4 Rechnung hier: R23-neu = PS2-alt *K3 + R23-alt = 2*0 + 4 = = 4 z z1 1 3 z z Rechnung hier: R22-neu = PS2-alt *K2 + R22-alt = 2*(-1) + 3 = = 1 z z z z Rechnung hier: R12-neu = PS1-alt *K2 + R12-alt = 1*(-1) + 2 = = 1 Nützliche Beobachtung: Die Null in der Kellerzeile (K2=0) hat die Elemente der zugehörigen Spalte unverändert gelassen. In der Kellerzeile stehen die neuberechneten Pivot-Zeilen-Elemente. Ein solches ist genau dann gleich Null, wenn schon das alte Pivot-Zeilen-Element gleich Null ist. Entsprechendes nur ohne Umweg - gilt für Nullen in der Pivot-Spalte. Merke also: Nullen in Pivot-Zeile bzw. Pivot -Spalte ersparen Rechenarbeit, denn sie lassen die ganze zugehörige Spalte bzw. Zeile unverändert (beim Neuberechnen fürs nächste Tableau). Der erste komplette Tausch ist fertig! Jetzt geht es mit Schritt 0 bis 4 weiter, bis alle Zeilen gegen alle Spalten vertauscht sind.

8 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 8 von Tausch T1 T2 wieder in 5 Schritten: z z z z Schritt 0: Pivot-Element aussuchen aus noch nicht getauschten Zeilen und Spalten 0 ist verboten 1 und -1 sind schön, weil keine (vielleicht überflüssigen) Brüche entstehen Nullen in Pivot-Zeile bzw. Pivot -Spalte ersparen Rechenarbeit (Die Pivots müssen nicht auf der Hauptdiagonalen stehen!) z z z z Hier gewählt: z1-s2 (Die 0 lässt sich nicht gut nutzen) z z z z Schritt 0 (weiter): Beschriftung des neuen Tableaus Entsprechend der Pivotwahl wird eine Zeilennummer gegen eine Spaltennummer getauscht, alles übrige bleibt wie im alten Tableau. Hier also: In T2 z1 s2 T2 z3 z1 s3 z z s2 z z z2 s1

9 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 9 von 14 T2 z3 z1 s3 z z s2 z z z2 s1 Schritt 1: Neuberechnung Pivot-Element PE, also aus PE-alt berechnen PE-neu PE-neu =1/PE-alt (Kehrwert bilden) Rechnung hier: 1/1 = 1 T2 z3 z1 s3 z z s2 1 z z z2 s1 Schritt 2: Neuberechnung Pivot-Zeilen-Elemente PZ, also aus PZi-alt berechnen PZi-neu PZi-neu = PZi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen ändern; Merkhilfe: Zeile = = = Minuszeichen Die neuen Werte werden gleich ins neue Tableau und in die Kellerzeile K unter dem alten Tableau eingetragen; unter dem Pivot wird ein Stern Q eingetragen Rechnungen hier: PZ1-neu = PZ1-alt/PE-alt = 1/1 = 1 PZ3-neu = PZ3-alt/PE-alt = 3/1 = 3 T2 z3 z1 s3 z z z2 s1 K 1 Q 3 Schritt 3: Neuberechnung Pivot-Spalten-Elemente PS, also aus PSi-alt berechnen PSi-neu PSi-neu = + PSi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen nicht ändern; Merkhilfe: Spalte nach Zeile = erst dann = + = Pluszeichen Rechnungen hier: PS2-neu = + PS2-alt/PE-alt = +1/1 = 1 PS3-neu = + PS3-alt/PE-alt = +(-1)/1 = -1 T2 z3 z1 s3 z z z2 1 s1-1 K 1 Q 3

10 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 10 von 14 T2 z3 z1 s3 z z z2 1 s1-1 K 1 Q 3 Schritt 4: Neuberechnung der restlichen Elemente, REst nach REchteck-REgel Formel: Rij-neu = PSi-alt*Kj + Rij-alt T2 z3 z1 s3 z z z2 1 1 s1-1 K 1 Q 3 Rechnung hier: R21-neu = PS2-alt *K1 + R21-alt = 1*(-1) + 2 = = 1 T2 z3 z1 s3 z z z2 1 1 s1 2-1 K 1 Q 3 Rechnung hier: R31-neu = PS3-alt *K1 + R31-alt = (-1)*(-1) + 1 = = 2 T2 z3 z1 s3 z z z s1 2-1 K 1 Q 3 Rechnung hier: R31-neu = PS2-alt *K3 + R23-alt = 1*(-3) + 4 = = 1 T2 z3 z1 s3 z z z s K 1 Q 3 Rechnung hier: R33-neu = PS3-alt *K3 + R33-alt = (-1)*(-3) + 0 = = 3 Der zweite komplette Tausch ist fertig!

11 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 11 von Tausch T2 T3 wieder in 5 Schritten: T2 z3 z1 s3 z z z s K 1 Q 3 Schritt 0: Pivot-Element aussuchen aus noch nicht getauschten Zeilen und Spalten 0 ist verboten 1 und -1 sind schön, weil keine (vielleicht überflüssigen) Brüche entstehen Nullen in Pivot-Zeile bzw. Pivot -Spalte ersparen Rechenarbeit (Die Pivots müssen nicht auf der Hauptdiagonalen stehen!) Hier kann man nicht mehr wählen: z2-s3 ist der letzte Pivot-Kandidat T2 z3 z1 s3 z z z s K 1 Q 3 Schritt 0 (weiter): Beschriftung des neuen Tableaus Entsprechend der Pivotwahl wird eine Zeilennummer gegen eine Spaltennummer getauscht, alles übrige bleibt wie im alten Tableau. Hier also: In T3 z2 s3 T2 z3 z1 s3 T3 z3 z1 z2 s2 z z z s3 s s1 K 1 Q 3

12 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 12 von 14 T2 z3 z1 s3 T3 z3 z1 z2 s2 z z z s3 s s1 K 1 Q 3 Schritt 1: Neuberechnung Pivot-Element PE, also aus PE-alt berechnen PE-neu PE-neu =1/PE-alt (Kehrwert bilden) Rechnung hier: 1/1 = 1 T2 z3 z1 s3 T3 z3 z1 z2 s2 z z z s3 1 s s1 K 1 Q 3 Schritt 2: Neuberechnung Pivot-Zeilen-Elemente PZ, also aus PZi-alt berechnen PZi-neu PZi-neu = PZi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen ändern; Merkhilfe: Zeile = = = Minuszeichen Die neuen Werte werden gleich ins neue Tableau und in die Kellerzeile K unter dem alten Tableau eingetragen; unter dem Pivot wird ein Stern Q eingetragen Rechnungen hier: PZ1-neu = PZ1-alt/PE-alt = 1/1 = 1 PZ2-neu = PZ2-alt/PE-alt = 1/1 = 1 T2 z3 z1 s3 T3 z3 z1 z2 s2 z z z s s s1 K 1 Q 3 K 1 1 Q Schritt 3: Neuberechnung Pivot-Spalten-Elemente PS, also aus PSi-alt berechnen PSi-neu PSi-neu = + PSi-alt/PE-alt (durchs PE-alt teilen, Vorzeichen nicht ändern; Merkhilfe: Spalte nach Zeile = erst dann = + = Pluszeichen Rechnungen hier: PS1-neu = + PS1-alt/PE-alt = +(-3)/1 = -3 PS3-neu = + PS3-alt/PE-alt = +3/1 = 3 T2 z3 z1 s3 T3 z3 z1 z2 s2-3 z z z s s s1 3 K 1 Q 3 K 1 1 Q

13 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 13 von 14 T2 z3 z1 s3 T3 z3 z1 z2 s2-3 z z z s s s1 3 K 1 Q 3 K 1 1 Q Schritt 4: Neuberechnung der restlichen Elemente, REst nach REchteck-REgel Formel: Rij-neu = PSi-alt*Kj + Rij-alt T2 z3 z1 s3 T3 z3 z1 z2 s2 2-3 z z z s s s1 3 K 1 Q 3 K 1 1 Q Rechnung hier: R11-neu = PS1-alt *K1 + R11-alt = (-3)*(-1) + (-1) = +3-1 = 2 T2 z3 z1 s3 T3 z3 z1 z2 s2 2-3 z z z s s s1-1 3 K 1 Q 3 K 1 1 Q Rechnung hier: R31-neu = PS3-alt *K1 + R31-alt = 3*(-1) + 2 = = -1 T2 z3 z1 s3 T3 z3 z1 z2 s z z z s s s1-1 3 K 1 Q 3 K 1 1 Q Rechnung hier: R12-neu = PS1-alt *K2 + R12-alt = (-3)*(-1) + 1 = = 4 T2 z3 z1 s3 T3 z3 z1 z2 s z z z s s s K 1 Q 3 K 1 1 Q Rechnung hier: R32-neu = PS3-alt *K2 + R32-alt = 3*(-1) + (-1) = -3-1 = 4 Der dritte komplette Tausch ist fertig! Weitere Tauschschritte sind nicht möglich, da alle Spalten gegen alle Zeilen getauscht wurden; sofort erkennbar ist dies an der Nummer des Tableaus: für eine (3,3)-Matrix können nicht mehr als 3 Tauschschritte erfolgen; an der Beschriftung des letzten Tableaus: oben stehen nur Zeilennamen, keine Spaltennamen mehr.

14 Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 14 von 14 Damit in Tableau T3 die Inverse steht, müssen Zeilen und Spalten noch sortiert werden. Im Prinzip genügt dafür ein Sortierschritt; mehr Schreibarbeit, aber weniger Konzentration erfordert (und weniger Fehlermöglichkeiten bietet) das Sortieren in zwei Schritten: Erst die Spalten in sortierter Reihenfolge abschreiben, dann die Zeilen (oder umgekehrt). Spalten sortieren: T2 z3 z1 s3 T3 z3 z1 z2 T3 z1 z2 z3 z z s s s z z z s s s s s K -1 Q -3 K -1-1 Q Zeilen sortieren: T0 s1 s2 s3 T3 z3 z1 z2 T3 z1 z2 z3 T3 z1 z2 z3 z s s s z s s s z s s s (Die sortierten Tableaus sollten nicht mit geändert Nummer beschriftet werden; möglich ist eine Kennzeichnung als Variante des letzten Tableaus.) Endergebnis: Zu erhält man

Determinanten. W. Kippels 22. Februar 2014

Determinanten. W. Kippels 22. Februar 2014 Determinanten W Kippels Februar Inhaltsverzeichnis Einleitung Die Matrix Die Determinante einer Matrix Zweireihige Determinanten Mehrreihige Determinanten Beispiel : Eine dreireigige Determinante Beispiel

Mehr

Determinanten. Wolfgang Kippels 28. April Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3. 3 Die Matrix 3

Determinanten. Wolfgang Kippels 28. April Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3. 3 Die Matrix 3 Determinanten Wolfgang Kippels April Inhaltsverzeichnis Vorwort Einleitung Die Matrix Die Determinante einer Matrix Zweireihige Determinanten Mehrreihige Determinanten Beispiel : Eine dreireigige Determinante

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix: Beispiel 0 2 3 0 Um die inverse der Matrix A mit Gauß-Jordan-Algorithmus zu bestimmen, wird eine Folge von elementaren Zeilenoperationen durchgeführt.

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen

Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Das Prinzip des Verfahrens von Gauß 2 2 Die Ergänzung des Verfahrens von Jordan 5 Das

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Bruchterme. Klasse 8

Bruchterme. Klasse 8 ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Basistext Determinanten

Basistext Determinanten Basistext Determinanten Definition In der Linearen Algebra ist die Determinante eine Funktion die einer quadratischen Matrix eine Zahl zuordnet. Die Funktion wird mit det abgekürzt. Die runden Matrixklammern

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen

Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen Das Gauß-Jordan-Verfahren zur Lösung von Lineargleichungssystemen Wolfgang Kippels 22. Juni 2017 Inhaltsverzeichnis 1 Vorwort 2 2 Das Prinzip des Verfahrens von Gauß 3 3 Die Ergänzung des Verfahrens von

Mehr

Polynomdivision. W. Kippels 22. November Inhaltsverzeichnis. 1 Vorwort 3

Polynomdivision. W. Kippels 22. November Inhaltsverzeichnis. 1 Vorwort 3 Polynomdivision W. Kippels 22. November 218 Inhaltsverzeichnis 1 Vorwort 3 2 Lösungsprinzip 4 2.1 Grundmuster einer Polynomdivision..................... 4 2.2 Spezielle Beispiele, Fallen.........................

Mehr

Aufgaben zu linearen Gleichungssystemen

Aufgaben zu linearen Gleichungssystemen Aufgaben zu linearen Gleichungssystemen Folgende lineare Gleichungssysteme sollen gelöst werden: a) x 2y 3z 3 2x 4y z 1 4x 2y z 9 b) 2x y 4 2y 2z 5 x z 6 c) 2x 4y 3z 5 4x 2y 2z 2 6x 2y 4z 7 d) x 2y 2z

Mehr

10.4 Matrizeninversion

10.4 Matrizeninversion 186 104 Matrizeninversion In diesem Abschnitt behandeln wir eine Matrizenoperation, die der Kehrwertbildung a 1 := 1/a bei reellen Zahlen entspricht Nun ist eine Division durch eine Matrix nicht sinnvoll,

Mehr

Formale Matrizenrechnung

Formale Matrizenrechnung LINEARE ALGEBRA Formale Matrizenrechnung Grundlagen: Formales Rechnen mit Matrizen Datei Nr. 6 Stand 3. September 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Matrizenrechnung: Grundlagen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Polynomdivision. W. Kippels 22. April Lösungsprinzip Grundmuster einer Polynomdivision Spezielle Beispiele,

Polynomdivision. W. Kippels 22. April Lösungsprinzip Grundmuster einer Polynomdivision Spezielle Beispiele, Polynomdivision W. Kippels 22. April 214 Inhaltsverzeichnis 1 Lösungsprinzip 3 1.1 Grundmuster einer Polynomdivision..................... 3 1.2 Spezielle Beispiele, Fallen......................... 6 2

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Die Cramersche Regel

Die Cramersche Regel Die Cramersche Regel Wolfgang Kippels 22. Juni 2017 Inhaltsverzeichnis 1 Vorwort 2 2 Einleitung 3 3 Die Cramersche Regel in allgemeiner Form 3 4 Auflösen einer Determinante 4 4.1 Fall 1: Zweireihige Determinanten......................

Mehr

Trachtenberg-Division

Trachtenberg-Division Trachtenberg-Division Wiederum in [Trachtenberg] findet man eine Divisionsmethode, deren zentrale Idee es ist, vor dem Dividieren eine Liste aller Vielfachen von bis 9 des Divisors aufzuschreiben; Die

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Die Cramersche Regel

Die Cramersche Regel Die Cramersche Regel W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Die Cramersche Regel in allgemeiner Form 2 3 Auflösen einer Determinante 2 3.1 Fall 1: Zweireihige Determinanten......................

Mehr

Determinanten. Die Determinantenfunktion

Determinanten. Die Determinantenfunktion Determinanten Wiederholung: Was ist eine Funktion? Um das folgende zu verstehen, muss der Begriff der "Funktion" kurz wiederholt werden: Eine Funktion ist eine eindeutige Zuordnungsvorschrift die jedem

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Repetition: Schreibweisen

Repetition: Schreibweisen : : Ausgeschrieben : Ausgeschrieben a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... =... a m1 x 1 + a m2 x 2 +... + a mn x n = b m : Ausgeschrieben a 11 x 1 + a 12

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

Prozessverbesserung mit Reifegradmodellen Eine Analyse ökonomischer Zusammenhänge. (Anhang)

Prozessverbesserung mit Reifegradmodellen Eine Analyse ökonomischer Zusammenhänge. (Anhang) Prozessverbesserung mit Reifegradmodellen Eine Analyse ökonomischer Zusammenhänge Anhang Anhang A: Analyse der Krümmung von Als Optimalitätsbedingung zweiter Ordnung ist die Krümmung von zu untersuchen.

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

6.1 Welche Matrix gehört zu der Abbildung?

6.1 Welche Matrix gehört zu der Abbildung? Kapitel 6 Gleichungssysteme Bisher haben wir nur für spezielle Fälle (Drehungen, Spiegelungen ) die zu einer bekannten Abbildung gehörende Matrix gesucht. Da uns die Abbildung in allen Einzelheiten bekannt

Mehr

Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion Summenprodukt... 4

Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion Summenprodukt... 4 Inhaltsverzeichnis Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion SUMME... 2 Die Funktion AUTOSUMME... 2 Die Funktion SUMMEWENN... 2 Die Funktion SUMMEWENNS... 3 Die Funktion Summenprodukt...

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Ungleichungen mit Brüchen

Ungleichungen mit Brüchen Ungleichungen mit Brüchen W. Kippels 26. Januar 2015 Inhaltsverzeichnis 1 Allgemeines zum Lösen von Ungleichungen 3 1.1 Ungleichung mit einem Bruch........................ 4 1.2 Ungleichung mit mehreren

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung ARL HANSER VERLAG Peter Stingl Operations Research Linearoptimierung -446-228-6 wwwhanserde 2 Lineare Optimierungsprobleme x 2 6 P P sentartete Ecke ( 4) x +x 2 5 PPPPPPPPPPPPPPP X x + x 2 7 2x +x 2 8

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya Determinanten 3. Ordnung 1-E Ma 1 Lubov Vassilevskaya ) ( Determinanten 3. Ordnung a 11 x 1 + a 12 x 2 + a 13 x 3 c 1 a 21 x 1 + a 22 x 2 + a 23 x 3 c 2 a 31 x 1 + a 32 x 2 + a 33 x 3 c 3 ( a11 a12 a13

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.2: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14.-17. VO A&D WS 08/09 2.12.-16.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Der Gaußsche Algorithmus

Der Gaußsche Algorithmus Der Gaußsche Algorithmus Der Gaußsche Algorithmus beinhaltet das Vertauschen der Zeilen der erweiterten Koeffizientenmatrix (A, b) und das Additionsverfahren. Ziel ist es, möglichst viele Nullen unterhalb

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 1. Grundlegende Definitionen 2. Berechnungsmächtigkeit von ZA 3. Endliche Muster und Konfigurationen 4. Selbstreproduktion 5. Sortieren in eindimensionalen ZA 6. Einfache

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Wolfgang Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 2 Lösungsverfahren 5 2.1 Lösung mit Formel.............................. 5 2.1.1 Beispiel 1:...............................

Mehr

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011 Hier eine kurze Erklärung zu der. Als Grundlage diente teilweise eine Beschreibung von Markus Göhl vom Sommersemester 00. Quadriken Definition. Eine Quadrik ist die Nullstellenmenge eines quadratischen

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Einheitsmatrix E = , Nullmatrix O = c c Diagonalmatrix diag(c 1, c 2,..., c n ) = Rang

Einheitsmatrix E = , Nullmatrix O = c c Diagonalmatrix diag(c 1, c 2,..., c n ) = Rang 3 Matrizen 1 0 0 0 0 0 0 1 0 0 0 0 Einheitsmatrix E =, Nullmatrix O = 0 0 1 0 0 0 c 1 0 0 0 c Diagonalmatrix diag(c 1, c 2,, c n ) = 2 0 0 0 c n, Rang Definition: Die Zahl r heißt Rang einer Matrix, falls

Mehr

BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION

BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION Dieser Kurs beinhaltet: * Matrizen multiplizieren * bestimmte Elemente einer Produktmatrix bestimmen * Umformung eines linearen

Mehr

=ZÄHLENWENN Zählt die nichtleeren Zellen eines Bereiches, deren Inhalte mit den Suchkriterien übereinstimmen

=ZÄHLENWENN Zählt die nichtleeren Zellen eines Bereiches, deren Inhalte mit den Suchkriterien übereinstimmen Excel Formel-Handbuch T. Korn 2011 =SUMME Gibt das Ergebnis einer Addition aus =SUMME(A1:A4) =SUMME(A1;A2;A4) : (Doppelpunkt) bedeutet bis bei zusammenhängenden Zellen ; (Semikolon) bedeutet und bei nicht

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Lernhilfe Höhere Mathematik I

Lernhilfe Höhere Mathematik I Lernhilfe Höhere Mathematik I Tim Weber 3. 24 Vielen Dank an Andreas del Galdo für seine Zusammenfassung, Jakob Haufe für seine Musterlösungen, Marco Oster für den Abschnitt über QR- Zerlegung, Robert

Mehr

5 a) 3200 b) 54 c) 980

5 a) 3200 b) 54 c) 980 Schülerbuchseite 6 9 Standpunkt Seite 6 Die Lösungen zum Standpunkt befinden sich am Ende des Schülerbuches. Mit Bäumen rechnen Seite 7 Bianca: h = 0,75 m = 7,50 m bzw. h = 15 0,75 m = 11,5 m Anke: h =

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 44 8. Lineare Algebra: 2. Determinanten Ein einführendes

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Funktionenverständnis/ Potenzfunktionen

Funktionenverständnis/ Potenzfunktionen Funktionenverständnis/ Potenzfunktionen 1 Funktionenverständnis durch Kenntnis von Potenzfunktionen: f(x)= a x n Unter Potenzfunktionen versteht man Funktionen, die allgemein in der Form f(x)= ax n geschrieben

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Probeklausur Lösungen

Probeklausur Lösungen Probeklausur Lösungen Aufgabe A B = {, 4, 6, 8, 0} = {x N x 0 x gerade} A C = {,, 5, 7, } = {x N x x prim} alternativ {x P x } B C = {,,, 4, 5, 6, 7, 8, 0, } = {x N x x 9} Aufgabe Es sei x die Anzahl der

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Grenzwerte von Folgen

Grenzwerte von Folgen Grenzwerte von Folgen Wolfgang Kippels 6. März 209 Inhaltsverzeichnis Vorwort 3 2 Einleitung 3 3 Definition und Lehrsätze 3. Definition des Grenzwertes.......................... 3.2 Grenzwertlehrsätze..............................

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

2. Hausübung Diskrete Mathematik SS 2003

2. Hausübung Diskrete Mathematik SS 2003 2. Hausübung Diskrete Mathematik SS 2003 Lösungsvorschläge 6. Zunächst bestimmen wir die Anzahl der verschiedenen möglichen Ergebnisse für die Differenzen a i a j. Wegen 1 a 1 < < a 21 100 gibt es 99 Möglichkeiten

Mehr

Kennen, können, beherrschen lernen was gebraucht wird

Kennen, können, beherrschen lernen was gebraucht wird Inhaltsverzeichnis Inhaltsverzeichnis... 1 Erweiterte Summenfunktionen... 1 Die Funktion SummeWenn... 1... 1 Die Funktion SummeWenns... 2 Aufgabenstellung... 2 Die Funktion Summenprodukt... 3 Das Summenprodukt

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm Mathe Leuchtturm-Übungen-2.Klasse-Nr.06-Division von Brüchen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 06 Übungskapitel Arithmetik: Brüche Erforderlicher Wissensstand (->Stoffübersicht im Detail

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Spender A B AB 0 Empfänger A B AB 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 verträglich 0 unverträglich Modul 210 Koordinatensysteme. Matrizen Lernumgebung Hans

Mehr

Mathe Leuchtturm Übungsleuchtturm

Mathe Leuchtturm Übungsleuchtturm Mathe Leuchtturm-Übungen-.&UE-Kl.-Nr.00-Rechnen in Q-Brüche -C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm 00 Übungskapitel Die Menge der rationalen Zahlen Q Erforderlicher Wissensstand (->Stoffübersicht

Mehr