Stereometrie-Formeln Zusatzübungen (2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stereometrie-Formeln Zusatzübungen (2)"

Transkript

1 Stereometrie-Formeln Zusatzübungen () 1. Gegeben: Würfel mit Oberflächeninhalt S = 81.1m Gesucht: Kantenlänge a. Gegeben: Würfel mit Volumen V =.5m Gesucht: Kantenlänge a. Gegeben: Würfel mit Körperdiagonale k = 1.78 m Gesucht: Kantenlänge a 4. Gegeben: Quader mit dem Oberflächeninhalt S = 19.0cm und den Kantenlängen a = 6.74cm und b = 4.64cm Gesucht: Kantenlänge c 5. Gegeben: Quader mit dem Volumen V = 5.7mm und den Kantenlängen a =.79mm und b = 5.68mm Gesucht: Kantenlänge c 6. Gegeben: Quader mit der Raumdiagonale k = 11.6dm und den Kantenlängen a =.87dm und b = 6.60dm Gesucht: Kantenlänge c 7. Gegeben: Quadratisches Prisma mit dem Volumen V = 57.7m und der Grundkantenlänge a = 7.40 m 8. Gegeben: Quadratisches Prisma mit dem Volumen V = 80.mm und der Höhe h = 5.07mm 9. Gegeben:QuadratischesgeradesPrismamitdemOberflächeninhaltS = 109.mm und der Grundkantenlänge a =.9mm 10. Gegeben:DreieckigesgleichseitigesgeradesPrismamitdemVolumenV = 151.5dm und der Grundkantenlänge a = 8.4dm 11. Gegeben: Dreieckiges gleichseitiges gerades Prisma mit dem Volumen V = 9.4cm und der Höhe h = 4.0cm 1. Gegeben: Dreieckiges gleichseitiges gerades Prisma mit dem Oberflächeninhalt S = 19.61dm und der Grundkantenlänge a = 9.57dm 1

2 1. Gegeben: Fünfeckiges gleichseitiges gerades Prisma mit dem Mantelflächeninhalt M = dm und der Grundkantenlänge a = 9.6dm 14. Gegeben: Siebeneckiges gleichseitiges gerades Prisma mit dem Mantelflächeninhalt M = 16.44cm und der Höhe h = 6.69cm 15. Gegeben: n-eckiges Prisma mit insgesamt 8 Ecken Gesucht: n 16. Gegeben: n-eckiges Prisma mit insgesamt 57 Kanten Gesucht: n 17. Gegeben: n-eckiges Prisma mit insgesamt 9 Flächen Gesucht: n 18. Gegeben: Kreiszylinder mit dem Volumen V = cm und dem Radius r = 7.40cm 19. Gegeben: Kreiszylinder mit dem Volumen V = dm und der Höhe h = 1.78 dm 0. Gegeben: Kreiszylinder mit dem Mantelflächeninhalt M = 145.0cm und dem Radius r = 8.08cm 1. Gegeben: Kreiszylinder mit dem Mantelflächeninhalt M = 55.0m und der Höhe h =.89m. Gegeben: Kreiszylinder mit dem Oberflächeninhalt S = cm und dem Radius r = 9.5cm. Gegeben: Quadratische Pyramide mit dem Volumen V = 111.m und der Grundkantenlänge a = 7.74 m 4. Gegeben: Quadratische Pyramide mit dem Volumen V = 84.09mm und der Höhe h = 6.78mm 5. Gegeben: Quadratische gerade Pyramide mit der Grundkantenlänge a = 8.75 cm und der Höhe h = 6.4cm

3 6. Gegeben: Quadratische gerade Pyramide mit der Grundkantenlänge a = 1.9 cm und der Höhe der Seitenflächen h A = 5.cm der Pyramide 7. Gegeben: Quadratische gerade Pyramide mit der Pyramidenhöhe h = 6.54 mm und der Höhe der Seitenflächen h A = 7.4mm der Pyramide 8. Gegeben:QuadratischegeradePyramidemitdemMantelflächeninhaltM = 18.9mm und der Grundkantenlänge a =.18mm 9. Gegeben: Quadratische geradepyramide mit demoberflächeninhalt S = 1.7mm und der Grundkantenlänge a = 1.15mm 0. Gegeben: Gleichseitige dreieckige Pyramide mit dem Volumen V = 44.80mm und der Grundkantenlänge a = 7.11mm 1. Gegeben: Gleichseitige dreieckige Pyramide mit dem Volumen V = 0.87mm und der Höhe h =.91mm. Gegeben: Gleichseitige dreieckige gerade Pyramide mit der Grundkantenlänge a = 8.6mm und der Höhe h = 1.86mm. Gegeben: Gleichseitige dreieckige gerade Pyramide mit der Grundkantenlänge a = 9.54mm und der Höhe der Seitenflächen h A =.61mm der Pyramide 4. Gegeben: Gleichseitige dreieckige gerade Pyramide mit der Pyramidenhöhe h = 5.44m und der Höhe der Seitenflächen h A = 5.57m der Pyramide 5. Gegeben: Gleichseitige dreieckige gerade Pyramide mit dem Mantelflächeninhalt M = 44.5mm und der Grundkantenlänge a =.07mm 6. Gegeben: Gleichseitige dreieckige gerade Pyramide mit dem Oberflächeninhalt S = 5.5dm und der Grundkantenlänge a =.89dm 7. Gegeben: Kreiskegel mit dem Volumen V = 48.54cm und dem Radius r = 6.9cm

4 8. Gegeben: Kreiskegel mit dem Volumen V = 48.1cm und der Höhe h = 1.86cm 9. Gegeben:Kreiskegel mitdermantellinie m = 9.9mmunddemRadiusr =.4mm 40. Gegeben: Kreiskegel mit der Mantellinie m = 9.5m und der Höhe h =.01m 41. Gegeben: Kreiskegel mit dem Mantelflächeninhalt M = 94.8dm und dem Radius r = 7.7dm Gesucht: Mantellinie m 4. Gegeben: Kreiskegel mit dem Mantelflächeninhalt M = 1.58mm und der Mantellinie m = 9.40mm 4. Gegeben: Kreiskegel mit dem Oberflächeninhalt S = 511.1mm und dem Radius r = 8.94mm Gesucht: Mantellinie m 44. Gegeben: Kugel mit dem Volumen V = 4.9cm 45. Gegeben: Kugel mit dem Oberflächeninhalt S = 10.40m 4

5 Stereometrie-Formeln Lösungen Zusatzübungen () 1. S = 6a a = S/6 = 7.97m. V = a a = V = 1.m. k = a a = k/ = 7.8m 4. S = ab+bc+ca c = S ab a+b =.6cm 5. V = a b c c = V ab =.9mm 6. k = a +b +c c = k a b = 9.1dm 7. V = a h h = V a = 4.70m 8. V = a h a = V/h = 8.66mm 9. S = a +4ah h = S a = 7.90mm 4a 10. V = 4 a h h = 4V = 4.9dm a 11. V = 4 a h h = 4V h =.4cm 1. S = 4 a + a h h = S 1. M = 5 a h h = M 5 a =.8dm 14. M = 7 a h a = M 7 h =.70cm / a a =.10dm 15. e = n n = e = k = n n = k = f = n+ n = f = V = }{{} π r G 19. V = }{{} π r h r = G h h = V π r = 4.7cm V π h = 4.dm 0. M = π }{{} r h h = M π r =.86cm u 1

6 1. M = π }{{} r h r = M π h =.04m u. S = π }{{} r +π r }{{ h} G M h =. V = 1 a h h = V }{{} a = 5.57m G S π r π r = 9.0cm 4. V = 1 a h a = V/h = 6.10mm }{{} G 5. h A = (a/) +h h A = (a/) +h = 7.6cm 6. h A = (a/) +h h = h A (a/) = 5.14cm 7. h A = (a/) +h a = h A h = 6.1mm 8. M = 4 1 a h A= a h A h A = M a = 4.19mm 9. S = a +4 1 a h A= a + a h A h A = S a a 0. V = 1 4 a h h = 1V = 6.14mm a = 4.80mm 1. V = 1. h A = h +. h A = h + 4 a h a = 1V h = 1.4mm ( 1 a ) ) h A = h +( 6 a =.0mm ( ) ) 6 a h = h A ( 6 a =.mm 4. h A = h + ( ) 6 a a = 6 h A h = 4.09m 5. M = 1 a h A= a h A h A = M a = 9.6mm 6. S = 4 a + a h A h A = ( S /4 a ) = 7.0dm a 7. V = 1 π r h h = V π r = 8.7cm 8. V = 1 V π r h r = π h = 4.98cm

7 9. m = r +h h = m r = 9.mm 40. m = r +h r = m h = 8.85m 41. M = π r m m = M π r = 1.16dm 4. M = π r m r = M π m = 7.84mm 4. S = π r +π r m m = S π r π r 44. V = 4 π r r = V 4π = 9.5cm = 9.6mm 45. S = 4π r r = S 4π = 4.97m

8 Stereometrie-Formeln Zusatzübungen () 1. a = 7.97m. a = 1.m. a = 7.8m 4. c =.6cm 5. c =.9mm 6. c = 9.1dm 7. h = 4.70m 8. a = 8.66mm 9. h = 7.90mm 10. h = 4.9dm 11. a =.4cm 1. h =.10dm 1. h =.8dm 14. a =.70cm 15. n = n = n = h = 4.7cm 19. r = 4.dm 0. h =.86cm 1. r =.04m. h = 9.0cm. h = 5.57m 4. a = 6.10mm 5. h A = 7.6cm 6. h = 5.14cm 7. a = 6.1mm 8. ha = 4.19mm 1

9 9. ha = 4.80mm 0. h = 6.14mm 1. a = 1.4mm. h A =.0mm. h =.mm 4. a = 4.09m 5. ha = 9.6mm 6. ha = 7.0dm 7. h = 8.7cm 8. r = 4.98cm 9. h = 9.mm 40. h = 8.85m 41. m = 1.16dm 4. r = 7.84mm 4. m = 9.6mm 44. r = 9.5cm 45. r = 4.97m

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm 80 30 92 80 Radius 50 cm mit fest verbundenem, umlaufendes / / Viertelkreisform, 80 x 80 cm 104 90 35 90 Radius 55 cm mit fest verbundenem, umlaufendes / / Viertelkreisform, 90 x 90 cm 118 100 45 100 Radius

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

Terme und Formeln Umgang mit Termen

Terme und Formeln Umgang mit Termen Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch

Mehr

Lektion 6: Prozeduren mit Parametern Übergabe von Werten

Lektion 6: Prozeduren mit Parametern Übergabe von Werten Lektion 6: Prozeduren mit Parametern Übergabe von Werten 29 Bearbeitet von Karoline Selbach In den vorherigen Abschnitten haben wir wichtige Befehle zur Turtlegeometrie kennen gelernt. Mit Hilfe dieser

Mehr

Die fünf Platonischen Körper und warum es keine eckigen Seifenblasen gibt

Die fünf Platonischen Körper und warum es keine eckigen Seifenblasen gibt Von Dieter Ortner Die fünf Platonischen Körper und warum es keine eckigen Seifenblasen gibt Die fünf Platonischen Körper bilden ein interessantes Betätigungsfeld für mathematische Aktivitäten. Man kann

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Analytische Geometrie / Vektorgeometrie

Analytische Geometrie / Vektorgeometrie Analytische Geometrie / Vektorgeometrie. Bedingung Unter welchen Voraussetzungen gilt:. s + t + u = s + t + u. Gleiche Abstände Welcher Punkt der yz-ebene mit der y-koordinate hat vom Ursprung (= Nullpunkt)

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung-

Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung- Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung- Senatsverwaltung für Stadtentwicklung III Z 32 Hohenzollerndamm 177, 10713 Berlin Einstellungstest für den

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Geometrie-Dossier Würfel und Quader

Geometrie-Dossier Würfel und Quader Geometrie-Dossier Würfel und Quader Name: Inhalt: Der Würfel (Definition, Eigenschaften, Netz, Raumbild) Der Quader (Definition, Eigenschaften, Netz, Raumbild) Berechnungen in Würfel und Quader (Oberfläche,

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

Informationen zum Aufnahmetest Mathematik

Informationen zum Aufnahmetest Mathematik Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)

Mehr

Achtjähriges Gymnasium. Lehrplan Mathematik. für die Klassenstufe 6. Februar 2002

Achtjähriges Gymnasium. Lehrplan Mathematik. für die Klassenstufe 6. Februar 2002 Achtjähriges Gymnasium Lehrplan Mathematik für die Klassenstufe 6 Februar 2002 Stand August 2011 LEHRPLAN MATHEMATIK FÜR DIE KLASSENSTUFE 6 Vorbemerkung Im Mittelpunkt des Unterrichts in der Klassenstufe

Mehr

Rechnen im Verkehrsgewerbe

Rechnen im Verkehrsgewerbe mit Formelsammlung zum Herausnehmen Rudolf Wagner Rechnen im Verkehrsgewerbe Formeln, Praxisbeispiele, Lösungswege Rudolf Wagner Rechnen im Verkehrsgewerbe Formeln, Praxisbeispiele, Lösungswege 5. Auflage

Mehr

Daten erfassen und darstellen

Daten erfassen und darstellen MAT 05-01 Leitidee: Daten und Zufall Daten erfassen und darstellen Thema im Buch: Meine Klasse und ich - Zahlenangaben sammeln und vergleichen Daten in Ur-, Strichlisten und Häufigkeitstabellen zusammenfassen.

Mehr

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm 80 30 92 80 Radius 50 cm Bauhöhe cm ohne (2, 3 und 4 cm) und fest verbundenem, Gesamthöhe cm umlaufendes Duschwanne bis 3,5 cm über / Ausgleichselemente / Ausgleichselemente Viertelkreisform, 80 x 80 cm

Mehr

Elemente Der Mathematik

Elemente Der Mathematik Elemente Der Mathematik Vertiefungsfach Einführungsphase Teil 1 (ISBN: 978-3-507-87100-7) Lösungen zu den Übungsaufgaben Schroedel 1 Lineare Funktionen und Gleichungen 1.1 Lineare Terme und Gleichungen

Mehr

BILDUNGSSTANDARDS FÜR MATHEMATIK REALSCHULE KLASSEN 6, 8, 10 BILDUNGSPLAN REALSCHULE

BILDUNGSSTANDARDS FÜR MATHEMATIK REALSCHULE KLASSEN 6, 8, 10 BILDUNGSPLAN REALSCHULE BILDUNGSSTANDARDS FÜR MATHEMATIK 59 REALSCHULE KLASSEN 6, 8, 10 MATHEMATIK 60 LEITGEDANKEN ZUM KOMPETENZERWERB FÜR MATHEMATIK REALSCHULE KLASSEN 6, 8, 10 I. Leitgedanken zum Kompetenzerwerb Mathematik

Mehr

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag.

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag. 49. Mathematik-Olympiade Regionalrunde Olympiadeklasse 6 c 2013 nausschuss des Mathematik-Olympiaden e.v. Barbara ist Kandidatin in einer mathematischen Quizshow und hat bis jetzt alle n richtig gelöst.

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten

Mehr

DOWNLOAD 7 Mathe-Dominos differenziert: Geometrie Klasse 9

DOWNLOAD 7 Mathe-Dominos differenziert: Geometrie Klasse 9 DOWNLOAD Birte Pöhler Jennifer Vollmer 7 Mathe-Dominos differenziert: Geometrie Klasse 9 Kreisberechnung Körperberechnung Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel: DOWNLOAD Karin Schwacha Arbeiten im Baumarkt Mathe-Aufgaben aus dem Berufsalltag: Pools, Pumpen, Wassermengen Mathe-Aufgaben aus dem Berufsalltag Klasse 8 10 auszug aus dem Originaltitel: Aus vielen Berufen

Mehr

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten!

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten! Mathematik-Verlag Algebra: Quadratische Gleichungen 1. Wie lautet die p, q Formel zur Lösung der quadratischen Gleichung x 2 + px + q = 0? 2. Berechne mit der p, q Formel die Lösungen der Gleichungen:

Mehr

Faustzahlen zu Einzelbaum und Bestandeskenngrößen

Faustzahlen zu Einzelbaum und Bestandeskenngrößen Faustzahlen zu Einzelbaum und Bestandeskenngrößen Siegfried Sperrer Forstliche Ausbildungsstätte Ort / Gmunden Lehrer- und Beraterfortbildungsplan 2009 Gmunden 7. 5. 2009 Volumen Einzelbloch V = d²*π*

Mehr

Musterblatt Berechnung Baumassenziffer

Musterblatt Berechnung Baumassenziffer Musterblatt Berechnung Baumassenziffer Grundsätze: Die Baumassenziffer bestimmt, wieviele Kubikmeter anrechenbaren Raums auf den Quadratmeter Grundstücksfl äche entfallen dürfen ( 254 Abs. 2 PBG). Bei

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

WS 2015/2016 CAD. der Version. Kreis. Linie. Rechteck. Polylinie. Hilfen: Seite 1 von 14

WS 2015/2016 CAD. der Version. Kreis. Linie. Rechteck. Polylinie. Hilfen: Seite 1 von 14 I. Arbeiten im 2D-Bereich der Version 2013. Die Grafik G unten zeigt eine Übersicht der Benutzeroberfläche dieses Programmes. Wir verwendenn das -Paket Auto Civil 3D inn Wichtige Zeichenbefehle (alle in

Mehr

Simulation von räumlich verteilten kontinuierlichen Modellen

Simulation von räumlich verteilten kontinuierlichen Modellen Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von räumlich verteilten kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK

Mehr

Mathematik. Aufgabenheft. Testteil. für Schülerinnen und Schüler. Name: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005

Mathematik. Aufgabenheft. Testteil. für Schülerinnen und Schüler. Name: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005 A Mathematik Aufgabenheft Testteil A1 für Schülerinnen und Schüler Name: Klasse/Kurs: Kennnummer: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005 Lernstandserhebung 2005 Mathematik Aufgabenheft

Mehr

Geometrie: Körper. 50 Duden Mathematik 4 Kommentare zu den Kapiteln. Kapitelinformationen. Überblick

Geometrie: Körper. 50 Duden Mathematik 4 Kommentare zu den Kapiteln. Kapitelinformationen. Überblick Geometrie: Körper Kapitelinformationen Überblick Schülerbuch Seite 28: Geometrische Körper und ihre Eigenschaften Seite 29: Körpermodelle Seiten 30/31: Körpernetze Seiten 32/33: Schrägbilder von Körpern

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Grundlagen der Chemie

Grundlagen der Chemie 1 Die Metallbindung Hartstoffe 75% aller chemischen Elemente sind. Typische Eigenschaften: 1. Die Absorption für sichtbares Licht ist hoch. Hieraus folgt das große Spiegelreflexionsvermögen. Das ist die

Mehr

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

Saarland Ministerium für Bildung, Kultur und Wissenschaft

Saarland Ministerium für Bildung, Kultur und Wissenschaft Abschlussprüfung 2004 2003/2004 2001 Saarland Ministerium für Bildung, Kultur und Wissenschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

Nebenjobs 00 1. Zum Unterricht. Zur Sache

Nebenjobs 00 1. Zum Unterricht. Zur Sache Nebenjobs 00 Kompetenzerwartungen Informationen aus mathematikhaltiger Darstellung entnehmen, strukturieren und bewerten (K ) Lösungswege vergleichen und bewerten (K ) Vorgehensweise zur Lösung eines Optimierungsproblems

Mehr

Einblicke Mathematik 5 Stoffverteilungsplan Zeitraum Woche Leitidee Kompetenzstandards Schülerinnen und Schüler können...

Einblicke Mathematik 5 Stoffverteilungsplan Zeitraum Woche Leitidee Kompetenzstandards Schülerinnen und Schüler können... 1 logische Schlüsse ziehen, den mathematischen Gehalt von Texten analysieren, mathematisches Wissen sinnvoll nutzen; räumliches Vorstellungsvermögen üben; Startrunde, Basiswissen Training Startrunde Aufgaben

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.

Mehr

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung 1 Zentrische Streckung Bauzeichnungen 8 vergrößern und verkleinern einfache nutzen Geometriesoftware zum Erkunden Maßstäbliches Vergrößern und Verkleinern 10 Figuren maßstabsgetreu inner- und außer- Ähnliche

Mehr

Erstellen eines 3D Körpers mit den PowerPoint Funktionen. Kreiskegel mit den neuen PowerPoint 2010 Funktionen erstellen.

Erstellen eines 3D Körpers mit den PowerPoint Funktionen. Kreiskegel mit den neuen PowerPoint 2010 Funktionen erstellen. Kreiskegel mit den neuen PowerPoint 2010 Funktionen erstellen. Notwenige Shapes: Dreieck und Kreis Neue PPT Funktion Zeichnen eines Dreieck Shapes. Mit der Höhe und Breite wird die spätere Pyramide definiert.

Mehr

GA Grundanforderungen EA erweiterte Anforderungen. LU Ziele und Inhalte GA EA Hinweise Hilfsmittel

GA Grundanforderungen EA erweiterte Anforderungen. LU Ziele und Inhalte GA EA Hinweise Hilfsmittel Planungshilfe für das mathbu.ch 9 4. Klasse Sekundarschule Allgemeine Hinweise: - Die Aufgaben sind in Grundanforderungen (Minimalziele für alle Schülerinnen und Schüler gemäss den verbindlichen Zielen

Mehr

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel Inhalt A Lösungsstrategien 1 Lösungsstrategien für Text- und Sachaufgaben 6 2 Lösungsstrategie für geometrische Sachaufgaben 11 3 Lösungsstrategie für einfache Gleichungen, lineare Gleichungssysteme und

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 26. 30. April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende

Mehr

Qualifizierender Hauptschulabschluss Schuljahr 2003/2004. Mathematik

Qualifizierender Hauptschulabschluss Schuljahr 2003/2004. Mathematik Prüfungstag: Dienstag, 8. Juni 2004 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2003/2004 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Kompetenzen und Aufgabenbeispiele Mathematik

Kompetenzen und Aufgabenbeispiele Mathematik Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?

Mehr

- 2 - AP WS 09M. 1.3 Stellen Sie einen Tilgungsplan für die ersten zwei Jahre auf, wenn Annuitätentilgung vereinbart ist.

- 2 - AP WS 09M. 1.3 Stellen Sie einen Tilgungsplan für die ersten zwei Jahre auf, wenn Annuitätentilgung vereinbart ist. - - AP WS 09M 1 Finanzmathematik Punkte Frau Seufert möchte für den Bau eines Mietshauses, den sie in sechs Jahren beginnen will, ein Startkapital in Höhe von 10.000 ansparen. 1.1 Berechnen Sie, wie hoch

Mehr

Physik SOL-Projekt Juni 2011. Der Druck: Teil 3

Physik SOL-Projekt Juni 2011. Der Druck: Teil 3 Der Druck: Teil 3 3 Der Auftrieb Ein Stein geht unter, wenn man ihn ins Wasser wirft. Ein Eisenkugel auch. Ein Schiff ist auch aus Eisen, voll gepackt mit tonnenschweren Containern, geht aber nicht unter.

Mehr

TUTORIAL CNC MILL. Digitale Geometrie

TUTORIAL CNC MILL. Digitale Geometrie Digitale Geometrie Dieses Tutorial beschreibt den Workflow einer gezeichneten Geometrie in Rhino 3D über die Software Rhinocam, die die Fräspfade generiert bis zur Übertragung auf die CNC Fräse. Rhinodatei

Mehr

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee

Mehr

504 mm. 70 mm 310 mm

504 mm. 70 mm 310 mm 504 mm 380 mm 70 mm 217 mm 217 mm 70 mm 310 mm Mappe Eckig - 1 mm füllhöhe - mit VK (1EM) beschnittenes Endformat: 504 x 380 mm Format mit Randbeschnitt: 508 x 384 mm Stand: 14.11.08 Rillung () 504 mm

Mehr

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule 4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von

Mehr

Lexikon mathbu.ch 7 8 9

Lexikon mathbu.ch 7 8 9 Absoluter und relativer Fehler Relativer Fehler = absoluter Fehler Messwert Beispiel Eine Kugel fällt aus 2.00 m Höhe auf den Boden. Die handgestoppte Zeit beträgt 0.64 Sekunden. Diese Messung ist bestenfalls

Mehr

Mathematik Abituraufgaben

Mathematik Abituraufgaben Mathematik Abituraufgaben mit ausführlichen Lösungswegen für das Abitur 216 Inhalt: - Musteraufgaben mit Lösungswegen für das Abitur 216 zu den Themen Analysis, Geometrie und Stochastik - alle Original

Mehr

2013/2014 Abitur Sachsen - Leistungskurs Mathematik

2013/2014 Abitur Sachsen - Leistungskurs Mathematik Schriftliche Abiturprüfung Leistungskurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1997/98 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender

Mehr

Mittlerer Schulabschluss Mathematik. Hinweise und Beispiele zu den zentralen schriftlichen Prüfungsaufgaben

Mittlerer Schulabschluss Mathematik. Hinweise und Beispiele zu den zentralen schriftlichen Prüfungsaufgaben Mittlerer Schulabschluss Mathematik Hinweise und Beispiele zu den zentralen schriftlichen Prüfungsaufgaben Abschlussprüfung zum mittleren Schulabschluss Mathematik Hinweise und Beispiele zu den zentralen

Mehr

Das Werkzeug Verschieben/Kopieren wird über die Symbolleiste oder im Pull-Down-Menü Tools > Verschieben aktiviert.

Das Werkzeug Verschieben/Kopieren wird über die Symbolleiste oder im Pull-Down-Menü Tools > Verschieben aktiviert. Verschieben/Kopieren-Werkzeug 95 Die Änderungswerkzeuge In den Kapiteln zuvor haben Sie gelernt, wie Sie mit den Zeichnen-Werkzeugen die in SketchUp vorhandenen Grundformen (Rechteck, Kreis, Bogen, Linie

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

Methoden der 3D-Konstruktion mit CAD

Methoden der 3D-Konstruktion mit CAD 10 ZPG-Mitteilungen für gewerbliche Schulen - Nr. 29 - Juli 2004 Methoden der 3D-Konstruktion mit CAD Wie in vielen anderen Bereichen der T echnik führen auch bei der 3-Konstruktion mit CAD viele Wege

Mehr

Modellieren und CAD Hier mit dem Programm Solid Edge

Modellieren und CAD Hier mit dem Programm Solid Edge Hier mit dem Programm Solid Edge Mit dem Stift in der Hand muss man sich jede Einzelheit seiner Technischen Zeichnung selbst überlegen. Die Handhabung der Werkzeuge erfordert nur die auch sonst übliche

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Mathematikskript Realschule Klasse 10 (Baden-Württemberg) Vorbereitung Realschulabschlussprüfung 2016 Unterrichtsbegleitung im 10.

Mathematikskript Realschule Klasse 10 (Baden-Württemberg) Vorbereitung Realschulabschlussprüfung 2016 Unterrichtsbegleitung im 10. Mathematikskript Realschule Klasse 0 (Baden-Württemberg) Vorbereitung Realschulabschlussprüfung 06 Unterrichtsbegleitung im 0. Schuljahr inkl. aller Prüfungsaufgaben von 005-05 Dipl.-Math. Alexander Schwarz

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

VRML-Export und Animationen (GAM 14e)

VRML-Export und Animationen (GAM 14e) VRML-Export und Animationen (GAM 14e) Definition aus Wikipedia: Virtual Reality Modeling Language (VRML) ist eine Beschreibungssprache für 3D-Szenen, deren Geometrien, Ausleuchtungen, Animationen und Interaktionsmöglichkeiten.

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! Aufgaben und Lösungen. Runde 04 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KARL FEGERT» BUNDESWETTBEWERB MATHEMATIK Kortrijker Straße, 577 Bonn Postfach 0 0 0, 5 Bonn

Mehr

3. Quartal 10 Wochen. 4. Quartal 10 Wochen (10) Alt und Jung (13) Roulette (22) In der Zeitung vom... (21) Holzhaus

3. Quartal 10 Wochen. 4. Quartal 10 Wochen (10) Alt und Jung (13) Roulette (22) In der Zeitung vom... (21) Holzhaus Minimalvariante Planung. mathbu.ch 9 (9. Schuljahr real) Diese Planung bezieht sich bewusst auf wenige Lernumgebungen. Selbstverständlich kann sie mit weiteren Lernumgebungen ergänzt werden. Vorschläge

Mehr

Institut fu r Informatik

Institut fu r Informatik Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter Java, Objektorientierung 5.1 (U )

Mehr

Tipps und Tricks für CATIA V5

Tipps und Tricks für CATIA V5 DMU-NAVIGATOR Laden großer Baugruppen im DMU-Navigator In einigen Branchen wie dem Flugzeugbau wird der DMU-Navigator als Viewer eingesetzt. Leider kann es auch hier dauern, bis die komplette Geometrie

Mehr

Messing Zierschilder mit geschliffener und lackierter Oberfläche sind ideal für CNC-Gravur. GRS1106 Maße 105 x 53 mm. Farben matt geschliffen

Messing Zierschilder mit geschliffener und lackierter Oberfläche sind ideal für CNC-Gravur. GRS1106 Maße 105 x 53 mm. Farben matt geschliffen Messing S Schilder Messing Zierschilder mit er und lackierter Oberfläche sind ideal für CNC-Gravur. Messing matt lackiert GRS1102 125 x 80 mm matt GRS1106 105 x 53 mm matt GRS1107 80 x 40 mm matt GRS1108

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Meine geometrische Form: Das Ei

Meine geometrische Form: Das Ei von Georgette Meine geometrische Form: Das Ei Ich habe mich für das Ei als geometrische Form entschieden, weil ich fasziniert bin, wie stabil das Ei ist. Ich habe das Volumen verschieden grosser Eier gemessen

Mehr

In Bezug auf Pflege und Reinigung ist Wollfilz ein unproblematisches. Materials verhindern ein schnelles Eindringen von Schmutz.

In Bezug auf Pflege und Reinigung ist Wollfilz ein unproblematisches. Materials verhindern ein schnelles Eindringen von Schmutz. Pflegehinweise Wollfilz. 1 Sehr geehrte Kunden, Wollfilz von HEY-SIGN besteht zu 100% aus reiner Schurwolle ohne Zusätze von Chemie oder recycelten Textilien, was durch das bekannte Wollsiegel dokumentiert

Mehr

1. Funktionale Zusammenhänge & Sachsituationen

1. Funktionale Zusammenhänge & Sachsituationen anforderungen Mathematik zu Lehrbeginn Beruf: Automobil-Mechatroniker/in EFZ (Version 18. September 2014) Funktionale Zusammenhänge & Sachsituationen Tabellen und Funktionsgraphen interpretieren und darstellen

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

Schneidelemente Schneidstempel & Schneidbuchsen Stempelführungsbuchsen

Schneidelemente Schneidstempel & Schneidbuchsen Stempelführungsbuchsen & Schneidbuchsen Stempelführungsbuchsen Inhalt Schneidelemente Erklärungen und Bestellbeispiele zu n und Erklärungen Verdrehsicherungen 112. DIN 9861, Form D mit Abdrückstift 1_2. DIN 9861 mit Abdrückstift,

Mehr

3. RUNDE 7.5.2003. Beachte: Die Ergebnisse können als Produkt, Summe oder Potenz angegeben werden!

3. RUNDE 7.5.2003. Beachte: Die Ergebnisse können als Produkt, Summe oder Potenz angegeben werden! MTHEMTIK-WETTBEWERB 2002/2003 DES LNDES HESSEN Hinweis: Von jeder Schülerin / jedem Schüler werden vier ufgaben gewertet. Werden mehr als vier ufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Übergang allg. Schule zu den Berufsbildenden Schulen

Übergang allg. Schule zu den Berufsbildenden Schulen Ausgangslage: Seit 2007 gibt es für alle Abgänger aus allg. Schulen Sek I eine landesweite schriftliche Abschlussprüfung in den Fächern: Mathematik Deutsch Englisch Trotz dieser zentralen Abschlussprüfung

Mehr

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:

Mehr

vitrum style 6 E1_6878 Rahmen unten BR 58 mit FB

vitrum style 6 E1_6878 Rahmen unten BR 58 mit FB 78 58 25 8.5 14 vitrum style 6 E1_78 Rahmen unten BR 58 mit FB 3.5.2 / FBE6EF_78 V 2-1-H1 / 101 25.11.2013 26.02.2015 58 8.5 25 14 vitrum style 6 E1_ Rahmen unten BR 58 3.4.2 / FBE6EF_ V 2-1-H1-A1 / 101

Mehr

3. Verpackungskünstler. Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung

3. Verpackungskünstler. Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung Berechnungen am Quader, Umgang mit Termen, räumliche Vorstellung Päckchen, die man verschenken möchte, werden gerne mit Geschenkband verschnürt. Dazu wird das Päckchen auf seine größte Seite gelegt, wie

Mehr

5. Klasse TOP 10 Mathematik 05 Gesamtes Grundwissen mit Übungen G

5. Klasse TOP 10 Mathematik 05 Gesamtes Grundwissen mit Übungen G www.strobl-f.de/grund5g.pdf 5. Klasse TOP 10 Mathematik 05 Gesamtes Grundwissen mit Übungen G Grundwissen Mathematik 5. Klasse: Die 10 wichtigsten Themen auf jeweils einer Seite! Zum Wiederholen kann man

Mehr

Bildungsstandards für den Mathematikunterricht. Didaktik der Zahlbereiche 1. Beschlüsse der Kultusministerkonferenz 2003/04 http://www.kmk.

Bildungsstandards für den Mathematikunterricht. Didaktik der Zahlbereiche 1. Beschlüsse der Kultusministerkonferenz 2003/04 http://www.kmk. Didaktik der Zahlbereiche 1 Bildungsstandards für den Mathematikunterricht Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Beschlüsse der Kultusministerkonferenz 2003/04 http://www.kmk.org

Mehr