1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

Größe: px
Ab Seite anzeigen:

Download "1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)"

Transkript

1 Zahlentheorie LVA C. Fuchs Inhaltsübersicht Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht um Zahlen - gemeint sind die ganzen Zahlen - sowie deren Eigenschaften. Nach einer präzisen Einführung der ganzen Zahlen inklusive der algebraischen Operationen und der Ordnung, beschäftigen wir uns mit grundlegenden Eigenschaften: Division mit Rest, ggt und kgv, euklidischer Algorithmus, Primzahlen. Im Anschluß betrachten wir Restklassenringe ganzer Zahlen (Stichwort: Uhrenarithmetik); diese spielen nicht nur als Bausteine bei der Klassifizierung von allgemeineren Objekten eine wichtige Rolle, sondern kommen auch in Anwendungen in der Datensicherheit an prominenter Stelle vor. Insbesondere konzentrieren wir uns auf die Einheitengruppe von Restklassenringen. Am Ende übertragen wir die Resultate auf Polynome; auch sie bilden einen Ring (diese algebraischen Konstrukte bilden in der Vorlesung die gemeinsame Sprache), welcher sich sehr ähnlich dem Ring der ganzen Zahlen verhält. Die Vorlesung behandelt (voraussichtlich) die folgenden Themen: 1. Die ganzen Zahlen 2. Teilbarkeitslehre 3. Restklassenringe 4. Einheiten in Restklassenringen 5. Polynome Bei Fragen oder Bemerkungen (speziell Hinweise auf Fehler aller Art sind willkommen; Tippfehler ausgenommen) schicken Sie ein an clemens.fuchs@sbg.ac.at. 1. Die ganzen Zahlen 1.1 Arithmetik der ganzen Zahlen Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) e Addition und Multiplikation; Definition und Wohldefiniertheit Satz algebraische Eigenschaften 1

2 1.1.4 Ordnung auf Z inklusive Eigenschaften Subtraktion 1.2 Ringe Definition des Rings Satz Z ist ein kommutativer Ring Eigenschaften in Ringen Vielfache und Potenzen von Ringelementen inklusive Eigenschaften 1.3 e für Ringe Funktionenringe Direkte Produkte Matrizenringe 1.4 Homomorphismen und Unterringe Definition des Homomorphismus Satz φ(0) = 0, φ( a) = φ(a) Mono, Epi, Endo, Iso, Auto, isomorph: R = S Satz id ist der einzige Endo von Z Kern eines Homomorphismus, Idealeigenschaft von kerφ und Homomorphiesatz für Ringe Definition von Unterringen : Unterringe von Z Satz φ(r) ist ein Unterring Unterringkriterium 2. Teilbarkeitslehre 2.1 Division mit Rest Betrag einer ganzen Zahl + Eigenschaften 2

3 2.1.2 Satz Divisionsalgorithmus : 9 = = ( 2)( 4) + 1, 9 = ( 3)4 + 3 = 3( 4) Teilbarkeit, Teiler/Vielfaches, echter Teiler, assoziiert + Eigenschaften von Teilbarkeit Definition des ggt Satz Existenz und Eindeutigkeit des ggt teilerfremd Eigenschaften des ggt; inbesondere das Restegesetz: (a, b) = (a mod b, b) falls b kgv, Eigenschaften, Zusammenhang zu ggt 2.2 Der euklidische Algorithmus Motivierendes : a = 385, b = Satz Euklidischer Algorithmus Satz des ggt) Bezout a, b Z x, y Z: (a, b) = ax+by (idealtheoretische Charakterisierung Erweiterter euklidischer Algorithmus (Berlekamp-Algorithmus) (Fortsetzung von 2.2.1) Erweiterung für a 1,..., a n 2.3 Primfaktorisierung Definition der Primzahlen, Primteiler, P Fermat- und Mersenne-Zahlen, Primzahlrekorde Satz (Lemma Euklid) Fundamentalsatz/Hauptsatz Primfaktordarstellung der Zahlentheorie Satz 5 Beweise Euklid P = Sieb des Erathostenes : Primzahlen Primzahlsatz 3

4 2.3.9 Folgerungen für ggt und kgv 3. Restklassenringe 3.1 Definition und Eigenschaften Kongruenzen mod n Satz Eigenschaften Der Restklassenring mod n Notation Z n : Z Ideale (Bezug zu Aufgaben 3 und 4 am 2. Übungsblatt) Satz Reduktion mod n ist ein Epi Square and Multiply Satz Neunerprobe 3.2 Lineare Kongruenzen Motivierendes Chinesischer Restsatz : x 3(11), x 6(8), x 2(15) Satz Aus n = n i mit n i paarweise teilerfremd folgt Z n = Zni. Spezialfall: Primfaktorzerlegung von n und : Z Modulare Arithmetik : mittels 420 = Einheiten in Restklassenringen 4.1 Einheiten und Nullteiler Lineare Kongruenzen revisited Einheiten mit Eigenschaften 4

5 4.1.3 Inversenberechnung : 5 1 = 5 (mod 5) Nullteiler mit Eigenschaften : Z Anzahl der Einheiten Eulersche φ-funktion : n = 1, 2, 3, 4, 5, 6, 7, Satz Formel für φ(n) Satz von Euler Satz Fermat Anwendungsbeispiel: p 2, p x p 1 (mod 4) Potenzieren : (13), (17) 4.3 Integritätsbereiche und Körper Einheiten in Ringen mit Eigenschaften Integritätsbereich : Z, Z n ist ein Körper genau dann, wenn n P Körper e: Q, R, C, Z n ist ein Körper genau dann, wenn n P 4.4 Anwendung in der Kryptografie RSA-Verfahren Formaler Beweis der Korrektheit Anforderungen an ein Public-Key-Kryptosystem 5. Polynome 5.1 Polynomring Definition der Polynome Addition und Multiplikation + alg. Eigenschaften Satz R[X] besitzt einen zu R isomorphen Unterring. 5

6 5.1.4 Grad, Führungskoeffizient und Eigenschaften Satz Ist R ein Integritätsbereich, so auch R[X]. Die Einheiten in R[X] sind dann genau die Einheiten von R Assoziiert 5.2 Teilbarkeitslehre Satz Divisionsalgorithmus, mod, div : f = x 3 + 2x 2 + 3x + 1, g = x 2 x Teilbarkeit und Eigenschaften ggt, kgv und Eigenschaften Satz (euklidischer Algorithmus) Satz Bezout 5.3 Nullstellen Polynomabbildungen und Eigenschaften : x p x Z p [x] Auswertungshomomorphismus Nullstelle Wurzelsatz f(α) = 0 genau dann, wenn (X α) f Satz f = (x α 1 ) k1 (x α m ) km g, g K[x], g(α) 0 für α K Satz Jedes Polynom f hat höchstens deg(f) Nullstellen Satz Die Zuordnung Polynom Polynomfunktion ist über unendlichen Körper ein Isomorphismus Ohne Beweis: Fundamentalsatz der Algebra Rationaler Nullstellentest e 5.4 Irreduzible Polynome Irreduzibel e 6

7 5.4.2 Satz (Lemma von Euklid für Polynome) Hauptssatz der Zahlentheorie fü r Polynome Modulares Irreduzibilitätskriterium : f = x 3 + 4x 2 + 8x + 6, p = Polynom-Interpolation Chinesischer Restsatz für Polynome Lagrange sche Interpolationsformel : f( 1) = 1, f(0) = f(1) = 0, f(2) = 5 Literatur 1. K.-H. Zimmermann, Diskrete Mathematik, Books on Demand, 2006, ISBN M. Aigner, Zahlentheorie, vieweg, P. Bundschuh, Einführung in die Zahlentheorie, Springer Verlag, C. Fuchs, Zahlentheorie, Vorlesungsskript, ETH Zürich, A. Leutbecher, Zahlentheorie, Springer, A. Pethő, Algebraische Algorithmen, vieweg,

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

7 Der so genannte chinesische Restsatz

7 Der so genannte chinesische Restsatz 7 Der so genannte chinesische Restsatz Der Chinese Sun Tsu stellte, so wird berichtet, in seinem Buch Suan-Ching ua die folgende Aufgabe: Wir haben eine gewisse Anzahl von Dingen, wissen aber nicht genau

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln Kapitel 3 Ringe Gruppen- und Ringstrukturen sind uns schon in den verschiedensten Zusammenhängen begegnet. In diesem Kapitel wollen wir einige wichtige Klassen von Ringen im Hinblick auf Anwendungen in

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Elementare Kryptographie

Elementare Kryptographie Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Elementare Kryptographie Kai Gehrs gehrs@mupad.de Paderborn, 9. Juli 2007 Inhaltsverzeichnis Grundlagen:

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Algebra. Professor Walter Gubler

Algebra. Professor Walter Gubler Algebra Professor Walter Gubler 29. April 2010 2 Inhaltsverzeichnis I Algebra I 11 I Gruppentheorie 13 I.1 Gruppen................................... 13 I.1.1 Denition einer Gruppe.......................

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein

Mehr

01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger

01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger 01321 Mathematische Grundlagen der Kryptograe Vorbereitung auf die mündliche Prüfung Bei Prof. Unger 1 Kryptograe im Allgemeinen Was ist Kryptographie? Kryptograe ist der sichere Nachrichtentransfer über

Mehr

Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht

Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht Zahlentheoretische Grundlagen der Public-Key Kryptographie und deren Behandlung im Mathematikunterricht Erik Einhaus Schriftliche Hausarbeit im Fach Mathematik Referent: Prof. Dr. Michael Hortmann Korreferent:

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Das RSA-Kryptosystem

Das RSA-Kryptosystem www.mathematik-netz.de Copyright, Page 1 of 12 Das RSA-Kryptosystem Um dieses Dokument verstehen zu können benötigt der Leser nur grundlegende Kenntnisse der Algebra und ein gewisses mathematisches Verständnis.

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Ringe, Algebren und Körper

Ringe, Algebren und Körper KAPITEL 3 Ringe, Algebren und Körper Wir kommen nun zu Strukturen mit zwei verträglichen Operationen, wobei wir etwas Hintergrund aus der linearen Algebra voraussetzen werden. Wir werden oft auf die Analogie

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Proseminar Elementare Algebra und Zahlentheorie Sommersemester 2014 Prof. Dr. A. Huber-Klawitter

Proseminar Elementare Algebra und Zahlentheorie Sommersemester 2014 Prof. Dr. A. Huber-Klawitter Proseminar Elementare Algebra und Zahlentheorie Sommersemester 2014 Prof. Dr. A. Huber-Klawitter Allgemeine Hinweise: In den modularisierten Studiengängen müssen Sie sich Anfang April online anmelden.

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Kapitel II Ringe. 1 Grundbegriffe. 1.1 Definition eines Rings

Kapitel II Ringe. 1 Grundbegriffe. 1.1 Definition eines Rings Kapitel II Ringe Eine zentrale Aufgabe der Algebra ist es, Aussagen über die Nullstellen von Polynomen zu machen. Für den Umgang mit Polynomen ist es nützlich, die abstrakten Hintergründe der Addition

Mehr

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems Paul-Klee-Gymnasium Facharbeit aus der Mathematik Thema: Asymmetrische Verschlüsselungsverfahren am Beispiel des RSA-Kryptosystems Verfasser : Martin Andreas Thoma Kursleiter : Claudia Wenninger Abgegeben

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

1. Modulare Arithmetik

1. Modulare Arithmetik 1. Modulare Arithmetik Dreizehn Jahre lang hatten die Briten und Franzosen geglaubt, die Enigma- Verschlüsselung sei nicht zu knacken, doch nun schöpften sie Hoffnung. Die polnischen Erfolge hatten bewiesen,

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

Endliche Körper und Codierung

Endliche Körper und Codierung Endliche Körper und Codierung Manfred Madritsch Institut für Mathematik A Technische Universität Graz Version: SS 2010 Achtung: Bitte Anregungen und Fehler per Email an die Adresse madritsch@tugraz.at

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage

Hans Kurzweil. Endliche Körper. Verstehen, Rechnen, Anwenden. Zweite, überarbeitete Auflage Springer-Lehrbuch Hans Kurzweil Endliche Körper Verstehen, Rechnen, Anwenden Zweite, überarbeitete Auflage 123 Prof. Dr. Hans Kurzweil Mathematisches Institut Friedrich-Alexander-Universität Bismarckstraße

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt.

Es gibt einen Algorithmus, der mit polynomialem Aufwand auskommt. 3 Primzahltests Eine Frage ist zur Durchführbarkeit des RSA-Verfahrens noch zu klären: Gibt es überhaupt Möglichkeiten, die für die Schlüsselerzeugung nötigen Primzahlen zu finden? Die Antwort wird lauten:

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Mathematische Modelle in Angewandten Wissenschaften

Mathematische Modelle in Angewandten Wissenschaften Mathematische Modelle in Angewandten Wissenschaften LVA 405.880 C. Fuchs Inhaltsübersicht 14.12.2015 Inhaltsübersicht Diese Lehrveranstaltung dient zur Finalisierung der mathematischen Ausbildung im Lehramtsstudium

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Skript. Diskrete Mathematik. Prof. Dr. C.P. Schnorr

Skript. Diskrete Mathematik. Prof. Dr. C.P. Schnorr Skript Diskrete Mathematik Prof. Dr. C.P. Schnorr http://www.mi.informatik.uni-frankfurt.de Johann-Wolfgang-Goethe Universität Fachbereich Informatik und Mathematik Frankfurt am Main 2. März 2015 Einleitung

Mehr

Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten

Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten Wissenschaftliche Hausarbeit im Rahmen des ersten Staatsexamens für das Amt des Studienrates vorgelegt von Torsten Brandes

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

2.2 Nebenklassen, Normalteiler und Faktorgruppen

2.2 Nebenklassen, Normalteiler und Faktorgruppen Algebra I c Rudolf Scharlau, 2002 2012 61 2.2 Nebenklassen, Normalteiler und Faktorgruppen Bei der Konstruktion der Restklassengruppe Z/mZ hatten wir auf der Gruppe Z mit Hilfe einer Untergruppe mz eine

Mehr

Algebra I Wintersemester 2006/07

Algebra I Wintersemester 2006/07 Algebra I Wintersemester 2006/07 Prof. Dr. Annette Huber-Klawitter Fassung vom 31. Januar 2007 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math. Institut 0341-97

Mehr

Mathematik Akzentfach

Mathematik Akzentfach Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...

Mehr

AUFGABEN ZUR KRYPTOLOGIE

AUFGABEN ZUR KRYPTOLOGIE AUFGABEN ZUR KRYPTOLOGIE Aufgabe 1 Der folgende Geheimtext ging hervor aus der Verschlüsselung eines deutschen Klartexts mit einem monoalphabetischen Chiffrierungsverfahren. nyv syv svdvu yst vyuv sglmdv

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail.

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail. von Beweis von vom ggt zu gpg 1 30.05.2012 1 lars.scher (bei) gmx-topmail.de Inhaltsverzeichnis von Beweis 1 Einführung 2 von Rechnen mit n Beispiele & Regeln Der gröÿte gemeinsame Teiler Der euklidische

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Ort und Zeit: Dienstag, 14-16 Uhr, SR 127 Inhalt: Wir wollen uns in diesem

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Über das Hüten von Geheimnissen

Über das Hüten von Geheimnissen Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Prof. Dr. Rüdiger Weis Beuth Hochschule für Technik Berlin Tag der Mathematik 2015 Flächendeckendes Abhören Regierungen scheitern

Mehr

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5 Kommutative Algebra Prof. Dr. Uwe Jannsen Sommersemester 2014 Inhaltsverzeichnis 0 Erinnerung: Ringe und Polynomringe 1 1 Noethersche Ringe 5 2 Moduln über Ringen und exakte Sequenzen 7 3 Lokalisierungen

Mehr

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher stefan@buettcher.org 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren

Mehr

Praktische Mathematik - Symbolisches Rechnen. Vorlesung im Sommersemester 2012 TU-Kaiserslautern

Praktische Mathematik - Symbolisches Rechnen. Vorlesung im Sommersemester 2012 TU-Kaiserslautern Praktische Mathematik - Symbolisches Rechnen Vorlesung im Sommersemester 2012 TU-Kaiserslautern gehalten von C. Fieker Version vom 12. Juli 2012 Inhaltsverzeichnis Kapitel 0. Einführung 1 Kapitel 1. Arithmetik

Mehr

Codierungstheorie, Vorlesungsskript

Codierungstheorie, Vorlesungsskript Codierungstheorie, Vorlesungsskript Irene I. Bouw Sommersemester 2014 Inhaltsverzeichnis 1 Lineare Codes 2 1.1 Einführung.............................. 2 1.2 Eigenschaften linearer Codes....................

Mehr

Primzahltests für Mersenne-Primzahlen

Primzahltests für Mersenne-Primzahlen Primzahltests für Mersenne-Primzahlen Ausarbeitung zum Vortrag im Seminar zur Computeralgebra im WS 2010/2011 bei Frau Prof. Dr. G. Nebe, RWTH Aachen Michael H. Mertens Matrikelnummer: 289246 Inhaltsverzeichnis

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr