Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Größe: px
Ab Seite anzeigen:

Download "Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1"

Transkript

1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

2 Gliederung 1 Ziele 2 Hintergrund 3 Ausbreitung 4 Fortschreitende Welle 5 Fisher-Kolmogoroff-Gleichung Asymptotische Lösung Stabilität 6 Dichteabhängige Diffusionsreaktion Exakte Lösungen 7 Fazit

3 Ziele Vorkommen von fortschreitenden Wellen. Beschreibung von fortschreitenden Wellen. Betrachtung von Simulationen fortschreitender Wellen. Anwendungsbereiche von Modellen fortschreitender Wellen.

4 Hintergrund Fortschreitende Wellen sind an dem Entwicklungsprozess von chemischen Konzentrationen mechanischen Verformungen und elektrischen Signalen beteiligt. Beispiele.: wellenförmige Ereignisse im sich entwickelnden Embryo. Ausbreitung von Ca 2+ -Wellen auf der Oberfläche von Medaka-Eiern. chem. Konz.-Welle bei der Belousov-Zhabotinskij-Reaktion

5 Ausbreitung Beispiel: Abläufe im sich entwickelnden Embryo Realer Wertebereich für Diffusionskoeffizienten: D = 10 9 cm 2 sec cm 2 sec 1 Formale Betrachtung der Ausbreitung: Standard-Diffusionsgleichung: du dt Betrachte: O(L 2 /D), = D d 2 u dx 2 D : Diffusionskoeffizient L = 1mm O( sec) zu lang. Einfache Ausbreitung nicht Hauptmedium der Informationsübermittlung über eine bestimmte Distanz.

6 Fortschreitende Wellen Definition Eine fortschreitende Welle ist eine Welle, die sich ausbreitet ohne ihre Form zu ändern. Formal: u(x, t) = u(x ct) = u(z), z = x ct c: Geschwindigkeit z: Wellenvariable

7 Fortschreitende Wellen Standard-Diffusionsgleichung: du dt = D d 2 u dx 2 Beschreibt den Mechanismus der Ausbreitung. Lösungsansatz: D d 2 u dz 2 + c du dz = 0 u(z) = A + B e( cz D ) u beschränkt für alle z B = 0, da u für z. Somit ist u(z) = A = const. keine Wellenlösung

8 Fisher-Kolmogoroff-Gleichung Einfache Ausbreitung gekoppelt mit Bewegungsterm f (u): du dt = f (u) + D d 2 u dx 2 Nichtlineare Reaktions-Diffusions-Gleichung: du dt k, D: positive Parameter Fisher-Kolmogoroff-Gleichung = ku(1 u) + D d 2 u dx 2

9 Fisher-Kolmogoroff-Gleichung Fakten: Ursprünglich stochastisches Modell für die Ausbreitung bevorzugter Gene in einer Population. (Fisher, 1937) Ausführliche Diskussion der Gleichung durch Fife (1979), Britton (1986) und Grindrod (1996) Vereinigung von logistischem Wachstum mit Diffusionsterm. Analyse der Diffusionsausbreitung von Einzelspezies. Erlaubt die Ermittlung von Wellenfrontenlösungen.

10 Fisher-Kolmogoroff-Gleichung Variablentransformation: du dt = u(1 u) + d 2 u dx 2 u = 0 und u = 1 konstante Lösungen (stationäre Zustände) Lösungen einer Wellenfront für 0 u 1? Wellenlösung: c: Wellengeschwindigkeit Substitution von U(z): u(x, t) = U(z), z = x ct, c 0 U + cu + U(1 U) = 0

11 Fisher-Kolmogoroff-Gleichung Wellenfrontlösungen für z und z Gleichgewichtszustände erreicht Bestimmung von c mit lim U(z) = 0 und z lim U(z) = 1. z Setze: V = U, V = cv U(1 U) Daraus ergeben sich zwei singuläre Punkte: (0/0) mit Eigenwert λ = 1 2 ( c ± c 2 4) stabiler Knoten für c 2 > 4 und stabile Spirale für c 2 < 4 (1/0) mit Eigenwert λ = 1 2 ( c ± c 2 + 4) Sattelpunkt.

12 Fisher-Kolmogoroff-Gleichung Trajektorien der Gleichung U + cu + U(1 U) = 0: Abbildung : J.D.Murray, Mathematical Biology, An Introduction Bereich der Wellengeschwindigkeit: c c min = 2 kd

13 Fisher-Kolmogoroff-Gleichung Abbildung : J.D.Murray, Mathematical Biology, An Introduction

14 Fisher-Kolmogoroff-Gleichung Betrachtung der Wellengeschwindigkeit c: U(z) abhängig von c. c abhängig von Anfangsbedingung u(x, 0) für x ±. Für kleine u gilt: du = u + d 2 u dt dx 2 Betrachte Anfangsbedingung u(x, 0) A e ax ; x u(x, t) = A e a(x ct) für t > 0. c = a + 1, 0 < a 1, c = 2, a 1. a Wellengeschwindigkeit c 2.

15 Fisher-Kolmogoroff-Gleichung Abbildung : J.D.Murray,Mathematical Biology, An Introduction

16 Fisher-Kolmogoroff-Gleichung Beispiele für die Anwendung der Fisher-Kolmogoroff-Gleichung: (Verschiedene Modelle räumlicher Ausbreitung) Das Fortschreiten von Genkultur-Wellen. (Aoki,1987) Die Ausbreitung der frühen Landwirtschaft in Europa. (Ammermann und Cavali-Sforza,1971,1983) Modellierung einer Invasion von einer oder mehrerer Spezies in ein neues Gebiet. (Bsp.: Kaninchenplage in Australien)

17 Asymptotische Lösung Keine analytische Lösung für allgemeines c für: U + cu + U(1 U) = 0 Nährungslösung für ε = 1 0, 25; 0 < ε << 1 c2 Aus U(z) = g(ξ) und ξ = z c = ε 1 2 z folgt: ε d 2 g dξ 2 + dg 1 + g(1 g) = 0; 0 < ε dξ cmin 2 Randbedingungen: g( ) = 1, g( ) = 0 Wahl von g(0) = 1 ergibt eindeutige Lösung. 2 = 0, 25

18 Asymptotische Lösung Ansatz: Betrachte: g(ξ, ε) = g 0 (ξ) + εg 1 (ξ) +... O(1) : dg 0 dξ = g 0(1 g 0 ) g 0 (ξ) = ε ξ O(ε) : dg 1 dξ +(1 2g 0)g 1 = d 2 g 0 dξ 2 dg ( 1 g dξ 0 g... 0 mit Randbedingungen für g i (ξ) für i = 0, 1, 2... g 0 ( ) = 1, g 0 ( ) = 0, g o (0) = 1 2 g i (± ) = 0, g i (0) = 0 für i = 1, 2,.... ) g 1 = g 0

19 Asymptotische Lösung Durch Integration und aus den Randbedingungen folgt: [ g 1 = g 0 ln(4 g 0 ) = 1 εξ (1 + ε ξ ) 2 ln 4ε ξ ] (1 + ε ξ ) 2 In Originalvariablen: U(z; ε) = (1+e z c ) c 2 e z c (1+e z c ) 2 ln c c min = 2 [ 4e z c (1 + e z c ) 2 ] +O ( ) 1 c 4 ; Nährung nullter Ordnung weicht nur geringfügig von exakter Lösung ab.

20 Asymptotische Lösung Geschwindigkeit der Ausbreitung Steilheit der Wellenfront: Aus U = 0 Wendepunkt folgt: ξ = 0 z = 0. g 0 (ξ) + εg 1 (ξ) + O(ε2 ) = 0 Mit s=betrag des maximalen Gradienten U (z) ergibt sich bei z = 0: U (0) = s = 1 4c + O ( 1 c 5 ) Je höher die Geschwindigkeit der Ausbreitung desto niedriger die Steilheit der Wellenfront.

21 Asymptotische Lösung Abbildung : J.D.Murray, Mathematical Biology, An Introduction Je flacher die Welle, desto schneller die Ausbreitung.

22 Stabilität Bestimmung der Stabilität einer Front: Betrachte Bewegungsgleichung für die Front: u t = u(1 u) + cu z + u zz wobei u(x, t) = u(z, t) und z = x ct u c (z) Lösung von U + cu + U(1 U) = 0

23 Stabilität Betrachte kleine Störung um die Front zur Geschwindigkeit c c min = 2: u(z, t) = u c (z) + ωv(z, t), 0 < ω << 1. Durch Substitution erhält man aus den ω- Termen die folgende Gleichung: v t = [1 2u c (z)]v + cv z + v zz Front ist gegenüber Störung stabil für: lim v(z, t) = 0 oder lim v(z, t) = du c(z) t t dz

24 Stabilität Lösung der Gleichung für v t : Ansatz: v(z, t) = g(z) e λt Substitution: g + cg + [λ + 1 u c (z)]g = 0 wobei v = 0 außerhalb [ L, L] Mit g(z) = h(z) e cz 2 ergibt sich für h: [ )] h + λ (2u c (z) + c2 4 1 h = 0, h(±l) = 0; Für c 2, u c (z) > 0, L z L gilt: 2u c (z) + c u c(z) > 0

25 Stabilität Auswertung: Alle Eigenwerte λ sind positiv. v(z, t) 0 für t u c (z) stabil für Störungen in kleinen beschränkten Bereichen. Numerische Simulationen der Fisher-Kolmogoroff-Gleichung resultieren in einer stabilen Wellenfrontlösung mit c = 2.

26 Dichteabhängige Diffusionsreaktion Integration von dichteabhängiger Diffusion durch Betrachtung von Gleichungen der Form: du = f (u) + d [ D(u) du ] dt dx dx f (0) = 0, f (1) = 0, D(u) = D 0 u m f (u) = ku p (1 u q ) Umskalierung von t und x: du dt = u p (1 u q ) + d dx [ u m du ] dx = u p (1 u q ) + mu m 1 ( du dx ) 2 + u m d 2 u dx 2

27 Exakte Lösungen 1. Fall: m = 0,p = 1 du dt = u(1 u q ) + d 2 u dx 2, q > 0 Betrachte L(U) = U + cu + U(1 U q ) = 0 mit u(x, t) = U(z), z = x ct, U( ) = 1, U( ) = 0 U(z) = 1 (1 + ae bz ) s L(U) = 0 2 sq = 0, 1 oder 2 s = 2 q, 1 (oder sq = 0) q

28 Exakte Lösungen s = 1 q b = 0 nicht möglich, da b > 0 s = 2 q b = q q + 4, c = [2(q + 2)] 1 2 [2(q + 2)] 1 2 c steigt mit q an. q = 1 s = 2, b = 1 6, c = Für z = 0,a = 2 1 ergibt sich die Lösung: U(z) = 1 [1 + ( 2 1)e z 6 ] 2 Problem von exakten Lösungen: Nicht alle möglichen Lösungen werden ermittelt. Quantitative Wellenform ist verschieden.

29 Exakte Lösungen 2. Fall: m = 0, p = q + 1, q > 0 U(z) = du dt = u q+1 (1 u q ) + d 2 u dx 2 1 (1 + ae bz ) s, s = 1 q, b = q, c = (q + 1) (q + 1) 1 2

30 Exakte Lösungen 3. Fall: p = q = 1,m = 1 du dt = u(1 u) + d dx [ u du ] dx Population verteilt sich schneller auf Regionen niedrigerer Dichte als eine Region überbevölkert ist. Betrachte: UU + cu + U(1 U) = 0 mit Phasenportrait: U = V, UV = cv V 2 U(1 U) Entfernung der Singularität bei U = 0 führt zu: dv dξ = cv V 2 U(1 U) mit du dξ = UV (1, 0) und (0, c) Sattelpunkte (0, 0) stabiler Knoten (nicht linear)

31 Exakte Lösungen Trajektorien für variables c: Abbildung : J.D.Murray, Mathematical Biology, An Introduction

32 Fazit Fortschreitende Wellen kommen in vielfältigen biologischen Prozessen vor. Lösungen sind in kompaktem Bereich stabil. Es ex. eine Lösung einer fortschreitenden Wellenfront für du dt = f (u) + d 2 dx 2 mit best. Anfangsbedingungen; c c min = 2(f (0)) 1 2 Fisher-Kolmogoroff-Gleichung mit c = 2[kD] 1 2 Ausbreitungen im sich entwickelnden Embryo: O(5x sec): Wesentlich kürzer als reine Diffusionszeit O( ). Modell beschreibt reale Werte.

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering Medizinische Biophysik Stephan Scheidegger ZHAW School of Engineering Modelle in der medizinischen Biophysik Inhalt ROETGETECHIK Teil A Systembiophysik (Kapitel 1-4) Teil B Strahlenbiophysik (Kapitel 5-8)

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Zweidimensionale Exploration mittels Gravimetrie

Zweidimensionale Exploration mittels Gravimetrie Zweidimensionale Exploration mittels Gravimetrie Dipl. Math. Sandra Möhringer TU Kaiserslautern Fraunhofer ITWM Geothermiekongress 2012 Karlsruhe 13. November 2012 Sicht der Mathematik: Kaiserslauterer

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak Populations Modelle Das Lotka-Volterra Model Robin Gwinner Seminarleiterin: Dr. Iryna Rybak 04.05.2016 Motivation Rote Liste: Motivation Rote Liste: Motivation Rote Liste: Motivation Motivation Motivation

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag.

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 points) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Einleitung Bistabile nichtlineare halbleitende

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst HCI D323 Martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/ Zusammenfassung

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010 Einführung in die Numerik strukturerhaltender Zeitintegratoren Leonard Schlag 6. Dezember 2010 1 Inhaltsverzeichnis 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren 3 1.1 Häuge Problemstellung:

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

IU1. Modul Universalkonstanten. Erdbeschleunigung

IU1. Modul Universalkonstanten. Erdbeschleunigung IU1 Modul Universalkonstanten Erdbeschleunigung Das Ziel des vorliegenden Versuches ist die Bestimmung der Erdbeschleunigung g aus der Fallzeit eines Körpers beim (fast) freien Fall durch die Luft. Î

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung

Mehr

Grundlagen zum Umgang mit mathematischen Softwarepaketen

Grundlagen zum Umgang mit mathematischen Softwarepaketen MathSoft Praktikum 2016 Fakultät für Mathematik Grundlagen zum Umgang mit mathematischen Softwarepaketen Praktikum 2016 Roman Unger Fakultät für Mathematik Januar 2016 TUC Januar 2016 Roman Unger 1 / 31

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Mathematik - Antwortblatt Klausur

Mathematik - Antwortblatt Klausur Mathematik - Antwortblatt Klausur 30..09 Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/49 Rekapitulation Das Euler-Verfahren für ODE-IVP Eigenschaften von Einschrittverfahren Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 2 WS 2007/2008 2/49 Rekapitulation Das Euler-Verfahren

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Appendix A: Grundlagen der Populationsbiologie

Appendix A: Grundlagen der Populationsbiologie 701-245-00L Pop - & Evol biol - A.1 - App. A: Grundlagen der Populationsbiologie Appendix A: Grundlagen der Populationsbiologie Einige grundlegende Prinzipien der Populationsbiologie sind wichtig zum Verständnis

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

6.2 Lineare Differentialgleichungen erster Ordnung

6.2 Lineare Differentialgleichungen erster Ordnung 98 6.2 Lineare Differentialgleichungen erster Ordnung Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form y = p(x)y +q(x) (I) gebracht werden kann. Die DGL y = p(x)y (H) heisst

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008 2/25 Rekapitulation Simulation des Wärmetransportes

Mehr

Vorschau reiseführer

Vorschau reiseführer V ü üj 0 ä, ä, ö Z Z U v T T v V ö üzv (v ) VIT ü U v V V V ä z v jz v, äi, z vä v zü I z: ä T V ü ü, ü z z T Iv z ö, ü I z D ü ü ä D Z ä,, jz z ü z : D z Cy, v ä I ü z zäz v v U 0 äü I z I z v,, vä T

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr