Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2
|
|
- Otto Friedrich
- vor 2 Jahren
- Abrufe
Transkript
1 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am Gruppe X Name 1 und Name 2 Betreuer: Wir bestätigen hiermit, dass wir das Protokoll selbstständig erarbeitet haben und detaillierte Kenntnis vom gesamten Inhalt haben. Name 1 Name 2
2 Inhaltsverzeichnis 1. Strukturaufklärung 2. Spektralanalyse 3. Beugungserscheinungen am Einzelspalt und an einem Haar 4. Bestimmung der Spurtweite einer CD 5. Modellversuch zum Auflösungsvermögen des Mikroskops 2
3 1. Strukturaufklärung 1. Mit einem HeNe-Laser mit der Wellenlänge λ = 633nm wurde die Gitterkonstante g eines optischen Strichgitters bestimmt. Dabei wurde das zu bestimmende Gitter mit dem Laser, der kohärentes und paralleles Licht aussendet, bestrahlt und die Beugung der Lichtstrahlen an einer s = 186cm entfernten Wand über den Abstand der Minima d gemessen. Aus diesen Messungen wurde die Gitterkonstante bestimmt. 1. Es wurden 2 Abstände bestimmt: -1. bis 1. Minimum : d 1 = 23,6 cm -2. bis 2. Minimum: d 2 = 47,7 cm Mit folgender Formel kann die Gitterkonstante g berechnet werden: = mit Kleinwinkelnäherung kommt man auf folgende Form: = Ergebnis: g 1 = 10,0 μm g 2 = 9,87 μm Größtfehlerrechnung: = + Δg 1 = 4, μm Δg 2 = 4, μm 3
4 1. Die beiden errechneten Werte g 1 und g 2 liegen beide sehr nahe am angegebenen Wert von g = 10 μm, somit ist der Fehler recht gering und das Ergebnis vollständig akzeptabel. Der größte Fehler trat aber wohl beim Messen der Länge s auf, da diese relativ schwer zu bestimmen war. 2.Spektralanalyse 2. Mit Hilfe eines optischen Strichgitters wurden die Wellenlängen λ der Spektrallinien einer Gasentladungslampe bestimmt. Dazu wurde das Licht der Lampe mit einer Linse auf einem Spalt gesammelt, um bestmögliche Ausleuchtung zu erhalten. Der Spalt wurde mit einer zweiten Linse auf der Wand abgebildet. Zwischen Linse und Spalt wurde nun das Gitter mit der bekannten Gitterkonstante g = 10μm gesteckt. Das Lichtspektrum der Gasentladungslampe wurde nun an der Wand im Abstand s = 143,5cm aufgebrochen, da die Beugung wellenlängenabhängig ist. Der Abstand der Maxima d wurde gemessen. 2. d orange = 16,7cm; d grün = 15,6cm ; d blau = 12,5cm; d UVA = 11,6cm; d UVB = 10,5cm Die Wellenlänge kann folgendermaßen bestimmt werden: (mit Kleinwinkelnäherung) Ergebnisse: λ = Tabelle 1: Lichtspektrum Gasentladungslampe Farbe Versuchswert λ [nm] Literaturwert λ für Quecksilberlampe [1] [nm] Gelb Grün Blau Violett UV [1] Quelle: Versuchsvorschrift 4
5 2. Das erhaltene Spektrum passt zu einer Quecksilberdampflampe. Normalerweise enthält das Spektrum der Quecksilberdampflampe allerdings zwei verschiedene Wellenlängen für Gelb und Violett, welche im Versuch wohl aufgrund der Nähe zueinander zusammen in einen Strich an der Wand gefallen sind. Auch einige schwächere Farben, wie Blaugrün (λ=491,6nm) oder Rot (ca. λ=700nm), konnten nicht erkannt werden, da sie schlicht zu schwach ausgeprägt waren. Insgesamt sind die Ergebnisse für die Versuchsbedingungen aber zufriedenstellend, die erkennbaren Farben stimmen gut mit den Literaturwerten überein. Verbessern können hätte man die Darstellung der schwächeren Farben, eventuell mit einer stärkeren Lampe, um ein helleres Bild zu erreichen Beugungserscheinung an einem Einzelspalt und an einem Haar Mit einem HeNe-Laser wurden in einzelnen Versuchen ein Einzelspalt sowie ein Haar beleuchtet. Im ersten, dem Einzelspaltversuch, wurde der Einzelspalt so eingestellt, dass ein scharfes und deutliches Bild an einer verschiebbaren Photodiode entstand. Die Intensität des Lichtes an dem Messgerät wurde vom 2. Minimum bis zum -2. Minimum in 0,5mm Schritten protokolliert. Anschließend wurde die Spaltbreite aus dem Abstand der Beugungsminima an der s=182,5cm entfernten Wand berechnet. Im Haarversuch wurde das Haar direkt beleuchtet, wodurch an der s=176,5cm entfernten Wand ein Beugungsbild enstand, welches vermessen und so ausgewertet wurde, dass daraus die Haardicke ermittelt werden konnte. 5
