Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen"

Transkript

1 Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen beschreben werden soll. b) En Zufallsexperment st charaktersert durch de Menge der möglchen Ergebnsse, de Menge der möglchen Eregnsse und das Wahrschenlchketsmaß. 2. En Wahrschenlchketsmaß P ordnet b) den möglchen Eregnssen enes Zufallsexpermentes Wahrschenlchketen zu. c) den Elementareregnssen enes Zufallsexpermentes Wahrschenlchketen zu. 3. Be dem Zufallsexperment Zwemalges Würfeln mt enem (faren) Würfel st c) de Anzahl der Elemente der Menge der möglchen Ergebnsse klener als de Anzahl der Elemente der Menge der möglchen Eregnsse. 4. Be dem Zufallsexperment Dremalges Werfen ener (faren) Münze beträgt de Anzahl der Elemente der Menge der möglchen Ergebnsse: c) 8 5. Be dem Zufallsexperment Dremalges Werfen ener (faren) Münze beträgt de Anzahl der Elemente der Menge der möglchen Eregnsse: f) Welche der folgenden Aussagen wrd als das Kolmogoroff sche Axom der Normerung bezechnet? c) P( Ω ) = 7. Wetere Kolmogoroff sche Axome heßen: a) Addtvtät c) Nchtnegatvtät 8. De Komponenten enes Wahrschenlchketsraums enes Zufallsexpermentes snd: a) De Menge der möglchen Ergebnsse c) De Menge der möglchen Eregnsse d) Das Wahrschenlchketsmaß 9. Für en Eregns A enes Zufallsexpermentes glt mmer: a) Es st ene Telmenge der Menge der möglchen Ergebnsse. b) Es st ene Telmenge der Menge der möglchen Eregnsse. c) Dem Eregns A kann ene Wahrschenlchket zugeordnet werden. 0. Für jedes Zufallsexperment st de klenstmöglche Sgma-Algebra: b) A 2 ={ Ω, }. En W-Raum a) beschrebt en Zufallsexperment. b) st de formal-sprachlc he Repräsentaton des n enem stochastschen Modell betrachteten emprschen Phänomens. c) benhaltet alle Aussagen, de man mt dem betrachteten Zufallsexperment formuleren kann. - -

2 2. In enem psychologschen Zufallsexperment wrd aus der Menge der Personen Anton, Bert und Conn ene Person zufällg gezogen und bearbetet dre Aufgaben. Es gbt nur de Möglchketen de Aufgaben entweder zu lösen (+) oder ncht zu lösen ( ). We lässt sch de Ergebnsmenge deses Zufallsexpermentes formal repräsenteren? a) Ω=Ω Ω b) { Anton,Bert,Conn } {, } {, } {, } 3. Für das Zufallsexperment aus Aufg. 2 bedeutet das Eregns { } { } { } { } d) Anton wrd gezogen und löst de zwete Aufgabe. A : = Anton + + +,, : 4. Für das Zufallsexperment aus Aufg. 2 bedeutet das Eregns A : = { Anton,Bert } 2 { } { +, } { } : d) Anton oder Bert wrd gezogen und löst de erste und de drtte Aufgabe ncht. 5. Für das Zufallsexperment aus Aufg. 2 bedeutet das Eregns A : 3 = { Anton,Conn } Ω : d) Anton oder Conn wrd gezogen. 6. Se Ω, A, P en Wahrschenlchketsraum und A en Eregns A A. Für das Eregns A und sen Komplement A glt: a) Se snd dsjunkt. 7. Für das Eregns A und das Eregns Ω glt: b) Se snd stochastsch unabhängg. 8. Für das Eregns A und de Leere Menge glt: a) Se snd dsjunkt. b) Se snd stochastsch unabhängg. 9. Für das Eregns A, sen Komplement A, das Eregns Ω und de Leere Menge glt: c) De Menge {,, AA, } Ω st ene s-algebra. 20. Se Ω, A, P en Wahrschenlchketsraum und A und B zwe Eregnsse A, B A. Dann entsprcht de bedngte Wahrschenlchket PAB ( ) n enem Venn-Dagramm a) dem Antel der Gesamtfläche von A an der Gesamtfläche Ω, vorausgesetzt de Eregnsse A und B snd stochastsch unabhängg. b) dem Antel der Schnttmenge A Ban der Gesamtfläche von B. 2. Der Ausdruck PAB ( ) st zu lesen als b) De B-bedngte Wahrschenlchket des Eregnsses A. c) De Wahrschenlchket des Eregnsses A gegeben das Eregns B. 22. Se Ω, A, P en Wahrschenlchketsraum und A und B zwe Eregnsse A, B A, de sowohl dsjunkt als auch stochastsch unabhängg snd. Es se PA= ( ) 0,3. We groß st PB ( )? a) Se Ω, A, P en Wahrschenlchketsraum und A und B zwe Eregnsse A, B A, de sowohl dsjunkt als auch stochastsch unabhängg snd. Es se PA= ( ) 0. Welche(n) Wert(e) kann PB ( ) annehmen? a) 0 b) 0,3 c) 0,7 d) - 2 -

3 24. Se Ω, A, P en Wahrschenlchketsraum und A, B und C dre Eregnsse A, B, C A, von denen bekannt se, dass se jewels paarwese stochastsch unabhängg snd. Für alle dre Eregnsse glt dann: b) Se können stochastsch abhängg sen. d) Se können stochastsch unabhängg sen. 25. Was st be der Bldung ener Zufallsvarable n enem Zufallsexperment zufällg? a) De Ergebnsse? Ω b) De Werte der Zufallsvarablen 26. Für en psychologsches Experment gelte Ω=Ω Ωmt Ω ={Anton, Bert} und Ω : ={+, }, wobe + bedeutet, dass de gezogene Person ene bestmmte Aufgabe löst und, dass de gezogene Person ene bestmmte Aufgabe ncht löst. Se de Projekton von Ω auf Ω und de Projekton von Ω auf Ω. ( Anton, + ) bedeutet: d) Anton wrd gezogen. 27. Für das Experment aus Aufgabe 26 bedeutet ( Bert, ) : c) De Aufgabe wrd ncht gelöst. 28. Bem enmalgen Würfeln mt enem faren Würfel lässt sch de Anzahl der Elemente der Menge der möglchen Eregnsse (, de zunächst der Potenzmenge der Menge der möglchen Ergebnsse entsprcht) durch Enführen von Zufallsvarablen reduzeren. Ene solche Zufallsvarable se ene Indkatorvarable. Damt verrngert sch de Anzahl der Elemente der Eregnsmenge f) von 64 auf De Menge aller rblder X ( A') entsprcht a) der Menge der durch X darstellbaren Eregnsse. b) der durch X erzeugten σ-algebra. 30. Welche Bezehung besteht zwschen numerschen und reellen Zufallsvarablen. b) Ene reelle Zufallsvarable st mmer auch ene numersche Zufallsvarable. X 3. De kumulatve Vertelung F (a) gbt de Wahrschenlchket an, dass de Zufallsvarable X b) enen Wert klener oder glech α annmmt. 32. Gegeben se ene Tabelle mt den relatven Häufgketen ener n ener Stchprobe beobachteten dskreten Zufallsvarable. Man kann b) de Vertelung der Zufallsvarable schätzen. d) de kumulatve Vertelung der Zufallsvarable schätzen. 33. Der Erwartungswert ener dskreten Zufallsvarable X st defnert als: a) De mt den Auftretenswahrschenlchketen P( X=x ) gewchtete Summe aller möglchen Werte der Zufallsvarable N d) Formel: x P( X = x ) = f) Der theoretsche Mttel- oder Durchschnttswert 34. Welche der folgenden Aussagen treffen zu? b) Stochastsche Zufallsvarable n können enen Erwartungswert haben. c) Kontnuerlche Zufallsvarablen können enen Erwartungswert haben. d) Reellwertge Zufallsvarablen können enen Erwartungswert haben

4 35. Was bezechnet das Symbol E( X=x )? d) Deses Symbol st ncht defnert und hat kenerle Bedeutung. 36. Der Erwartungswert ener Zufallsvarable X kann mt Hlfe ener Stchprobe des mfangs N: b) Durch de Formel N N X geschätzt werden = 37. Es wrd das Werfen ener faren Münze betrachtet. De Zufallsvarable Y soll den Wert ens erhalten, wenn der Wurf Kopf ergbt, ansonsten Null. Der Erwartungswert von Y st dann: d) 0,5 38. Es wrd das zwemalge, unabhängge Werfen enes faren Würfels betrachtet. De Zufallsvarable Z se de Summe der gewürfelten Augen beder Würfel. Der Erwartungswert von Z st dann d) Der Erwartungswert ener Indkatorvarablen I (mt den möglchen werten =0 und =) st glech: a) Der mt den Wahrschenlchketen P( I= ) gewchteten Summe aller möglchen Werte von I b) Der Wahrschenlchket P( I= ), dass I den Wert ens annmmt 40. Welche der folgenden Aussagen snd wahr unter der Voraussetzung, dass alle Erwartungswerte exsteren und alle erwähnten Zufallsvarablen auf dem glechen Wahrschenlchketsraum defnert seen? a) Der Erwartungswert ener Konstanten st glech der Konstanten selbst. b) Der Erwartungswert ener Summe zweer Zufallsvarablen st glech der Summe der Erwartungswerte beder Varablen. c) Der Erwartungswert ener Summe ener Zufallsvarable und ener Konstante st glech der Summe der Konstanten und des Erwartungswertes der Zufallsvarable. d) Der Erwartungswert des Produkts ener Konstanten mt ener Zufallsvarable st glech dem Produkt der Konstanten mt dem Erwartungswert der Zufallsvarable. 4. Welche der folgenden Glechungen snd wahr, wenn A und B Zufallsvarablen snd (Konstanten sollen her als Zufallsvarablen nterpretert werden, welche nur enen Wert annehmen können; alle Erwartungswerte sollen exsteren und alle erwähnten Zufallsvarablen seen auf dem glechen Wahrschenlchketsraum defnert)? a) E( 5 ) = 5 d) E( +B ) = +P( B= ), wenn B nur de Werte 0 und annehmen kann 42. Gegeben se der Erwartungswert ener Zufallsvarable, welche gemessene Längen n cm angbt. We ändert sch der Erwartungswert der Varablen, wenn statt n cm alle Längen n mm angegeben werden? d) Der Erwartungswert wrd um den Faktor 0 größer. 43. Der Erwartungswert ener Zufallsvarablen st en Maß für: a) De Lokalsaton der Varablen 44. Der Erwartungswert E X E( X ) st a) de mttlere Abwechung aller Werte von X von deren Mttelwert. b) mmer glech De Varanz ener Zufallsvarablen X st defnert als: c) E ( X E( X) ) 2 e) ( ( ))( ( )) E X E X X E X - 4 -

5 46. De Varanz ener Zufallsvarable X st defnert als: b) De mttlere quadrerte Abwechung aller Werte von X von deren Mttelwert 47. Welche Bezehung besteht zwschen der Kovaranz und Varanz? c) De Varanz ener Zufallsvarable st glech der Kovaranz deser Varablen mt sch selbst. 48. Es wrd das Werfen ener faren Münze betrachtet. De Zufallsvarable Y soll den Wert ens erhalten, wenn der Wurf Kopf ergbt, ansonsten Null. De Varanz von Y st dann: d) 0, Welche der folgenden Aussagen snd wahr? d) De Varanz der Summe zweer Zufallsvarablen st glech der Summe der Varanzen beder Zufallsvarablen, wenn bede Varablen stochastsch unabhängg snd. 50. Gegeben se de Varanz ener Zufallsvarable, welche gemessene Längen n cm angbt. We ändert sch de Varanz der Varablen, wenn statt n cm alle Längen n mm angegeben werden? e) De Varanz wrd um den Faktor 00 größer. 5. Welche der folgenden Glechungen snd wahr, wenn A und B Zufallsvarablen snd (Konstanten sollen her als Zufallsvarablen nterpretert werden, welche nur enen Wert annehmen können; alle Erwartungswerte sollen exsteren und alle erwähnten Zufallsvarablen seen auf dem glechen Wahrschenlchketsraum defnert): c) Var( 5 B ) = 25 Var(B) 52. Welche der folgenden Aussagen über Korrelatonen st wahr? a) Ene Korrelaton st ene standardserte Kovaranz. b) Ist de Kovaranz negatv, st auch de Korrelaton negatv. 53. nter welcher der folgenden Bedngungen st de Kovaranz zweer Varablen X und Y postv und hoch/groß? b) Wenn en Wert von X weter vom Mttelwert von X abwecht, dann wecht der entsprechende Wert von Y n de gleche Rchtung auch weter vom Mttelwert von Y ab. 54. Zwe Zufallsvarablen X und Y snd regressv unabhängg. Welche der folgenden Aussagen treffen dann zu? b) X und Y snd korrelatv unabhängg

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologe Prof. Dr. G. Menhardt 2. Stock, Nordflügel R. 02-429 (Perske) R. 02-431 (Menhardt) Sprechstunde jederzet nach Verenbarung Forschungsstatstk I Dr. Malte Perske perske@un-manz.de WS 2008/2009

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Entscheidungstheorie Teil 1. Thomas Kämpke

Entscheidungstheorie Teil 1. Thomas Kämpke Entschedungstheore Tel Thomas Kämpke Sete 2 Entschedungstheore Tel Inhalt Kompaktensteg Wahrschenlchketsrechnung Wahrschenlchketsmaß auf Grundraum Enfaches Lotto Stochastsche Unabhänggket Verknüpfung von

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008.

Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler, Eidgenössische Technische Hochschule, ETH Zürich. 1. Teilprüfung FS 2008. Dr. Jochen Köhler, Edgenösssche Technsche Hochschule, ETH Zürch. Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Lösungen Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 0BTel : Multple

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

1. Teilprüfung FS 2008

1. Teilprüfung FS 2008 . Telprüfung Statstk und Wahrschenlchketsrechnung FS 2008 Dr. J. Köhler ETH Zürch Donnerstag 0. Aprl 2008 08:5 09:45 Vorname:... Name:... Stud. Nr.:... Studenrchtung:... . Telprüfung: Statstk und Wahrschenlchketsrechnung

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 =

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 = Hochschule Harz Fachberech Automatserung und Informatk Prof. Dr. T. Schade Ft for Ab & Study - Aprl 2014 Lösungen zu den Aufgaben zu elementarer Wahrschenlchketsrechnung 1. a 12 11 10 9 = 33 = 0.102 20

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Statistische Methoden für Bauingenieure WS 13/14

Statistische Methoden für Bauingenieure WS 13/14 Statstsche Methoden ür Baungeneure WS 3/4 Enhet 3: Bvarate Zuallsvarablen Unv.Pro. Dr. Günter Blöschl Bezechnungen... Zuallsvarable... Realsaton konkrete Werte Momente Grundgesamthet Mttelwert,Varanz Stchprobe

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Datenaufbereitung und Darstellung

Datenaufbereitung und Darstellung Datenaufberetung und Darstellung 1 Glederung: Zel der Datenaufberetung und Darstellung Datenverdchtung Tabellen und grafsche Darstellungen Darstellung unvarater Datenmengen Darstellung multvarater Daten

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik

Kapitel 4: Wahrscheinlichkeitsrechnung und Kombinatorik Kaptel 4: Wahrschenlchetsrechnung und Kombnator 1 4. Wahrschenlchetsrechnung De Wahrschenlchetsrechung stellt Modelle beret zur Beschrebung und Interpretaton solcher zufällger Erschenungen, de statstsche

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007 Übung/Tutorate Statstk II: Schleßende Statstk SS 7 Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen:

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen: Klausuren zum Üben Aufgabentyp I. Unter den Schülernnen und Schülern der Klassenstufe 5 ener Realschule bestzen 40 en Handy. Unter desen wurde ene Erhebung durchgeführt über de Anzahl von Anrufen (Merkmal

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens

Quantitatives Prognosemodell für die Anwendung des Black-Litterman-Verfahrens Quanttatves Prognosemodell für de Anwendung des Black-Ltterman-Verfahrens Franzska Felke* und Marc Gürtler** Abstract: De chätzung erwarteter Wertpaperrendten stellt ene der zentralen Aufgaben n der praktschen

Mehr

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik und hre Datenstrukturen 9-9....2 9. Zetplanung...2 9.. CPM... 3 9..2 PERT... 9..3 MPM... 5 9..4 Verglech zwschen CPM und MPM... 22 9.2 Ausblck: Kosten- und Kapaztätsplanung...23 9.3 Entschedungsnetzpläne...24

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3) Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Grundlagen der Wahrscheinlichkeitsrechnung

Grundlagen der Wahrscheinlichkeitsrechnung Kaptel 1 Grundlagen der Wahrschenlchketsrechnung 1.1 Kombnatork Addtonsprnzp (Summenregel). Es se A = A 1 A 2 A n, wo A ( = 1, 2,..., n) paarwese dsjunkte endlche Mengen snd. Dann st A = A 1 + A 2 + +

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Ordered Response Models (ORM)

Ordered Response Models (ORM) Handout: Mkroökonometre Ordered Response Models Domnk Hanglberger - SS 28 Ordered Response Models (ORM) Ist de abhängge Varable ordnal skalert (d.h. hre Kategoren lassen sch n ene Rangrehenfolge brngen,

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Leistungsanpassung am einfachen und gekoppelten Stromkreislauf

Leistungsanpassung am einfachen und gekoppelten Stromkreislauf hyskalsches Grundpraktkum Versuch 311 alf Erlebach Lestungsanpassung am enfachen und gekoppelten Stromkreslauf Aufgaben 1. Angabe enes theoretschen, normerten Kurvenverlaufs.. Bestmmung der gegebenen Wderstande,

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodelle Tel II: Verallgemenerte Lneare Modelle Werner Stahel Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Tel der Unterlagen zu enem Kurs über Regressonsmodelle, gehalten

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr