2.6 Asymptotische Approximation: Min Binpacking

Größe: px
Ab Seite anzeigen:

Download "2.6 Asymptotische Approximation: Min Binpacking"

Transkript

1 2.6 Asymptotische Approximation: Min Binpacking In diesem Abschnitt geht es die Erscheinung, dass manche Optimierungsprobleme Approximationsalgorithmen haben, die nur für Inputs x mit groÿem Wert m (x) gute Approximationen an das Optimum liefern. Wir erinnern uns an das Beispiel des Binpackingproblems: Packe n Gegenstände mit Volumina a 1,..., a n in möglichst wenige Behälter (Bins) der Kapazität b. Formal: I = {(a 1,..., a n, b) n 1, a 1,..., a n, b N} { Sol(x) = ρ K n: ρ: {1,..., n} {1,..., K},, für alle l K gilt: wenn x = (a 1,..., a n, b) m(x, ρ) = K, wenn x = (a 1,..., a n, b) und ρ: {1,..., n} {1,..., K} goal = min 1 i n ρ(i)=l } a i b Wir erinnern uns auch, dass die Güte der möglichen polynomiellen Approximationsalgorithmen für dieses Problem nach unten beschränkt ist: Behauptung Wenn P NP, dann besitzt Min Binpacking keinen polynomiellen Approximationsalgorithmus mit Güte r < 2. Beweis. Indirekt. Wir nehmen an, es gäbe einen r-approximationsalgorithmus A für Min Binpacking mit r < 2, mit polynomieller Laufzeit. Wir folgern P = NP, indem wir einen Polynomialzeitalgorithmus B für das NP-vollständige Entscheidungsproblem PARTITION beschreiben. B arbeitet folgendermaÿen: Input: x = (a 1,..., a n ) Methode: 1 Berechne S := 1 i n a i ; 2 ρ := A(2a 1,..., 2a n, S); if m(x, ρ) = 2 then return I = {i: ρ(i) = 1} else return geht nicht. Algorithmus B benötigt oenbar, wie A, polynomielle Zeit. Wenn (a 1,..., a n ) dann passen die Objekte 2a 1,..., 2a n in 2 Behälter der Gröÿe jeweils S. Da A ein r-approximationsalgorithmus ist, gilt m(x, ρ) r m (x) < 2 m (x) =, also m(x, ρ) = 2, das heiÿt, dass ρ zwei Behälter benutzt, die beide mit Objekten des Volumens S gefüllt sind. Daher gibt B eine korrekte Auswahl I aus. Wenn (a 1,..., a n ) / PARTITION, dann passen die Objekte nicht in 2 Behälter der Gröÿe S, also gilt m(x, ρ), und B gibt die Antwort geht nicht aus. 1

2 Damit ist B tatsächlich ein Polynomialzeitalgorithmus für PARTITION, und wir erhalten P = NP im Widerspruch zur Voraussetzung. Der Beweis, den wir gerade gesehen haben, nutzt aus, dass das Partitionsproblem zum Binpackingproblem mit 2 oder Bins verwandt ist. Wenn die Anzahl der Behälter wächst, kann man bessere Approximationen erzielen. Wir betrachten einen solchen Algorithmus für das Binpackingproblem: First-Fit Decreasing, oder FFD. Algorithmus (FFD) Input: x = (a 1,..., a n, b) Methode: 1 Sortiere die Objekte, und benenne um, so dass a 1 a n ; 2 if a 1 > b then return geht nicht; for i := 1 to n do 4 füge a i in das Fach mit dem kleinsten Index ein, in dem noch Platz ist: { ρ(i) := min 5 return (ρ(1),..., ρ(n)). l 1 a i + j<i ρ(j)=l } a j b ; Es gilt folgendes: Theorem 2.6. Für alle Inputs x für Min Binpacking gilt: m(x, FFD(x)) 11 9 m (x) + 4. Das bedeutet, dass für Inputs x mit genügend groÿer optimaler Bin-Anzahl m (x) die Approximationsgüte viel besser ist als 2. Allgemeiner denieren wir: Denition Es sei P = (I, Sol, m, goal) ein NPO-Problem, und A ein Algorithmus für P. Die asymptotische Approximationsgüte von A bzgl. P ist deniert als R A = lim N sup{r A(x) x I, m (x) N}. Die zentrale Eigenschaft dieser Zahl (wenn sie existiert) ist Folgendes: Wenn r > R A beliebig ist, dann gibt es ein N = N r N, so dass A für alle Inputs x mit optimalen Kosten m (x) N eine Lösung mit Güte R A (x) r liefert. Wenn andererseits r < R A ist, dann gibt es Inputs x mit beliebig groÿem m (x), derart dass die Güte R A (x) gröÿer als r ist. Wir interessieren uns natürlich besonders für Polynomialzeitalgorithmen, die eine kleine asymptotische Approximationsgüte bieten. Satz 2.6. liefert sofort, dass FFD für MIN BINPA- CKING asymptotische Approximationsgüte 11 9 hat. 2

3 Wir können Satz 2.6. im Rahmen dieser Vorlesung nicht beweisen; der Beweis besteht im wesentlichen aus einer umfangreichen Fallunterscheidung. Um aber das Prinzip solcher Beweise kennenzulernen, beweisen wir eine schwächere Aussage. Man sollte sich dabei nicht daran stören, dass diese uns nicht unter die magische 2-Grenze bringt, sondern den Beweisansatz zu verstehen versuchen, der immerhin die Approximationsgüte 2 des FIRST-FIT-Algorithmus deutlich verbessert. Behauptung Für alle Inputs x für Min Binpacking gilt: m(x, FFD(x)) < 2 m (x) + 1. (Daraus folgt: R A 2.) Beweis. Ein Input x = (a 1,..., a n, b) sei gegeben. Wir können annehmen, dass a i b für alle i gilt (sonst ist m (x) = ). Es vereinfacht die Notation, wenn wir b = 1, und a 1,..., a n Q + annehmen, indem wir alle a i und die Behältergröÿe durch b teilen. Setze S := a i. 1 i n Weil auch in der optimalen Lösung alle Objekte untergebracht werden müssen, gilt oenbar m (x) S. (2.1) Wir teilen die Objekte in 4 Klassen ein: A = {i a i > 2 }, B = {i 2 a i > 1 2 }, C = {i 1 2 a i > 1 }, D = {i 1 a i}. Es sei k = m(x, FFD(x)) die Zahl der Behälter, die in der von FFD gelieferten Lösung benutzt werden. Wenn k = 1 ist, dann ist dies optimal. Wir können also k 2 annehmen, und die von FFD gelieferte Lösung ρ FFD untersuchen. 1. Fall: Es gibt einen Behälter, der ausschlieÿlich D-Objekte enthält. Betrachte denjenigen solchen Behälter, der als letzter begonnen wurde, das ist (wegen der First-Fit-Regel, und weil die Objekte nach fallendem Volumen angeordnet sind) Behälter Nummer k. Alle vorherigen k 1 Behälter müssen mit mehr als 2 belegt sein. Also gilt: S > 2 (k 1).

4 Mit (2.1) ergibt das m (x) > 2 (k 1), oder k < 2 m (x) + 1, wie gewünscht. 2. Fall: Alle D-Objekte passen in Behälter, die schon mit Objekten aus den Klassen A, B und C begonnen wurden. Wir zeigen gleich folgendes: Lemma Wenn der Input x = (a 1,..., a n, 1) nur A-, B- und C-Objekte enthält, dann liefert FFD eine optimale Lösung. Das heiÿt, dass im 2. Fall die A-, B- und C-Objekte k Behälter belegen, und dass allein diese Objekte auch in einer optimalen Verteilung mindestens k Behälter benötigen. Wenn zusätzlich einige D-Objekte vorhanden sind, können natürlich nicht plötzlich weniger Behälter ausreichend sein. Also gilt in diesem Fall k = m (x). Beweis von Lemma 2.6.6: Jedes A-Objekt benötigt in jeder Lösung einen Behälter für sich allein (kein B- oder C- Objekt passt zusätzlich). D. h. wir müssen uns nur um B- und C-Objekte kümmern. In keinem Behälter können zwei B-Objekte zusammen sitzen. Wir nehmen an, dass a 1,..., a k B-Objekte sind und a k+1,..., a n C-Objekte. Durch Umsortieren können wir immer erreichen, dass die B-Objekte a 1,..., a k in Behältern 1,..., k sitzen, in dieser Reihenfolge. Einige C-Objekte können in Behältern landen, die ein B-Objekt enthalten (B-Behälter), die anderen werden paarweise in C-Behälter gepackt. Für die Gesamtzahl der benötigten Behälter kommt es ausschlieÿlich auf die Zahl der C-Objekte an, die in die k B-Behälter passen. Es sei ρ eine optimale Verteilung, wobei a 1,..., a k in Behältern 1,..., k sitzen, und ρ FFD die von FFD erzeugte Verteilung. Wir müssen zeigen, dass ρ FFD ebenso viele C-Objekte in B-Behälter packt wie ρ. Bemerkung: Kurioserweise kann der Ablauf des FFD-Algorithmus recht komplex sein, selbst wenn es nur um B- und C-Objekte geht. Beispiel: i a i 0,6 0,62 0,61 0,59 0,56 0,54 0,47 0,46 0,45 0,40 0,40 0,40 0,7 0,6 B-Objekte: a 1,..., a 6, C-Objekte: a 7,..., a 14. Die B-Objekte werden in die Behälter 1 bis 6 gepackt. Objekt a 7 passt nicht (wandert also in einen C-Behälter). Objekt a 8 geht in Behälter 6, Objekt a 9 passt nicht, Objekt a 10 geht in Behälter 4, a 11 in Behälter 5, Objekt a 12 passt nicht, Objekt a 1 geht in Behälter 1 und und Objekt a 14 schlieÿlich in Behälter 2. Es ist also etwas dizil zu sehen, dass FFD keine Fehler macht. Wir formulieren und beweisen eine Induktionsbehauptung. IB j : Es gibt eine optimale Lösung ρ j, die a k+1,..., a j in dieselben B-Behälter packt (bzw. nicht packt) wie ρ FFD. 4

5 IB j wird durch Induktion über j = k, k + 1,..., n bewiesen. Für den Induktionsanfang, j = k, können wir ρ j = ρ nehmen. Nun nehmen wir als Induktionsvoraussetzung an, dass IB j 1 stimmt. ρ j 1 und FFD packen also a k+1,..., a j 1 gleich. Betrachte a j. Fall auÿen: FFD kann a j in keinen B-Behälter packen. In diesem Fall kann a j auch in ρ j 1 nicht in einem B-Behälter sitzen. Also können wir ρ j = ρ j 1 benutzen. Fall innen: FFD packt a j in den B-Behälter Nummer l, also zu a l. Wenn in ρ j 1 Behälter Nummer l gar kein C-Objekt enthält, erhalten wir ρ j aus ρ j 1, indem wir a j in den Behälter l verschieben. Wenn in ρ j 1 Behälter Nummer l das C-Objekt a j enthält, dann muss j j sein, weil in ρ j 1 die Objekte a k+1,..., a j 1 genauso wie bei FFD behandelt werden. Wenn j = j ist, setzen wir ρ j = ρ j 1. Wenn j > j ist, dann erhalten wir ρ j aus ρ j 1, indem wir a j und a j vertauschen. (Das ist möglich, weil a j + a l 1, denn FFD packt diese beiden zusammen, und a j a j, weil j > j und die Objekte fallend angeordnet sind.) Damit ist die Induktionsbehauptung bewiesen. Die Behauptung IB n besagt nun, dass die Art, wie FFD die C-Objekte verteilt, optimal ist. Damit ist Lemma (und auch Behauptung 2.6.5) bewiesen. Erreicht FFD noch bessere Approximationsgüten als 11 9? Ein Beispiel zeigt, dass es für jedes k einen Input x k = (a 1,..., a 0k, 1) gibt, der m (x) = 9k und m FFD (x) = 11k erfüllt, so dass die Approximationsgüte auch für Eingaben x mit groÿem m (x) nicht besser als 11 9 ist. Beispiel: Betrachte den Input x k = (a 1,..., a 0k ), der aus 0k Objekten besteht, in vier Gruppen A, B, C, D. Für irgendeine Zahl ε mit 0 < ε < 1 40 seien die Objektgröÿen wie folgt festgelegt: A : Für 1 i 6k : a i = ε, Weil und B : für 6k < i 12k : a i = ε, C : für 12k < i 18k : a i = ε, D : für 18k < i 0k : a i = 1 4 2ε. ( ε) + ( ε) + ( 1 4 2ε) + ( 1 4 2ε) = 1 ( ε) + ( ε) + ( 1 4 2ε) = 1, füllt eine optimale Lösung k Behälter mit je 2 B- und D-Objekten und 6k Behälter mit je einem A-Objekt, einem C-Objekt und einem D-Objekt. Alle 9k Behälter sind perfekt gefüllt, also ist m (x k ) = 9k. Der Algorithmus FFD erzeugt 6k Behälter mit je einem A- und einem B-Objekt (Füllung 4 + ε, kein weiteres Objekt passt), dann 2k Behälter mit je drei C-Objekten (Füllung 4 + ε, kein weiteres Objekt passt), und schlieÿlich k Behälter mit je vier C-Objekten (Füllung 1 1 8ε; weil 4 2ε > 8ε, passt kein weiteres D-Objekt). Das ergibt einen Verbrauch von m FFD (x k ) = 11k Behältern. Man kann fragen, was der kleinste Wert R A ist, den man mit einem Polynomialzeitalgorithmus A überhaupt erreichen kann. Hierzu deniert man: 5

6 Denition R (P) := inf{r A A ist Polynomialzeit-Algorithmus für P}. Im besten Fall ist R (P) = 1, d. h. dass für jedes r > 1 ein polynomieller Algorithmus A r existiert, der auf P asymptotische Approximationsgüte r hat. Wir werden später sehen, dass dies für Min Binpacking der Fall ist. 6

Approximationsklassen für Optimierungsprobleme

Approximationsklassen für Optimierungsprobleme Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013 Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Online-Algorithmen Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Vortrag Bin Packing von Thilo Geertzen 25. Oktober 2000 Online Algorithmen

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung

Mehr

Approximationsschemata

Approximationsschemata Effiziente Algorithmen Aproximationsalgorithmen 312 Definition Approximationsschemata Sei A(ǫ) ein Approximationsalgorithmus mit einem Parameter ǫ. 1. A(ǫ) ist ein PTAS (polynomial time approximation scheme),

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Behauptung: Es gibt unendlich viele Primzahlen.

Behauptung: Es gibt unendlich viele Primzahlen. Behauptung: Es gibt unendlich viele Primzahlen. 1 Der Beweis von Euklid Annahme: Es gibt endlich viele Primzahlen {p 1,..., p r }. Wir bilden die Zahl n = p 1... p r + 1. Nun gibt es zwei Möglichkeiten.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

1 Die Mandelbrotmenge

1 Die Mandelbrotmenge 1 Die Mandelbrotmenge In diesem Abschnitt wollen wir mathematische Aspekte der sogenannten Mandelbrotmenge beleuchten, die wir im Folgenden mit M bezeichnen wollen. 1 Ihr Name ist ihrem Entdecker Benoît

Mehr

Algorithmentheorie. 10 Greedy Verfahren

Algorithmentheorie. 10 Greedy Verfahren Algorithmentheorie 0 Greedy Verfahren Prof. Dr. S. Albers Greedy Verfahren. Allgemeine Vorbemerkungen 2. Einfache Beispiele Münzwechselproblem Handlungsreisenden-Problem 3. Das Aktivitäten Auswahlproblem

Mehr

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Greedy Algorithms - Gierige Algorithmen

Greedy Algorithms - Gierige Algorithmen Greedy Algorithms - Gierige Algorithmen Marius Burfey 23. Juni 2009 Inhaltsverzeichnis 1 Greedy Algorithms 1 2 Interval Scheduling - Ablaufplanung 2 2.1 Problembeschreibung....................... 2 2.2

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

Kompaktkurs Diskrete Optimierung

Kompaktkurs Diskrete Optimierung Technische Universität Braunschweig SS 08 Institut für Betriebssysteme und Rechnerverbund Postfach 339 D-3803 Braunschweig Notizen Kompaktkurs Diskrete Optimierung Henrik Peters Bearbeitungsstand: 17.

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

5. Übungsblatt zu Algorithmen I im SoSe 2016

5. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 014 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 29. Januar 2013 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Effiziente Algorithmen 2

Effiziente Algorithmen 2 Effiziente Algorithmen 2 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Satz von Sarkovskii und Periode 3 impliziert Chaos

Satz von Sarkovskii und Periode 3 impliziert Chaos Satz von Sarkovskii und Periode 3 impliziert Chaos Florian Lindemann 10 Februar 2003 Vortrag für das Seminar Differentialgleichungen, WS 02/03 Dozent: Prof Lauterbach Wir wollen uns das Feigenbaum-Diagramm

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

Approximation im Sinne der Analysis:

Approximation im Sinne der Analysis: 1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische

Mehr