6 3. Am Einzelspalt Intensität [V] ,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9, , , , , ,5 Abstand [mm] Abb. 1: Intensitätsverlauf am Einzelspalt Es wurden 3 Minimabstände d bestimmt: -1. bis 1. Minimum : d 1 = 2,0 cm -2. bis 2. Minimum: d 2 = 4,1 cm -3. bis 3. Minimum: d 2 = 6,0 cm Mit der Formel = sowie der Kleinwinkelnäherung erhält man folgende Werte für die Spaltdicke: b 1 = 234 µm b 2 = 226 µm b 3 = 231 µm Mittelwert: b = 230 µm Am Haar Formel für Haardicke: sin = 6
7 = sin Auch hier kann wegen dem kleinen Winkel α die Kleinwinkelnäherung angewandt werden. = Es wurden 3 Minimabstände d bestimmt: -1. bis 1. Minimum : d 1 = 2,8 cm -2. bis 2. Minimum: d 2 = 5,0 cm -3. bis 3. Minimum: d 2 = 7,6 cm Ergebnis: b 1 = 158 µm b 2 = 176 µm b 3 = 178 µm 2 /2 Mittelwert: b = 171 µm 3. Das Beugungsbild aus Abbildung 1 zeigt eine Beugung mit relativ breitem 0. Maximum. Dies spricht für einen relativ breiten Spalt, jedoch sind auch die 1. und 2. Maxima noch gut zu erkennen, dies bedeutet, dass der Spalt auch nicht zu breit war. Die Tatsache, dass am 0. Maximum ein Spannungsplateau zu sehen ist, deutet auch darauf hin, dass die Photodiode bei der Lichtrezeption an ihre Grenze kam und möglicherweise eine Sättigung erreicht wurde. Es kann also gut sein, dass das 0. Maximum in Wirklichkeit steiler und enger ist, als im Versuch beobachtet. Die recht großen Unterschiede bei den Spalt- sowie Haardickenberechnungen, lassen auf Messfehler bei den schwierig zu bestimmenden Minimaabständen schließen. Das Haar als Hindernis in einem ansonsten freien Strahlengang erzeugt hier das qualitativ gleiche Ergebnis wie der Einzelspalt. Dies zeigt, dass inverse Strukturen das gleiche Beugungsbild ergeben. 7
8 4. Bestimmung der Spurtweite einer CD 4. Analog zu Versuchsteil 1 wurde ein eingespanntes CD-Bruchstück mit dem He-Ne-Laser beleuchtet und das Beugungsbild, welches diesmal auf einem Schirm beobachtet wurde, ausgewertet. 4. Die Formel zur Bestimmung der Spurweite lautet: = Der Abstand der CD zum Schirm betrug s = 30,6 cm, der Abstand von -1. zu 1. Minimum d = 29,3 cm. Aufgrund des geringen Abstandes zum Schirm konnte keine Kleinwinkelnäherung angewandt werden. Der Tangens des Beugungswinkels tan = wurde umgestellt zu: = tan 2 2 Für α erhielt man 25,58. Der Sinus von α betrug hiermit 0,432 und konnte in obige Formel eingesetzt werden. Ergebnis: g = 1,47 µm 4.b. Diskussion Die Spurweite einer normalen CD beträgt nach Herstellerangaben 1,6 µm. Die im Versuch errechneten 1,47 µm sind unter dem Gesichtspunkt eines kleinen Objekt-Bild-Abstandes s zu sehen. Der geringe Abstand führte zu Messfehlern bei der Bestimmung der Minimaabstände. Dennoch ist das Ergebnis im Rahmen der Messgenauigkeit tolerierbar. Als Besonderheit durfte hier keine Kleinwinkelnäherung angewandt werden, was beim Ergebnis aufgrund der exakten Berechnung wiederum zu höherer Genauigkeit führte. 8
9 5. Modellversuch zum Auflösungsvermögen des Mikroskops 5. Das Gitter aus Versuchsteil 1 wurde von einem He-Ne-Laser beleuchtet und mit einer Linse mit Brennweite f = 20 mm auf der Wand abgebildet. Mithilfe einer Blende wurden zuerst alle Beugungsmaxima außer dem 0. Maximum ausgeblendet, anschließend wurden auch die Maxima höherer Ordnung durch Öffnen der Blende abgebildet. 5. Bei alleiniger Abbildung des Maximums 0. Ordnung war keine Struktur zu erkennen. Erst bei Zuschalten der weiteren Maxima konnte eine Reihe paralleler Linien gesehen werden. 5. Der Versuch zeigt, dass eine Aussage über die Struktur eines Objektes nur getroffen werden kann, wenn mehr als das 0. Maximum abgebildet wird. 9
Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops
22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,
Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011
Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen
Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen
Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-16847665/7 Fax: 0511-16847352 email: schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.68 Zum Selbstbau
08 Aufgaben zur Wellenoptik
1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im
22 Optische Spektroskopie; elektromagnetisches Spektrum
22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen
Versuch 22 Mikroskop
Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de
Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops
1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala
PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis
PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte
Physikalisches Praktikum 3. Semester
Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen
zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr
zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich
Michelson-Interferometer. Jannik Ehlert, Marko Nonho
Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...
Atom- und Quantenoptik (WS 2009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath. Beugungsphänomene
Praktikumsversuch zur Wahlpflicht-Vorlesung Atom- und Quantenoptik (WS 009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath Beugungsphänomene In dieser Versuchsreihe sollen verschiedene Experimente zum
O2 PhysikalischesGrundpraktikum
O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in
Versuch 18 Das Mikroskop
Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:
P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK
P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die
Physikalisches Grundpraktikum
Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:
Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6
Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de
Prismen- und Gitterspektrometer
Physikalisches Grundpraktikum Versuch 19 Prismen- und Gitterspektrometer Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de
Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse
O2 Spektroskopie Stoffgebiet: Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse Versuchsziel: Durch Untersuchung der Beugung am
Glühende feste Körper und Gase unter hohem Druck senden Licht mit einem Kontinuierlichen Spektrum aus.
11PS - OPTIK P. Rendulić 2007 SPEKTREN 19 WELLENOPTIK 4 SPEKTREN 4.1 Kontinuierliche Spektren und Linienspektren Zerlegt man das Licht einer Glühlampe oder das Sonnenlicht mithilfe eines Prismas ( 2.5.2),
Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker
Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................
Physikalisches Praktikum O 3 Interferenz
Physikalisches Praktikum O 3 Interferenz Versuchsziel Untersuchung von Interferenzerscheinungen. Literatur /1/ E. Hecht Optik /2/ Bergmann/Schäfer Band 3, Optik /3/ P. Tipler/G. Mosca Physik /4/ LD Didactic
Grundlagen eines Pulsoxymeters. Überprüfung der spektroskopischen Unterscheidbarkeit von oxygeniertem und desoxygeniertem Blut
Grundlagen eines Pulsoxymeters Überprüfung der spektroskopischen Unterscheidbarkeit von oxygeniertem und desoxygeniertem Blut Ein Vortrag von Cathrina Sowa im Rahmen des SOWAS Praktikums Gliederung Was
Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion
Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung
Fortgeschrittenenpraktikum für Lehramt Spektrometer. KIT - Karlsruher Institut für Technologie
Fortgeschrittenenpraktikum für Lehramt Spektrometer KIT - Karlsruher Institut für Technologie 1 Wichtige Hinweise: ˆ Die Gitter sind hochempndlich. Bitte niemals direkt ins Gitter fassen! ˆ Selbiges gilt
Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.
Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse
Geometrische Optik mit ausführlicher Fehlerrechnung
Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die
C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)
C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als
GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...
E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines
Auflösungsvermögen. Interferenz
Auflösungsvermögen Das Auflösungsvermögen ist der kleinste Linear- oder Winkelabstand in dem zwei Punkte gerade noch als zwei einzelne Punkte unterscheidbar/auflösbar sind. Das Auflösungsvermögen des menschlichen
Beugung und Laserspeckles
Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Wahlfach Technische Optik Beugung und Laserspeckles Gliederung Seite 1. Versuchsziel... 1
Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de
Physikalisches Praktikum für das Hauptfach Physik Versuch 22 Das Mikroskop Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent: André
Physikalisches Praktikum I. Optische Abbildung mit Linsen
Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss
Instrumenten- Optik. Mikroskop
Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren
Spektralanalyse mit Tracker
Spektralanalyse mit Tracker Überarbeitete und ergänzte Kursarbeit von Michael Czuray und Tobias Kuehner Schritt-für Schritt Schüleranleitung: Aufbau: Benötigt werden: Verschiedene LED-Lichter und Glühbirnen
Physikalisches Praktikum 4. Semester
Torsten Leddig 18.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Michelson Inteferometer - 1 1 Vorbetrachtung: zwei wellen heißen kohärent wenn sie bis auf eine Phase
2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen
2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2.1 Lichtquellen In Abb. 2.1 sind die Spektren einiger Lichtquellen dargestellt, die in spektroskopischen Apparaturen verwendet
BL Brennweite von Linsen
BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................
AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM
AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM 6. FOURIER-TRANSFORMATION In diesem Versuch ging es darum, mittels Fouriertransformation aus dem Beugungsbild eines Einfachspaltes auf dessen Breite zu schließen.
Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch!
FACHHOCHSCHULE BINGEN PHYSIKLABOR Energie- und Prozesstechnik/Biotechnik Gruppennummer Anwesenheit Name / Datum V 2.4 Wellenoptik / LASER Version 17.9.2012 Testat WICHTIG: Vor der Versuchsdurchführung
Anfängerpraktikum III Interferometer / Beugung am Gitter
Anfängerpraktikum III Interferometer / Beugung am Gitter Praktikumsbericht René Sedlak, Simon Hönl Tutor: Alexander Frey Durchgeführt am 7.1./14.1.2013 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung
Physikalisches Praktikum 3. Semester
Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,
Labor Optische Messtechnik
Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,
MS Michelson-Interferometer
MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................
Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis
Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden
3.16. Diffraktive Optik
3.16 Diffraktive Optik 421 3.16. Diffraktive Optik SICHERHEITSHINWEIS: Während der Versuchsdauer darf das Lasermodul nur bestimmungsgemäß im Experiment verwendet werden. Vor Versuchsbeginn sind reflektierende
Versuch 17: Geometrische Optik/ Mikroskop
Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler
Linsen und Linsensysteme
1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden
Ultraschall Experimentierset
Ultraschall Experimentierset Beschreibung Das Ultraschall Experimentierset wurde speziell für den Einsatz in Gymnasien entwickelt. Das Experimentierset besteht aus : 1 Stk. Stahltafel 1 Stk. beidseitig
Akusto-Optische Effekte
Begrüßung Uwe Peterson - GAMPT mbh Akusto-Optische Effekte Experimente zur Wechselwirkung von Laserlicht mit mechanischen Wellen im MHz-Bereich Berlin, 2. Juni 2015 6. DPG-Workshop "Innovative Lehrmittel..."
O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009
Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................
Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau
Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik
1.6 Michelson-Interferometer und Newtonsche Ringe
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen
1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks
1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.
Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein
Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de
Bestimmung der Lichtgeschwindigkeit durch Messung des Laufzeitunterschiedes von Lichtimpulsen
PG 268-I 20. April 2000 Bestimmung der Lichtgeschwindigkeit durch Messung des Laufzeitunterschiedes von Lichtimpulsen Auf der Basis der direkten Messung der Laufzeit von Lichtimpulsen haben wir es nach
Optik II (Beugungsphänomene)
Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische
Geometrische Optik. Lichtbrechung
Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis
Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015
Version vom 26. April 2015 Thema 6: Mikroskop Abbildung 6.1: Das im Versuch zu benutzende binokulare Mikroskop Abbildung 6.2: Die Messlupen-Vorrichtung zur Bestimmung der Spaltbreite: Im Vordergrund die
Michelson - Interferometer
Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers
3.6 Interferometer 333
3.6 Interferometer 333 3.6. Interferometer Ziel Ziel des ersten Versuchsteils ist die Bestimmung des druckabhängigen Brechungsindex n(p) vonluft. Im zweiten Versuchsteil soll die Wellenlängendifferenz
Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit
Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes
Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum
Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian
Optische Spektroskopie
O10 Optische Spektroskopie Zwei gebräuchliche Elemente, mit denen man optische Spektren erzeugen kann, sind das Prisma und das Beugungsgitter. Um einfache spektroskopische Messungen durchzuführen, werden
Versuch P2: Optische Abbildungen und Mikroskop
Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.
Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3
Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops
Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte
Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X
Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll
DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.
DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SCHÜEX BAYERN Lichtspektren von verschiedenen Lichtquellen Tobias Harand Schule: Albert-Schweizer-Gymnasium
Fortgeschrittenen - Praktikum. Laser-Scanning-Mikroskop
Fortgeschrittenen - Praktikum Laser-Scanning-Mikroskop Versuchsleiter: Herr Dr. Reyher Autor: Simon Berning Gruppe: 10, Dienstag Daniel Bruns, Simon Berning Versuchsdatum: 27.02.2007 Laser-Scanning-Mikroskop;
Physikalisches Praktikum 5. Semester
Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung
Lichtbrechung an Linsen
Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen
Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode
Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im
Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X
Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das
Interferometer OPL 29
Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende
Optische Abbildung (OPA)
Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur
Vermessung und Verständnis von FFT Bildern
Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation
Konfokale Mikroskopie
Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope
Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.
Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.
Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik
Technische Universität Dresden Fachrichtung Phsik M. Lehmann (08/2000, bearbeitet 04/2005) Phsikalisches Praktikum Versuch: MI Mikroskop Inhaltsverzeichnis 1 Ziel des Versuchs... 2 2 Grundlagen... 2 2.1
Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt
Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken
Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt
-II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man
Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis
Versuch O1 MIKROSKOP Seite 1 von 6 Versuch: Mikroskop Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik Raum: Physik.204
Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum
Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen
Protokoll O 4 - Brennweite von Linsen
Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind
5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die
5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit
Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP
Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 04.12.2008 Eintrittspupille
Michelson - Interferometer
Michelson - Interferometer Team 1: Daniela Poppinga und Jan Christoph Bernack Betreuer: Dr. Gerd Gülker 7. Juli 2009 1 2 Daniela Poppinga, Jan Christoph Bernack Inhaltsverzeichnis 1 Aufbau und Justage
UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick
UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick PHYSIKALISCH-CHEMISCHES PRAKTIKUM (Teil Ic) (Spektroskopie) Versuch E2 Spektrale Zerlegung von Licht (Monochromatoren,
Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)
Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen
Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung
Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,
Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008
Versuch A1 - Braggsche Reflexion und Röntgenspektrum Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Physikalischer Zusammenhang 3 2.1 Röntgenstrahlung...........................
O10 PhysikalischesGrundpraktikum
O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener