Business Intelligence Data Warehouse. Jan Weinschenker

Größe: px
Ab Seite anzeigen:

Download "Business Intelligence Data Warehouse. Jan Weinschenker"

Transkript

1

2 Business Intelligence Data Warehouse Jan Weinschenker

3 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3

4 Einleitung Definition: Data Warehouse A data warehouse is a subject oriented, integrated, non-volatile and time variant collection of data in support of management s decisions. aus [Inmon[ 1996] 4

5 Einleitung Definition: Data Warehouse Ein Data Warehouse ist eine physikalische Datenbank, die eine integrierte Sicht auf beliebige Daten zu Analysezwecken ermöglicht. aus [Bauer/Günzel 2004] 5

6 Wozu braucht man eigentlich ein Data Warehouse? 6

7 Wozu eigentlich DW? Analyse von Kennzahlen: Ging lange Zeit ohne DW Ging lange Zeit sogar ohne Computer Unternehmen waren trotzdem erfolgreich! 7

8 Wozu eigentlich DW? 8

9 Wozu eigentlich DW? Wenn einen die große e Masse (an Daten) erschlägt! gt! Daten sind oft geschäftsobjekt ftsobjekt-orientiertorientiert Zusammentragen der Informationen wird mühselig Excel, SPSS und Anwender sind irgendwann überfordert 9

10 Deswegen! DW machen große e Datenmengen überschaubar Sie schaffen eine einheitliche Sicht auf unterschiedliche Datenquellen DW machen Analysen performanter Weitere neue Impulse durch die KI Finden neuer Zusammenhänge nge Datamining 10

11 Meine DW kann wichtige Beiträge liefern fürf Planung, Steuerung, Kontrolle Hilft überall, wo Projekte kontrolliert zum Erfolg gebracht werden sollen Gewinnt in Unternehmen an Bedeutung 11

12 eines Data Warehouse Wie baut man ein Data Warehouse? 12

13 Ein Data Warehouse Orientierung an Referenzarchitektur Komponenten: Arbeitsbereich, Basisdatenbank, Data Warehouse Extraktion, Transformation, Laden, Metadaten Manager Aus [Bauer/Günzel 2004] 13

14 Referenzarchitektur 14

15 Datenhaltung 15

16 Datenhaltung In der Regel mit einem RDBMS realisiert Arbeitsgrundlagen für f ETL-Prozesse Prozesse, Datenhaltung getrennt vom Produktivsystem 16

17 Prozesse und Metadaten 17

18 Prozesse und Metadaten 18

19 Prozesse und Metadaten Überführung der Daten aus dem Produktivsystem in das Data Warehouse Umwandlung der Daten Von Anwendungs- nach Analyseorientiert In einheitliche Datentypen Laden von großen Datenmengen Performancelastig 19

20 Manager 20

21 Manager 21

22 Manager Steuerungs- und Kontrollkomponente Datenbeschaffung Interner Datenfluss Fehlerbehandlung Logging der eigenen Aktivitäten ten 22

23 Ausrichtung an gewünschten Analysen Vereinbarungen mit Teilgruppen Anwendungsfälle Anwendungsdaten Schnittstellen Persistenz Analyse 23

24 DW im Was kann ich beitragen? 24

25 Wozu brauchen wir DW? Unser Heterogene Anwendungen und Daten Einzelne Datentöpfe im Persistenzdienst Viele interessante Datenquellen RFID, Semantic Web, also? 25

26 Wozu brauchen wir DW? für r eine integrierte Sicht auf die vorhandenen Daten Daten und Informationen vorhanden Müssen nur in Wissen umgewandelt werden Analyse mit Data Mining und OLAP Dazu mehr im nächsten n Vortrag 26

27 Vorschlag Starschema 27

28 Werkzeuge ETL: Octopus Basiert auf Java und XML Zugriff auf ODBC und JDBC- Datasources,, CSV und Excel 28

29 Werkzeuge Data Warehouse: DeepGreen Open Source Data Warehouse Basiert auf BisGres DMBS (PostGreSQL( PostGreSQL- Fork) Benötigt Fedora/Redhat Redhat-Linux 29

30 Einheitliche Sicht auf unsere Daten Grundlage für f r Analysen Benötigt werden: Anwendungsdaten Vereinbarungen über Geschäftsprozesse 30

31 Fragen? 31

32 Vielen Dank! 32

Business Intelligence Data Warehouse für den Ferienclub

Business Intelligence Data Warehouse für den Ferienclub Business Intelligence Data Warehouse für den Ferienclub Jan Weinschenker 8. Juli 2005 Im Rahmen der Vortragsreihe im Fach Anwendungen I beschäftigt sich diese Ausarbeitung mit dem Thema Data Warehousing.

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Ausarbeitung Projekt Sven Elvers Business Intelligence: Analyse Betreuender Prüfer: Prof. Dr. Olaf Zukunft Fakultät

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Thorsten Winsemann. Bewertung von Datenpersistenz in. mithilfe multikriterieller. Entscheidungsmodelle

Thorsten Winsemann. Bewertung von Datenpersistenz in. mithilfe multikriterieller. Entscheidungsmodelle Thorsten Winsemann Bewertung von Datenpersistenz in Business-Data-Warehouse-Systemen mithilfe multikriterieller Entscheidungsmodelle Verlag Dr. Kovac Hamburg 2015 11 Inhaltsverzeichnis Zusammenfassung

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Das Beste aus zwei Welten

Das Beste aus zwei Welten : Das Beste aus zwei Welten Das Beste aus zwei Welten Aufruf von R Funktionen mit PROC IML KSFE 2012 08.03.2012 ist IT Dienstleister für Business Intelligence und Datenanalyse gibt es seit über 20 Jahren

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG DW2004 XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science Dr. Michael Hahne, cundus AG 3. November 2004 cundus AG 2004 Gliederung Motivation SAP Business Information Warehouse

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Architektur eines Data Warehouse Systems. Mario Jandeck

Architektur eines Data Warehouse Systems. Mario Jandeck Architektur eines Data Warehouse Systems Mario Jandeck Agenda Folie 2 von 24 1. Die Referenzarchitektur 2. Komponenten des Data Warehouse Systems 3. Datenbeschaffung und Qualität 4. Analyse im Data Warehouse

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

BUSINESS INTELLIGENCE (BI) MIT PENTAHO. Schneller, höher, weiter!

BUSINESS INTELLIGENCE (BI) MIT PENTAHO. Schneller, höher, weiter! BUSINESS INTELLIGENCE (BI) MIT PENTAHO Schneller, höher, weiter! HERZLICH WILLKOMMEN ZUM WEBINAR Business Intelligence (BI) mit Pentaho Die Moderatoren Fragen über Chat Arved Wendt Teammanager Janina Kasten

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

DIMEX Data Import/Export

DIMEX Data Import/Export DIMEX Data Import/Export PROCOS Professional Controlling Systems AG Gewerbeweg 15 FL- 9490 Vaduz PROCOS Professional Controlling Systems AG Inhaltsverzeichnis 1 ALLGEMEIN...3 2 GRUNDLEGENDE FUNKTIONEN...4

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9 vii 1 Einführung 1 1.1 SAP Business Information Warehouse... 3 1.1.1 BW Version 3.0...5 Architekturplanung.................................... 9 2 BW-Basissystem 11 2.1 Client/Server-Architektur... 12

Mehr

EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis

EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis Business Apéro Exasol / SHS VIVEON, Zürich Zürich, 15. November 2011 Dr. Jörg Westermayer

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Datenbanken. Produkte Dienstleistungen Referenzen

Datenbanken. Produkte Dienstleistungen Referenzen Datenbanken Produkte Dienstleistungen Referenzen Produkte: MS SQL Server MS SQL Server 2005 Datenbankmodul Berichtssysteme mit Reporting Services Data Warehousing/Data Mining mit Analysis Services Schnittstellen

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Semtation GmbH SemTalk

Semtation GmbH SemTalk Semtation GmbH SemTalk Christian Fillies Was ist SemTalk? Prozessmodellierung mit Visio2003 Viele Methoden (EPK, PROMET, FlowChart, KSA ), einfach an Kundenbedürfnisse anzupassen und zu erweitern HTML

Mehr

A Generic Database Web Service for the Venice Lightweight Service Grid

A Generic Database Web Service for the Venice Lightweight Service Grid A Generic Database Web Service for the Venice Lightweight Service Grid Michael Koch Bachelorarbeit Michael Koch University of Kaiserslautern, Germany Integrated Communication Systems Lab Email: m_koch2@cs.uni-kl.de

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord

Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord Agenda Neue Produkte Oracle Secure Enterprise Search SQL Developer (Raptor) XML-Publisher Application Server/ JDeveloper 10.1.3

Mehr

Raus aus der Bl-Falle

Raus aus der Bl-Falle Ronald Bachmann, Dr. Guido Kemper Raus aus der Bl-Falle Wie Business Intelligencezum Erfolg wird mitp Die Autoren 13 Vorwort 15 1 Einleitung 21 1.1 Was ist Business Intelligence (BI)? 21 1.2 Motive zur

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 Data-Warehouse Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 23.09.2003, Folie: 1 Data Warehouse Historie Architekturprinzip

Mehr

Aufbereitung von Produktdaten anhand von Extract-, Transform-, Load-Prozessen

Aufbereitung von Produktdaten anhand von Extract-, Transform-, Load-Prozessen Aufbereitung von Produktdaten anhand von Extract-, Transform-, Load-Prozessen Marcel Ahne Mathematisch-Technischer Softwareentwickler i.a. Antibodies Online GmbH 5. Dezember 2010 Ziel der Präsentation

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

ETL-Prozess mit. im Produktivbetrieb. Christian Kolodziej

ETL-Prozess mit. im Produktivbetrieb. Christian Kolodziej ETL-Prozess mit Christian Kolodziej Zu meiner Person Studium Informatik (Diplom) bis Januar 2009 Vorlesung Business Intelligence im 8. Semester Diplomarbeit Analytisches CRM im Bereich der Online-Medien

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Werkstattbericht: Doktorandenerfassung und -berichtswesen an der Universität Konstanz

Werkstattbericht: Doktorandenerfassung und -berichtswesen an der Universität Konstanz Werkstattbericht: Doktorandenerfassung und -berichtswesen an der Sebastian Vogt Mannheim, 26. März 2015 Struktur des Vortrags Erfassungsmanagement Registrierungsverfahren für DoktorandInnen und Verwaltungsworkflow

Mehr

Schleswig-Holstein Der echte Norden

Schleswig-Holstein Der echte Norden Schleswig-Holstein Der echte Norden Veranstaltungsreihe des GEOMV am 04.11.2015 "Standortgenaues Management der Energiewende" - Anwendungsbeispiele der Zusammenführung von Geofach- und Geobasisdaten in

Mehr

5 Management der Informationswirtschaft

5 Management der Informationswirtschaft 5 Management der Informationswirtschaft Herstellung des informationswirtschaftlichen Gleichgewichts als übergeordnetes Ziel Grundlegende Elemente des Lebenszyklus der Informationswirtschaft Management

Mehr

Einstieg in Business Intelligence mit Microsoft SharePoint 2010

Einstieg in Business Intelligence mit Microsoft SharePoint 2010 Martin W. Angler Einstieg in Business Intelligence mit Microsoft SharePoint 2010 Microsoft Press Einleitung 11 Was Sie in diesem Buch finden 12 Aufbau dieses Buchs 12 Kapitel 1: Was ist Business Intelligence?

Mehr

Stand September 2010. TransConnect Die Plattform für skalierbare Anwendungsintegration

Stand September 2010. TransConnect Die Plattform für skalierbare Anwendungsintegration Stand September 2010 TransConnect Die Plattform für skalierbare Anwendungsintegration Herausforderungen für EAI-Lösungen Spezialisierte Anwendungssysteme ERP CRM ecommerce Gesundheitswesen Produktion Herausforderungen

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Business Intelligence für Controller

Business Intelligence für Controller Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Worksheet-Server 2.0. Web-basierte-Controlling-Portale auf Excel- Basis (unter Einbindung multidimensionaler Planungs- und Analysetechniken)

Worksheet-Server 2.0. Web-basierte-Controlling-Portale auf Excel- Basis (unter Einbindung multidimensionaler Planungs- und Analysetechniken) 2.0 Web-basierte-Controlling-Portale auf Excel- Basis (unter Einbindung multidimensionaler Planungs- und Analysetechniken) Microsoft Excel ist das Controlling-Tool Nr. 1 Microsoft Excel ist das erfolgreichste

Mehr

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek Datawarehouse Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken Klaus Schimitzek Berichtsprodukte gedruckt: zentraler Personalbericht (Struktur, Management) Blickpunkt

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Wirtschaft Simon Schäfer Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Bachelorarbeit Bachelor Thesis Data Warehouse - Komponente der Business Intelligence und

Mehr

Einfach gut entscheiden. Controlling für Kliniken mit Microsoft Business Intelligence

Einfach gut entscheiden. Controlling für Kliniken mit Microsoft Business Intelligence Einfach gut entscheiden Controlling für Kliniken mit Microsoft Business Intelligence Ihr Referenten Dr. Nedal Daghestani Lösungsberater Microsoft Deutschland GmbH nedal.daghestani@microsoft.com Bernhard

Mehr

Trends in Business Intelligence

Trends in Business Intelligence Trends in Business Intelligence Patrick Keller Senior Analyst BARC Business Application Research Center BARC ist Marktanalyst und Berater spezialisiert auf Business Intelligence, Daten- und Dokumentenmanagement.

Mehr

One Stack. One install. One Stream.

One Stack. One install. One Stream. One Stack. One install. One Stream. Ingres Icebreaker Appliances Dipl. Inf.-wirt Olaf Laber Director Business Development EMEA olaf.laber@ingres.com Olaf Laber Dir. BusDev. Ingres 2008 Slide 1 Ingres Marktführerschaft

Mehr

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI Detlef Apel Wolfgang Behme Rüdiger Eberlein Christian Merighi Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte 3., überarbeitete und erweiterte Auflage Edition TDWI rä

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Inhaltsverzeichnis. 1 Was ist Business Intelligence?... 23

Inhaltsverzeichnis. 1 Was ist Business Intelligence?... 23 Inhaltsverzeichnis Einleitung............................................................................. 11 Was Sie in diesem Buch finden......................................................... 12 Aufbau

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

Semantic Web Praktikum..und andere Praktika... WS 2004/05

Semantic Web Praktikum..und andere Praktika... WS 2004/05 Semantic Web Praktikum..und andere Praktika... WS 2004/05 Robert Baumgartner, Jürgen Dorn, Georg Gottlob, Marcus Herzog KFK Semantic Web Kernfachkombination Wirtschaftsinformatik Vertiefendes Wahlfach

Mehr

Thema 02: Effiziente Auswertungen von RFIDgenerierten Daten mit Hilfe von Main- Memory-Datenbanken

Thema 02: Effiziente Auswertungen von RFIDgenerierten Daten mit Hilfe von Main- Memory-Datenbanken Thema 02: Effiziente Auswertungen von RFIDgenerierten Daten mit Hilfe von Main- Memory-Datenbanken Seminar Sensor Networks & Intelligent Objects Jana Schimmeck, David Foerster, Markus Wittkowsky Agenda

Mehr

Aufbau von Informations- management- Systemen

Aufbau von Informations- management- Systemen Aufbau von Informations- management- Systemen Agenda 1. Das deutsche Krankenhauswesen im Umbruch 2. Einführung eines Informationsmanagement-Systems im Krankenhaus 3. Projektvorgehensweise am Beispiel von

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2004 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Inhaltsverzeichnis. vii.

Inhaltsverzeichnis. vii. vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt 2 1.2 OLTP versus OLAP 4 1.2.1 OLAP-versus OLTP-Transaktionen 5 1.2.2 Vergleich von OLTP und OLAP 6 1.2.3 Abgrenzung: DBMS-Techniken

Mehr

Open Source BI mit Pentaho BI Suite und MySQL - Eine Alternative?

Open Source BI mit Pentaho BI Suite und MySQL - Eine Alternative? Open Source BI mit Pentaho BI Suite und MySQL - Eine Alternative? Schlüsselworte: Volker Herbort, Reinhold von Schwerin Hochschule Ulm Pentaho, Business Intelligence, Open Source, Sun, Java, MySQL, Agiles

Mehr

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von BI zu Analytik bessere Entscheidungen basiert auf Fakten Webinar Mai 2010 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von Business Intelligence zu Analytik Die Bedeutung

Mehr

Projektseminar Texttechnologische Informationsmodellierung

Projektseminar Texttechnologische Informationsmodellierung Projektseminar Texttechnologische Informationsmodellierung XQuery Ziele der Sitzung Nach dieser Sitzung sollten Sie: XQuery als wesentlichen Standard zur Abfrage von in XML kodierten Daten kennen Mit Hilfe

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. s - Einführung Definition Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema, -Anfragen Data Mining Prof. E. Rahm 1-1 y yy

Mehr

1... Einleitung... 15. 2... Grundlagen der Datenmodellierung... 25. 3... SAP NetWeaver BW und SAP BusinessObjects Überblick... 57

1... Einleitung... 15. 2... Grundlagen der Datenmodellierung... 25. 3... SAP NetWeaver BW und SAP BusinessObjects Überblick... 57 1... Einleitung... 15 1.1... Zielgruppen dieses Buches... 17 1.2... Aufbau des Buches... 18 1.3... Hinweise zur Benutzung des Buches... 21 1.4... Danksagung... 23 2... Grundlagen der Datenmodellierung...

Mehr

Krawatten/ CHANNEL. Fakten für t IT-Techniker. ECM, CRM & Bl erfolgreich einführen! ^ OMFACT. 1 4, 9 0 Österreich 16,40. Juni/Juli/August 2009

Krawatten/ CHANNEL. Fakten für t IT-Techniker. ECM, CRM & Bl erfolgreich einführen! ^ OMFACT. 1 4, 9 0 Österreich 16,40. Juni/Juli/August 2009 Juni/Juli/August 2009 1 4, 9 0 Österreich 16,40 www.tecchannel.de Benelux 17,15 Schweiz SFR 29,80 CHANNEL OMFACT IT EXPERTS INSID Krawatten/ Fakten für t IT-Techniker ECM, CRM & Bl erfolgreich einführen!

Mehr

edustore an der Albert-Ludwigs-Universität Freiburg: Integriertes Berichtswesen und Basis für das Qualitätsmanagement

edustore an der Albert-Ludwigs-Universität Freiburg: Integriertes Berichtswesen und Basis für das Qualitätsmanagement edustore an der Albert-Ludwigs-Universität Freiburg: Integriertes Berichtswesen und Basis für das Qualitätsmanagement 9. Tagung der DFN-Nutzergruppe Hochschulverwaltung Roland Bausch und Michael Kraus

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Architektur und Komponenten von Data Warehouses Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Architektur Komponenten ETL Ulf Leser: Data Warehousing

Mehr

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Wirtschaftsinformatik. Prof. Dr. Stefan Lessmann

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Wirtschaftsinformatik. Prof. Dr. Stefan Lessmann Orientierungsveranstaltung für Studierende der Bachelorstudiengänge BWL und VWL Wirtschaftsinformatik + = Prof. Dr. Stefan Lessmann Team Lehrstuhl Wirtschaftsinformatik Prof. Dr. Stefan Lessmann - Lehrstuhlinhaber

Mehr

Data-Warehouse-Architektur

Data-Warehouse-Architektur Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten VL Data Warehouses, WS 2000/2001 2-1 Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

Menschen entscheiden über Geschäftserfolg

Menschen entscheiden über Geschäftserfolg 1C01 Die Microsoft Business Intelligence- Plattform: SQL Server 2005, das 2007 Office System und Office Business Applications Steffen Krause Technologieberater Microsoft Deutschland GmbH http://blogs.technet.com/steffenk

Mehr

Datenmigration. Proseminar. Unternehmensübergreifende IT Transformationen SS 2011. Elvan Öztürk. elvan_16@hotmail.de

Datenmigration. Proseminar. Unternehmensübergreifende IT Transformationen SS 2011. Elvan Öztürk. elvan_16@hotmail.de Datenmigration Proseminar Unternehmensübergreifende IT Transformationen SS 2011 Elvan Öztürk elvan_16@hotmail.de Abstract: In vielen Unternehmen besteht die IT aus einer gewachsenen Struktur heterogener

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

Autorisierung. Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente

Autorisierung. Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente Autorisierung Sicherheit und Zugriffskontrolle & Erstellen einer Berechtigungskomponente Dokumentation zum Referat von Matthias Warnicke und Joachim Schröder Modul: Komponenten basierte Softwareentwickelung

Mehr

Inhaltsverzeichnis 1 Einleitung 2 Ansätze in Forschung und Praxis

Inhaltsverzeichnis 1 Einleitung 2 Ansätze in Forschung und Praxis ix 1 Einleitung 1 1.1 Motivation 1 1.1.1 Das Projekt»Steuerkanzlei 2005«2 1.1.2 Generalisierung des Anwendungsfalls 3 1.1.3 Situation der Business Intelligence 4 1.1.4 Probleme in der praktischen Anwendung

Mehr

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1 Info Seite 1 Merkblatt DWH Mittwoch, 6. Januar 2016 13:55 Version: 1.0.0 Study: 3. Semester, Bachelor in Business and Computer Science School: Hochschule Luzern - Wirtschaft Author: Janik von Rotz (http://janikvonrotz.ch)

Mehr