55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

Größe: px
Ab Seite anzeigen:

Download "55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen"

Transkript

1 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. Alle Rechte vorbehalten Lösung 10 Punkte Angenommen, es gibt reelle Zahlen x, y, z, die das Gleichungssystem erfüllen. Setzt man den Term für y aus (2) in (3) ein, so ergibt sich die Gleichung z = 5x+6. Einsetzen in (1) liefert 5x + 6 = 2(x 1) 2 1, also 2x 2 9x 5 = 0. Diese quadratische Gleichung hat die Lösungen x 1 = 5 und x 2 = 1/2. Aus (2) und (1) ergeben sich nun für y und z die zugehörigen Werte y 1 = 13, z 1 = 31 bzw. y 2 = 2, z 2 = 7/2. Die Probe zeigt, dassx 1,y 1,z 1 undx 2,y 2,z 2 das Gleichungssystem (1) (3) tatsächlich erfüllen. Die zugehörigen Produkte haben den Wert = 2015 bzw. 1/2 2 7/2 = 7/2. Damit liefert x = 5, y = 13, z = 31 unter den Lösungen des Gleichungssystems das maximale Produkt x y z = Lösung 10 Punkte k P k M r S M P L Da die Tangenten an die Kreise in P einander senkrecht schneiden und die zugehörigen Radien senkrecht auf den Tangenten stehen, sind auch die Radien senkrecht zueinander, siehe Abbildung L Also ist das Dreieck MM P rechtwinklig mit der Hypotenuse MM. Da die Strecke PP eine gemeinsame Sehne der Kreise k und k ist, steht sie senkrecht auf der Zentralen MM der beiden Kreise. Damit ist die Strecke PS eine Höhe im rechtwinkligen Dreieck MM P, sodass nach dem Kathetensatz r 2 = MP 2 = MS MM = MS d und MS = r 2 /d gilt. 1

2 Lösung 10 Punkte Die gesuchte Anzahl a n soll schrittweise berechnet werden. Zunächst sei n = 1, es werden also nur zwei Fliesen gesetzt. Die erste kann eine beliebige Farbe haben, die man mit den jeweils anderen Farben für die zweite Fliese kombinieren kann. Das ergibt a 1 = 3 2 = 6. Wir berechnen a n unter der Annahme, dass a n 1 bereits bekannt ist. Dazu wird ein Streifen der Länge n 1 um zwei Fliesen ergänzt. Die letzte Fliese der ersten Reihe habe die Farbe X, die letzte der zweiten Reihe die Farbe Y X. Die dritte Farbe sei Z. Dann kann man die erste Reihe durch eine Fliese der Farbe Y oder der Farbe Z ergänzen. Fall 1: Die erste Reihe wird durch eine Fliese der Farbe Y ergänzt. Dann kann das Muster sowohl mit einer Fliese der Farbe Z als auch mit einer Fliese der Farbe X vervollständigt werden. Das sind zwei Möglichkeiten. Fall 2: Die erste Reihe wird durch eine Fliese der Farbe Z ergänzt. Dann muss die letzte Fliese die Farbe X haben. Das ist eine dritte Möglichkeit. Daraus ergibt sich a n = a n 1 3, bei jeder Vergrößerung der Länge um 1 multipliziert sich also die Anzahl der Muster mit dem Faktor 3. Aus a 1 = ergibt sich dann nach n 1 Schritten das explizite Ergebnis a n = 2 3 n. Bemerkung: Wenn k Farben zur Verfügung stehen, ergeben sich 1+(k 2) Fälle; das Ergebnis lautet dann a n = k (k 1) (k 2 3k +3) n Lösung 10 Punkte Erste Lösung: Die ersten Glieder der Folge lauten x 1 = 1, x 2 = 2, x 3 = 4, x 4 = 8, x 5 = 16, x 6 = 22,... Weil die letzte Ziffer y k+1 von x k+1 eindeutig durch y k bestimmt ist, wird die Folge y k für k 2 periodisch mit der Periode 4. Für k 1 gilt also y 4k 2 = 2, y 4k 1 = 4, y 4k = 8, y 4k+1 = 6. Für k 2 ist demzufolge x k+4 = x k +y k +y k+1 +y k+2 +y k+3 = x k = x k +20. Aus x 3 = 4 folgt somit x 4k+3 = 4+20k, und aus x 5 = 16 schließt man auf x 4k+5 = 16+20k. Wir zeigen nun, dass jede Potenz 4 n von einer der Formen k oder k mit einer nichtnegativen ganzen Zahl k ist. Für n = 1 ist dies sicher richtig. Für n 2 lässt 4 n 1 bei Division durch 5 entweder den Rest 1 oder den Rest 4. Folglich gibt es eine ganze Zahl k 0, für die 4 n 1 = 5k + 1 oder 4 n 1 = 5k+4 gilt. Im ersten Fall ist 4 n = 20k+4, im zweiten Fall gilt 4 n = 20k+16, was zu beweisen war. 2

3 Zweite Lösung: Nachdem man wie in der ersten Lösung die Beziehung x k +20m = x k+4m gezeigt hat, kann man die Untersuchung von Teilbarkeitsresten durch Induktionsargumente ersetzen. Es gilt für n 3 4 n = n 2 = 16 4 n 2 = 4 n n 2 = 4 n n 3 = 4 n (3 4 n 3). Gilt also 4 n 2 = x kn 2, so folgt mit m = 3 4 n 3 aus (1) 4 n = x kn mit k n = k n 2 +4 (3 4 n 3) = k n n 2. Aus 4 1 = 4 = x 3 folgt damit die Zugehörigkeit aller ungeraden Potenzen, aus 4 2 = 16 = x 5 die aller geraden Potenzen von 4 zur Folge x 1,x 2,x 3,... (1) 3

4 Punktverteilungsvorschläge Die nachstehenden Angaben zur Punktverteilung sowohl für die gesamten Aufgaben als auch für die Teillösungen sind Empfehlungen für die Ausrichter des Wettbewerbs und sollen einer einheitlichen Bewertung dienen. Dies vereinfacht für die Schülerinnen und Schüler ein Nachvollziehen der Bewertung und ermöglicht für die Organisatoren Vergleiche zum Zweck der Entscheidung über die Teilnahme an der nächsten Runde. Bei der Vielfalt der Lösungsvarianten ist es nicht möglich, Vorgaben für jede Variante zu machen; das Korrekturteam möge aus den Vorschlägen ableiten, welche Vergabe dem in der Schülerlösung gewählten Ansatz angemessen ist. Dabei können auch Lösungsansätze, die angesichts der Aufgabenstellung sinnvoll erscheinen, aber noch nicht erkennen lassen, ob sie wirklich zu einer Lösung führen, einige Punkte erhalten. Abweichungen von den Vorschlägen müssen von den Ausrichtern des Wettbewerbs ausreichend bekannt gemacht werden. Es wird aber empfohlen, zumindest den prozentualen Anteil der Punkte für Teillösungen beizubehalten. Aufgabe Ansatz, Elimination einer Variablen (y)... 2 Punkte Rückführung auf quadratische Gleichung... 2 Punkte Lösung der quadratischen Gleichung... 2 Punkte Rückschluss auf Lösungstripel... 2 Punkte Auswahl der Lösung mit maximalem Produkt und Antwort... 2 Punkte Aufgabe Überlegungen zu Orthogonalität bis zur Rechtwinkligkeit von MM P... 3 Punkte Orthogonalität von PP zu MM... 2 Punkte Anwendung geeigneter Sätze (z. B. Satzgruppe des Pythagoras) zur Gewinnung von Längenbeziehungen... 3 Punkte Schluss auf Ergebnis... 2 Punkte Aufgabe Untersuchung des Anfangsfalles n = Punkte Rekursionsansatz n 1 n... 2 Punkte Herleitung der Rekursionsbeziehung, i. d. R. durch geeignete Fallunterscheidung... 4 Punkte Schluss auf explizite Darstellung für beliebiges n... 2 Punkte Wenn kein Zugang zur Lösung für allgemeine n gefunden wird, können für die Bearbeitung mehrerer Anfangsfälle (über n = 1 hinaus) insgesamt bis zu 4 Punkte gegeben werden. Wird aus der Betrachtung von Anfangsfällen zusätzlich die korrekte Vermutung für den allgemeinen Fall gewonnen, können insgesamt bis zu 6 Punkte gegeben werden. 4

5 Aufgabe Betrachtung von Anfangsgliedern und Vermutung der Periodizität von (y k ) mit Periode Punkt Nachweis der Periodizität von (y k ) mit Periode Punkte Gewinnung einer rekursiven (wie im 2. Lösungsvorschlag) oder expliziten (wie im 1. Lösungsvorschlag) Darstellung der Folge x k oder zur Lösung ausreichender Teilfolgen... 3 Punkte Nachweis, dass alle Viererpotenzen erreicht werden... 4 Punkte 5

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561221

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 56083 Lösung

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen 56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560621 Lösung

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass7 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 208 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 58072

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass5 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580521

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen nolympiadeklasse 11 1 57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 57111 Lösung

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass6 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580621

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass8 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580821

Mehr

57. Mathematik-Olympiade 2. Runde (Regionalrunde) Lösungen

57. Mathematik-Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass6 57. Mathematik-Olympiade. Runde (Regionalrunde) Lösungen c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 57061 Lösung 10 Punkte

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560331 Lösung 10

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass10 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten.

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b)

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b) 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550721 Lösung

Mehr

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560831 Lösung

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560634 Lösung

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550821 Lösung

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560711 Lösung 6

Mehr

L a L b L c

L a L b L c 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551021 Lösung

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen 6. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 0 Lösungen c 206 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 602 Lösung 0 Punkte

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass9 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580921

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561211

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag 56. Mathematik-Olympiade 4. Stufe Bundesrunde) Olympiadeklasse 10 Lösungen. Tag c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561044 Lösung

Mehr

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt: Pflichtteil (etwa 40min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Vorbemerkung: Viele

Mehr

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben 45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Referenzaufgaben zum Rahmenlehrplan für die

Mehr

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag 49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag c 010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 491131 Lösung 6 Punkte

Mehr

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler roblem von Reimund Albers, Bremen Im Baseler roblem geht es um die Summe der reziproken Quadrate, also + + 2 3 + 2 4 + +..., und ein exaktes

Mehr

1. LESEPROBE KAPITEL GEOMETRIE

1. LESEPROBE KAPITEL GEOMETRIE LESEPROBE KAPITEL GEOMETRIE 1. LESEPROBE KAPITEL GEOMETRIE Beispiel G4.06 Der Kreis k hat den Mittelpunkt M und einen Durchmesser AB (= 2r). Der Halbierungspunkt der Strecke MB heißt C. D ( A, B) sei ein

Mehr

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung: Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung

Mehr

Drei Kreise im Dreieck

Drei Kreise im Dreieck Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5 5. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 8 Aufgaben c 005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg mit

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Aufgabe 1: Das Stanzblech: Gewicht

Aufgabe 1: Das Stanzblech: Gewicht Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551241

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade. Stufe (Kreisolympiade) Klasse 1 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade. Stufe (Kreisolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

der beiden Summanden. Um welche beiden Summanden handelt es sich? Mache eine Probe!

der beiden Summanden. Um welche beiden Summanden handelt es sich? Mache eine Probe! ausschuss des Mathematik-Olympiaden ev 44 Mathematik-Olympiade 2 Stufe (Regionalrunde) Klasse 5 in logisch und grammatisch einwandfreien Sätzen dargestellt werden Zur Lösungsgewinnung herangezogene Aussagen

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Polynome Teil VI: Die Potenzsummenformeln von NEWTON

Polynome Teil VI: Die Potenzsummenformeln von NEWTON Die WURZEL Werkstatt Mathematik Polynome Teil VI: Die Potenzsummenformeln von NEWTON In der letzten Ausgabe der Werkstatt haben wir gesehen, dass sich Potenzsummen, etwa die symmetrischen Funktionen p

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

VERTIEFUNGSKURS MATHEMATIK

VERTIEFUNGSKURS MATHEMATIK VERTIEFUNGSKURS MATHEMATIK KLAUSUR 1, 8.12.2015 (1) Verwandle die folgenden Zahlen in Keilschrift bzw. in unsere Schreibweise: a) 14 b) 30 c) 100 d) 1 2 e) 1 1 3 (2) a) Begründe, warum für kleine x die

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561011 Lösung

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

Lösung: Serie 2 - Komplexe Zahlen I

Lösung: Serie 2 - Komplexe Zahlen I Dr. Meike Akveld HS 05. (Induktion) : Serie - Komplexe Zahlen I a) Zeigen Sie die Ungleichung von Bernoulli: Für alle x > und n N gilt: b) Zeigen Sie für alle n N: ( + x) n + nx. n n, wobei a b bedeutet,

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 1 Grundlagen Lehrstoff Gleichungen und Gleichungssysteme - Lösen von linearen und quadratischen Gleichungen in einer Variablen Inhalt Quadratische

Mehr

Komplexe Zahlen und Funktionen

Komplexe Zahlen und Funktionen Komplexe Zahlen und Funktionen 1. komplexes Gleichungssystem z 1 iz 2 = i 2 z 2 + 3z 3 = 6 6i 2iz 1 3iz 3 = 1 8i 2. komplexe Gleichung Welche z C erfüllen die Gleichung 4z 2 4 z + 1 = 0? 3. konjugiert-komplexe

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Demo-Text für Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Inversion (Spiegelung am Kreis) Ein Spezialthema Teil 1 Grundlagen Text Nr. 1400 Stand: 4. Februar 016 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 1400 Inversion 1 Vorwort Die Inversion, die

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Lösungen der Probleme aus der dritten bis fünften Werkstatt

Lösungen der Probleme aus der dritten bis fünften Werkstatt Die WURZEL Werkstatt Mathematik Lösungen der Probleme aus der dritten bis fünften Werkstatt Es ist eine Binsenweisheit: Man kann nicht allein durch Zuschauen Mathematik erlernen. Nur im Umgang mit komplexen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

Tag der Mathematik 2018

Tag der Mathematik 2018 Mathematische Hürden Aufgaben mit Mathematische Hürden H1 Aufgabe H1 Ein normales Buch wird zufällig aufgeschlagen. Das Produkt der beiden sichtbaren Seitenzahlen ist 156. Welche Seitenzahlen sind es?

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathematik Wissenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-9 59 15-0 Fax: 08-9 59 15-9 e-mail: info@bundeswettbewerb-mathematik.de www.bundeswettbewerb-mathematik.de Korrekturkommission

Mehr

Ü b u n g s a r b e i t

Ü b u n g s a r b e i t Ü b u n g s a r b e i t Aufgabe. a) Die Querschnittsfläche eines Abwasserkanals ist im unteren Teil von einer Parabel k begrenzt, an die sich nach oben die beiden Geraden g und h anschließen. Bestimmen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Schritt 1: Koordinaten in die allgemeine Funktionsgleichung einsetzen

Schritt 1: Koordinaten in die allgemeine Funktionsgleichung einsetzen Aufgabe 1a) Schritt 1: S in die Scheitelpunktform einsetzen 0,5 2 Schritt 2: Koordinaten von P einsetzen und a berechnen 2,25 1,5 0,5 2 0,25 Schritt 3: Funktionsterm aufstellen 0,25 0,5 2 als Scheitelpunktform,

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Quadratische Gleichungen. Kreise und Berührkreise. Binomische Formeln. Satz des Pythagoras. Goldener Schnitt

Quadratische Gleichungen. Kreise und Berührkreise. Binomische Formeln. Satz des Pythagoras. Goldener Schnitt Quadratische Gleichungen Kreise und Berührkreise Binomische Formeln Satz des Pythagoras Goldener Schnitt 9. Klasse Jens Möller Tel. 07551-6889 jmoellerowingen@aol.com Quadratische Gleichungen 1. Beispiel:

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Lösen von Gleichungen mittels Ungleichungen

Lösen von Gleichungen mittels Ungleichungen Lösen von Gleichungen mittels Ungleichungen. März 00 Die Aufgaben sind mit Schwierigkeitsstufen leicht, mittel, schwer markiert. Aufgabe (leicht) Ermittle alle nichtnegativen reellen Zahlen a, b, c, für

Mehr

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr