StructuredQueryLanguage(SQL)

Größe: px
Ab Seite anzeigen:

Download "StructuredQueryLanguage(SQL)"

Transkript

1 StructuredQueryLanguage(SQL) Themen: ErstelenundÄndernvonTabelen AbfragenvonDaten Einfügen,ÄndernundLöschenvonDaten Erstelennutzerde niertersichten(views) 2012Claßen,Kempa,Morcinek 1/23

2 SQL Historie System R mitsequel UniBerkeley INGRES (RelationalSoftwareInc) OracleV2mitSQL HistoriederDB-SpracheSQL SQL De-Facto- Standard (referentiele Integrität) SQL-86 SQL-92 (EntryLevelSQL) SQL-89 SQL:1999 (Prozeduren, OO-Konzepte) SQL:2003 (XM L-Verarbeitung, OLAP-Funktionen) SQL:2008 SQL:2006 (XQuery) SQL:86:SQL wird Industriestandard,ANSI1986,ISO 1987 SQL:89(ANSI-SQL / ISO9075):kleinereAnpasungen,Erweiterungum die MöglichkeitzurDenitionreferentielerIntegritätsbedingungen SQL:92/SQL2:Festlegung von dreisprachschichten:entrylevel:grundlegendste Anweisungen(AnlegenvonTabelen,Datenmanipulation),einziggültigerDatentypist Zeichenkete,MUSSvonalenRDBMSunterstütztwerden;Interm ediate Level:weitere AnweisungenzurDatende nition,funktionen,verbund-undmengenoperatoren;ful Level:enthältale SQL-Anweisungen und weitere Funktionen zbfürdie Verbindungsverwaltung SQL:1999/SQL3(ISO/IEC 9075:1999):Unterstützung prozeduralerstrukturen und Trigger,reguläreAusdrücke,rekursiveAbfragen,Integrationvonobjektorientierten Konzepten,AufteilungdesStandardsinmehrereTeile,dieeinzelnweiterentwickelt werdensolen SQL:2003(ISO/IEC 9075:2003):uaFunktionen zurverarbeitung von XM L-Daten, erweiterteolap-funktionen (W indow-funktionen) SQL:2006(ISO/IEC :2006)und SQL:2008(ISO/IEC :2008):be sere Integration von XM L (Im port/exportvon XM L,Verwendung von XQuery) 2012Claßen,Kempa,Morcinek 2/23

3 DVD-Verleih WeitereInformationenzurMySQL-BeispieldatenbankSAKILA: PortierungenfürandereDatenbanksysteme: 2012Claßen,Kempa,Morcinek 3/23

4 Datendenition CREATETABLE EineTabeleerstelen CREATETABLE films (film_id integer NOT NULL, title varchar(255) NOT NULL, description varchar(4000) UNIQUE, release_year date default NULL, language_id integer NOT NULL REFERENCES language (language_id), rental_duration integer NOT NULL default '3', rental_rate number(4,2) NOT NULL default '499', length integer default NULL, rating varchar(5) NOT NULL CHECK (rating IN('G','PG','PG-13','R','NC-17')) default 'G', CONSTRAINTpk_films PRIMARYKEY (film_id) ); Legende: Domänenintegrität(Spaltenebene) Entitätsintegrität(Zeilenebene) ReferentieleIntegrität(Tabelenebene) AleInformationenwerdenexplizitalsWerteinTabelendargestelt Domänenintegrität(Spaltenebene) -(Standard-)Datentypen -nutzerde niertedatentypen (UDT) -NULL-W erte -Vorgabewerte(DEFAULT) DerDEFAULT-Wertmusdem DatentypderSpalteentsprechen -CHECK-Constraints(Prüfbedingungen) Entitätsintegrität(Zeilenebene) -Constraints(UNIQUE,PRIMARY KEY) ReferentieleIntegrität(Tabelenebene) -Constraints(FOREIGN KEY) -Trigger Sieheauch:[Faeskorn-W oyke2007],abschnit531f 2012Claßen,Kempa,Morcinek 4/23

5 Datendenition ALTER TABLE BeziehungenzwischenTabelenfestlegen City Country Primärschlüsel (primarykey) Fremdschlü sel (foreign key) ALTER TABLE City ADD CONSTRAINT fk_city FOREIGN KEY (country_id) REFERENCES Country (country_id); MitFOREIGN KEYwird einereferentieleintegritätsbedingung zwischen Tabelen de niertderfremdschlü selverweist(meist)aufdenprimärschlü seleineranderen Tabele Diereferenzierte(Primärschlüsel-)Tabelemusexistieren,bevorderFrem dschlü sel de niertwirddiefremdschlü selspaltemu sebenfalsexistieren,bevordiereferentiele Integritätsbedingung festgelegtwird Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 5/23

6 SELECT DieSyntaxderSELECT-Anweisung SQL-Anweisung Kommentar Klauseln - Ermittelt Kunden aus Deutschland SELECT name, address, city FROM Customers WHERE country = 'Germany' ORDER BY name; Schlüselwörter Bezeichner Separator SQL isteineformatfreiesprache -Groß-und Kleinschreibung beliebig -1 bisn Leerzeichen alstrennzeichen -Zeilentrennung beliebig,abernichtinnerhalb von Schlü selwörtern SQL-Anweisungenmüssensepariertwerden -Vorderzweiten und jederweiteren SQL-Anweisung einerfolgevon Anweisungen stehtein Separator -TypischerSeparatorist; SQL benutztsprachelemente -Schlü selwörter -Bezeichner(fürTabelen,Spalten, ) -Konstanten 2012Claßen,Kempa,Morcinek 6/23

7 SELECT SpaltenauswählenmitSELECT Customers SELECT name, address, city FROM Customers; Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 7/23

8 SELECT WHERE ZeilenauswählenmitWHERE Customers SELECT * FROM Customers WHERE country = 'United States'; Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 8/23

9 NULL NULListkein W ert Rental SELECT rental_id, rental_date, return_date FROM rental WHERE return_date IS NULL; NULL-W ertewerden durchgängig gleich alsunbekannteoderfehlendedaten behandelt unddatentypunabhängigvonstandardwertenunterschieden Sieheauch:[Faeskorn-W oyke2007],abschnit5321und5552,s250f 2012Claßen,Kempa,Morcinek 9/23

10 Verbund TabelenverbundherstelenmitJOIN Films Actors SELECT * Umbenennung FROM Films AS f INNER JOIN Actors AS a ON ffilm_id = afilm_id; DerVerbundzwischenTabelenerfolgtindenmeistenFälenüberdieBeziehung Primärschlüsel-Fremdschlüsel(referentieleIntegrität) In obigerergebnistabele werden nurdie Zeilen verbunden,beidenen derw ertdes A tributesfilm_idübereinstim m t! AlternativeVariantezum Beipielverbund(Theta-Join): SELECT * FROM Films AS f, Actors AS a WHERE ffilm_id = afilm_id; HinweisefürdasAufstelenvonVerbünden: -beliebig vieletabelen sind (theoretisch)m iteinanderverknüpfbar -SELECT-Klauselkann Spalten m ehrerertabelen enthalten -gleichnam igespalten sind eindeutig zu kennzeichnen (TabellennameSpaltenname) -im VerbundistjederVergleichsoperatormöglich -N Tabelen erfordern mindestensn-1 Verbundoperationen zurverm eidung eines kartesischen Produktes Sieheauch:[Faeskorn-W oyke2007],abschnit553und Claßen,Kempa,Morcinek 10/23

11 Gruppierung Wertegruppierenundaggregieren Rentals SELECT title, count(*) AS quantity FROM Rentals GROUP BY title; EineGruppekanneineodermehrereSpalteneinerTabeleumfasenundwirddurchdie GleichheitdergespeichertenDatenindiesenA tributende niert AggregatfunktionenberechnenWerteüberaleZeilen -einertabele,wenn kein Gruppierungsm erkm alexistiert ODER -einergruppevon Zeilen,wenn ein Gruppierungsm erkm alexistiert Aggregatfunktionen: COUNT AnzahlZeilen SUM Summierung AVG Durchschnit MIN Minimum MAX Maximum Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 11/23

12 Datenmanipulation INSERT EineneueZeileeinfügen -- Daten zum Kunden CECIL WINES werden erfasst INSERT INTO Customers (ID, name, address,"zip code", city) VALUES (512, 'CECIL WINES', '548 Uruapan Street','35653','London'); Customers DieeinzufügendenDatenmüsendem DatentypderjeweiligenSpalteentsprechen WurdeeineSpaltemitNOT NULLde niert,so istaufjeden Falein W ertanzugeben oderdasdatenbanksytem lieferteinefehlermeldungwegenverstoßesgegendie Integritätsbedingung WurdefürdieSpalteeinStandardwert(DEFAULT)festgelegt,so wird dieserautomatisch in die neue Zeile eingetragen,falskein expliziterw ertangegeben wird Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 12/23

13 Datenmanipulation INSERT MehrereZeileneinfügen -- Datenübernahme aus einer anderen Kundentabelle INSERT INTO Customers (name, address,"zip code", city) SELECT name, strasse, plz, ort FROM Kunden; Customers Kunden Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 13/23

14 Datenmanipulation DELETE ZeilenausderTabelelöschen -- Kunde Nr 8 wird gelöscht DELETE FROM Customers WHERE ID = 8; Customers Achtung!OhneWHERE-Klauselwird dergesamtetabeleninhaltgelöscht! Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 14/23

15 Datenmanipulation UPDATE Spaltenwerteändern -- Kunde Nr 3 ist umgezogen UPDATE Customers SET address ='Feldweg 11', "zip code" ='3001', city ='Bern' WHERE ID = 3; Customers EswirdjeweilsdiegesamteZeileausgetauscht Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 15/23

16 Datenmanipulation Löschen Customers Löschen Löschen Spalte(n) löschen Spalte(n)- wert löschen *) UPDATE Zeile(n) löschen ALTER TABLE DELETE *) NOT NULLbeachten 2012Claßen,Kempa,Morcinek 16/23

17 Verbund FehlendeDatenmitOuter-Join nden -- Welche Filme befinden sich (nicht) im Bestand? SELECT ffilm_id, title, inventory_id, ifilm_id FROM Film f LEFT OUTER JOIN Inventory i ON ffilm_id = ifilm_id; Film Inventory DieAnwendungeinesäußerenVerbundes(OUTER JOIN)isterforderlich,wenn nach Wertengesuchtwird,zudenenkeinekorespondierendenWerteinanderenTabelen existieren DasBeispielzeigtauchFilme,diesich(ggw)nichtim BestandbendenNichtzujeder Zeileinfilmexistierteineko respondierendezeilein inventoryfehlende W erte werdenalsnulldargestelt EininnererVerbund(INNER JOIN)hä tediesew erteaufgrund fehlenderfremdschlü sel nichtangezeigt Sieheauch:[Faeskorn-W oyke2007],abschnit413,s137f 2012Claßen,Kempa,Morcinek 17/23

18 Verbund RekursionmitSelf-JoinauLösen Store_staK -- Zeige Mitarbeiter und ihre Vorgesetzten SELECT estaff_id, efirst_name ' ' elast_name AS employee, mstaff_id, mfirst_name ' ' mlast_name AS manager FROMStore_staffAS e JOINStore_staffAS monemanager_id=mstaff_id; EinSelf-Joinistein norm alerverbund,dereinetabelemitsichselbst,dhzeilen ein undderselbentabelemiteinanderverknüpft Im BeispielbendensichPrimärschlüsel(staff_id)undFremdschlüsel(manager_id) inderselbentabeleum einetabelemehrfachanzusprechen,isteinaliasname anzugebendieserzeugtmehrerevirtueletabelen,diewiegewohntverknüpftwerden können 2012Claßen,Kempa,Morcinek 18/23

19 Unterabfrage AbfragenalsBestandteilandererAbfragen SkalareUnterabfrage(scalarsubquery) WHERE amount > (SELECT max(amount) FROM Payment) -- UPDATE Film SET replacement_cost = (SELECT avg(cost) FROM Old_films); Tabelen-Unterabfrage(tablesubquery) FROM customer c INNER JOIN (SELECT aaddress_id, aaddress, ccity FROM Address a INNER JOIN City c ON acity_id = ccity_id )ca ON caddress_id = caaddress_id EineUnter-(auchSub-)SELECT-Anweisung wird alsverbund jedereinzelnen Ergebniszeileder(Haupt-)SELECT-Anweisung m itden in dersub-select-anweisung enthaltenen Tabelen realisiertsiekann daherauch alternativalsverbund formuliert werden: SELECT * FROM Tabelle1 WHERE SpalteA = (SELECT SpalteB FROM Tabelle2 WHERE ); istidentisch m it SELECT * FROM Tabelle1 t1 INNER JOIN Tabelle2 t2 ON t1spaltea = t2spalteb; Tabelen-Unterabfragenkönnenauchgebildetwerdenmit Quantoren:ALL,ANYbzwSOME Prädikaten:IN,EXISTS Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 19/23

20 Unterabfrage Abfragenkönnenvoneinanderabhängigsein VergleicheinesEinzelwerteseinerGruppemitdem (aggregierten)gruppenwert: -- Welche Kunden haben je Land überdurchschnittlich -- viel ausgegeben? SELECT customer_id, last_name, paid FROM Customers AS cu WHERE paid > (SELECT avg(pamount) FROM Payments AS pa WHERE cucountry_id = pacountry_id); DerzeilenweiseVergleichineinerkoreliertenUnterabfrageistein Performance-Kiler, dafürjedezeilederunterabfragederverbundmitderhauptabfrageneuberechnet werdenmuskorelierteunterabfragensoltendahersparsam eingesetztwerden Sieheauch:[Faeskorn-W oyke2007],abschnit559,s Claßen,Kempa,Morcinek 20/23

21 Unterabfrage (Nicht-)Existenzvon W erten prüfen -- Welche Filme befinden sich nicht im Bestand? SELECT film_id, title, length FROM Film AS f WHERE NOT EXISTS (SELECT * FROM Inventory AS i WHERE ffilm_id = ifilm_id); EXISTSistwahr,wenn dieunterabfragemindestenseine ZeilealsErgebniszurückliefert Sieheauch:[Faeskorn-W oyke2007],abschnit5593 AlternativenzuEXISTS EXISTS Alternative WHERE EXISTS (SELECT * FROM ) WHERE 0 < (SELECT COUNT(*) FROM ) WHERE NOT EXISTS (SELECT * FROM ) WHERE 0 = (SELECT COUNT(*) FROM ) 2012Claßen,Kempa,Morcinek 21/23

22 ExterneSicht(View) EineSichtaufausgewählteDatenerstelen CREATE VIEW Customers_DACH (ID, name, stadt, land) AS SELECT ID, name, city, country FROM Customers WHERE country IN ('Germany', 'Austria', 'Switzerland') WITH CHECK OPTION; Customers Customers_DACH VorteilederNutzungvonSichten: SichtenvereinfachendenDatenzugriDerNutzerkann einesichtaufrufen,ohnedie komplexenbeziehungenzwischendentabelenkennenzumü sen Sichtenliefern im m erden aktuelen Stand derdatenw ird eine Tabele aktualisiert, zeigen dievon ihrabgeleiteten Sichten dieänderungautomatisch an Sichtenerhöhen diesicherheitdurch explizite Spaltenauswahlkann eine eingeschränkte SichtaufdieDatenerzeugtwerdenNutzer,dienurZugriKsrechteaufdieSichten haben,sehenauchnurdiesedaten DatenmanipulationüberSichten ÜbereineSichtkönnenprinzipielDateneingefügt,geändertundgelöschtwerdenUnter bestimmtenbedingungenisteinesichtalerdingsnichtaktualisierbar,zbwenndie SELECT-Anweisung Funktionen inklaggregatfunktionen oderunterabfragen enthält DieKlauselWITH CHECK OPTIONkann füreineveränderbaresichtbenutztwerden,um das EinfügenoderÄndernanZeilenzuverhindern,diederWHERE-Klausel widersprechen Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 22/23

23 Metadaten (M eta-)daten abfragen SELECT Column_Name, Data_Type, Is_Nullable FROM Information_SchemaColumns WHERE Table_Name = 'Customers'; Customers Metadaten SELECT Column_Name, Data_Type, Nullable FROM User_Tab_Columns -- Oracle-Version WHERE Table_Name = 'Customers'; DieStruktureinerDatenbankwirdineinem Systemkatalog(auchMetadatenoderData Dictionarygenannt)aufderselbenlogischenEbenewiedieDaten,dhinTabelen, beschriebenundkannmithilfederdatenbankspracheabgefragtwerden Sieheauch:[Faeskorn-W oyke2007],abschnit Claßen,Kempa,Morcinek 23/23

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten Fakultät für Informatik & Wirtschaftsinformatik Metadaten Metadaten sind Daten über Daten Data-Dictionary speichert Informationen über die Struktur der Daten, z.b.: Tabellen, Spalten, Datentypen Primär-

Mehr

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne Informatik für Ökonomen II: Datenintegrität Prof. Dr. Carl-Christian Kanne 1 Konsistenzbedingungen DBMS soll logische Datenintegrität gewährleisten Beispiele für Integritätsbedingungen Schlüssel Beziehungskardinalitäten

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird.

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird. Übungen und Lösungen 1. Einführung Datenbanken 1) Welche Datenbanktypen kennen Sie? Wodurch sind sie gekennzeichnet? Hierarchische Datenbanken: Zwischen den Datensätzen besteht eine untergeordnete Rangfolge.

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Referenzielle Integrität SQL

Referenzielle Integrität SQL Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet

Mehr

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET SQL_MODE=NO_AUTO_VALUE_ON_ZERO; phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

SQL. Abfragesprache Datenmanipulation - DML

SQL. Abfragesprache Datenmanipulation - DML SQL Abfragesprache Datenmanipulation - DML SQL DML-Operationen DML = Data Manipulation Language Sprache zur Veränderung der Daten Operationen Daten selektieren Daten einfügen Daten ändern Daten löschen

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

PostgreSQL unter Debian Linux

PostgreSQL unter Debian Linux Einführung für PostgreSQL 7.4 unter Debian Linux (Stand 30.04.2008) von Moczon T. und Schönfeld A. Inhalt 1. Installation... 2 2. Anmelden als Benutzer postgres... 2 2.1 Anlegen eines neuen Benutzers...

Mehr

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9);

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9); Institut für Angewandte Informatik AIFB und Formale Beschreibungsverfahren Universität Karlsruhe (TH) Prof. Dr. W. Stucky U. Schmidle Tel.: 0721 / 608-3812, 3509 Fax.: 0721 / 693717 e-mail: stucky schmidle

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Kapitel 7 TEIL II: Dies und Das

Kapitel 7 TEIL II: Dies und Das Kapitel 7 TEIL II: Dies und Das Teil I: Grundlagen ER-Modell und relationales Datenmodell Umsetzung in ein Datenbankschema: CREATE TABLE Anfragen: SELECT -- FROM -- WHERE Arbeiten mit der Datenbank: DELETE,

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

MySQL: Einfaches Rechnen. www.informatikzentrale.de

MySQL: Einfaches Rechnen. www.informatikzentrale.de MySQL: Einfaches Rechnen Vorweg: Der Merksatz Warum geht Herbert oft laufen? Vorweg: Der Merksatz Warum geht Herbert oft laufen?...... WHERE... GROUP BY... HAVING... ORDER BY... LIMIT Beispieldatenbank

Mehr

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 5. SQL: Erstellen von Tabellen Erzeugen und Löschen von Tabellen Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 106 SQL Structured Query Language Historie: Anfänge ca. 1974 als SEQUEL

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler

SQL-Vertiefung. VU Datenbanksysteme. Reinhard Pichler SQL-Vertiefung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester 2015/16 Gliederung

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services 531 27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services Im zweiten Teil dieses Buches haben wir die Eigenschaften der Transact-SQL- Sprache in Bezug auf die Bearbeitung von operativen Daten gezeigt.

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Benutzerverwaltung, Sichten und Datenintegrität

Benutzerverwaltung, Sichten und Datenintegrität Benutzerverwaltung, Sichten und Einige Vergleiche zwischen MySQL, Oracle und PostgreSQL OStR Michael Dienert, StR Ahmad Nessar Nazar 29. November und 30. November 2011 1 von 113 OStR Michael Dienert, StR

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

DB1 Abgabe 1 14.4.09. Umsetzung der Callcenter Datenbank nach SQL von Daniel Häfliger, Dominik Süsstrunk und Reto Brühwiler

DB1 Abgabe 1 14.4.09. Umsetzung der Callcenter Datenbank nach SQL von Daniel Häfliger, Dominik Süsstrunk und Reto Brühwiler DB1 Abgabe1 14.4.09 Abgabe2DML UmsetzungderCallcenter DatenbanknachSQLvonDanielHäfliger,DominikSüsstrunkundReto Brühwiler Tabellenerstellen(callcenter_tables.sql) DieTabellenwerdenzuerstgelöscht,sofernsieexistieren(ohneaufdieFremdschlüsselzu

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

5. Datendefinition in SQL

5. Datendefinition in SQL Datendefinition 5. Datendefinition in SQL Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5. Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.1 im Internet: www.datenbanken-programmierung.de... 3.0 SQL nach

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus:

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus: Einführung in MySQL SQL (Structured Query Language) ist eine Computersprache zum Speichern, Bearbeiten und Abfragen von Daten in relationalen Datenbanken. Eine relationale Datenbank kann man sich als eine

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index!

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index! 1/40 PHP-User-Group Stuttgart 14.01.2009 Warum Datenbanken einen Hals bekommen und was sich dagegen tun lässt. Tuning und Performancesteigerung ohne zusätzliche Hardware. Ein. Loblied auf den Tabellen-Index!

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

7.5.3. CREATE TABLE-Syntax

7.5.3. CREATE TABLE-Syntax 7.5.3. CREATE TABLE-Syntax 7.5.3.1. Stille Spaltentyp-Änderungen CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tabelle [(create_definition,...)] [tabellen_optionen] [select_statement] create_definition: spalten_name

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

6.2 Datenbanken SQL - Einführung

6.2 Datenbanken SQL - Einführung Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 6.2 Datenbanken SQL - Einführung Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Stichwortverzeichnis. Iron Werther. Business Intelligence

Stichwortverzeichnis. Iron Werther. Business Intelligence Stichwortverzeichnis Iron Werther Business Intelligence Komplexe SQL-Abfragen am Beispiel eines Online-Shops. Inkl. Testdatenbank mit über zwei Millionen Datensätzen ISBN (Buch): 978-3-446-43580-3 ISBN

Mehr

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten:

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten: Lösung Casino 1 Zunächst das Entity-Relationship-Modell: Kundenverzeichnis wird getätigt von Bestellung führt aus enthält Personal n 1 beherrscht Speisekarte Tätigkeiten Abbildung 1: Das ERM Nun zu den

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler Inhaltsverzeichnis Einleitung...13 SQL: Die Abfragesprache für Datenbanken...17 Kennzeichnende Merkmale von SQL...17 SQL-Dialekte...18 Kurze Entwicklungsgeschichte...18 SQL/86 oder SQL/1...19 SQL/89 oder

Mehr

Themen des Kapitels. 2 Grundlagen von PL/SQL. PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren. 2.1 Übersicht. Grundelemente von PL/SQL.

Themen des Kapitels. 2 Grundlagen von PL/SQL. PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren. 2.1 Übersicht. Grundelemente von PL/SQL. 2 Grundlagen von PL/SQL Grundelemente von PL/SQL. 2.1 Übersicht Themen des Kapitels Grundlagen von PL/SQL Themen des Kapitels PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren Im Kapitel Grundlagen

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Oracle: Abstrakte Datentypen:

Oracle: Abstrakte Datentypen: Oracle: Abstrakte Datentypen: Oracle bietet zwei mögliche Arten um abstrakte Datentypen zu implementieren: Varying Array Nested Table Varying Array (kunde) kdnr kdname gekaufteart 1 Mustermann 1 4 5 8

Mehr

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München Kapitel 4 Dynamisches SQL Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München 2008 Thomas Bernecker, Tobias Emrich unter Verwendung der Folien des Datenbankpraktikums aus dem Wintersemester

Mehr

Seite1 / Aufgabe 2: SQL. Lösungsvorschlag für die zusätzlichen Übungsaufgaben. Seite 2 / Aufgabe 1. Seite1 / Aufgabe 2: SQL. Warengruppe.

Seite1 / Aufgabe 2: SQL. Lösungsvorschlag für die zusätzlichen Übungsaufgaben. Seite 2 / Aufgabe 1. Seite1 / Aufgabe 2: SQL. Warengruppe. Seite / Aufgabe 2: SQL Lösugsvorschlag für die zusätzliche Übugsaufgabe a SELECT SUM(e.stimmezahl FROM Kadidat k, Ergebis e WHERE e.kadidatid = p.kadidatid AND p.ame = 'Republikaer' AND e.budesstaat ='

Mehr

DBMS-Übungsserver. Seite 1 von 13

DBMS-Übungsserver. Seite 1 von 13 Aufgabe Nr. 1, BETWEEN-Prädikat Welche Fahrten finden von Heiligabend bis Neujahr 2001/2002 einschließlich statt? Rückgabe-Typ sei (fahrtnr). SELECT fahrtnr FROM Fahrt WHERE tag BETWEEN '2001-12-24' AND

Mehr

SQL. Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 -

SQL. Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 - SQL - 1 - SQL Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 - Was ist SQL? 1974 unter dem Namen Sequel

Mehr

3 Arbeiten mit geographischen Daten

3 Arbeiten mit geographischen Daten 3 Arbeiten mit geographischen Daten 3.1 Spatial Datatypes: Bisher wurden Koordinaten nur von GIS-Systemen verwendet. Es gibt immer mehr Applikationen, die geographische und/oder geometrische Daten verarbeiten.

Mehr

Erstellen einer Datenbank. Datenbankabfragen

Erstellen einer Datenbank. Datenbankabfragen Erstellen einer Datenbank Datenbankabfragen Überblick Die fünf Stationen Semantisches Modell Logisches Modell Prüfung auf Redundanz Abfragen Softwaremäßige Implementierung Zur Erinnerung: Semantisches

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

Grundlagen SQL. Cologne Network Consulting CNC GmbH Wilhelm-Schlombs-Allee 2, 50858 Köln Tel.: (0221) 9833790 http://www.cncgmbh.eu info@koeln-net.

Grundlagen SQL. Cologne Network Consulting CNC GmbH Wilhelm-Schlombs-Allee 2, 50858 Köln Tel.: (0221) 9833790 http://www.cncgmbh.eu info@koeln-net. Cologne Network Consulting CNC GmbH Wilhelm-Schlombs-Allee 2, 50858 Köln Tel.: (0221) 9833790 http://www.cncgmbh.eu info@koeln-net.com Inhaltsverzeichnis 1 Einleitung... 3 2 CREATE DATABASE: Erzeugen einer

Mehr

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement Funktion definieren Gibt Summe der Gehälter zurück Aufruf in einem SQL-Statement Dr. Christian Senger Einführung PL/SQL 1 Procedures & Transaktionen CREATE OR REPLACE PROCEDURE write_log ( log_code IN

Mehr

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL.

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL. Datenintegrität Arten von Integritätsbedingungen Statische Integritätsbedingungen Referentielle Integrität Integritätsbedingungen in SQL Trigger 1 Datenintegrität Einschränkung der möglichen Datenbankzustände

Mehr

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen ist die wichtigste Aufgabe des DB-Administrators!

Mehr

In Tabelle 2.1 sehen Sie das Ergebnis beider Ausführungen auf meiner Maschine.

In Tabelle 2.1 sehen Sie das Ergebnis beider Ausführungen auf meiner Maschine. Kapitel 2 Datenverwaltung durch SQL Server Wir wollen das obige Skript zwei Mal laufen lassen, einmal mit und einmal ohne eingeschalteten Schreibcache der Festplatte. Für eine lokale Festplatte können

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

DB2 for z/os. Übungen zur Schulung

DB2 for z/os. Übungen zur Schulung DB2 for z/os Übungen zur Schulung 2. Dezember 2011 Eine Ausarbeitung von: cps4it Ralf Seidler Stromberger Straße 36A 55411 Bingen Fon: +49-6721-992611 Fax: -49-6721-992613 Mail: ralf.seidler@cps4it.de

Mehr

Neugestaltung der Datenbank des Chemnitzer Studentennetzes

Neugestaltung der Datenbank des Chemnitzer Studentennetzes 12.12.2012 Neugestaltung der Datenbank des Chemnitzer Studentennetzes Verteidigung Bachelorarbeit Morris Jobke Prüfer: Dr. Frank Seifert Betreuer: Dipl.-Inf. Johannes Fliege Neugestaltung der Datenbank

Mehr

Beispiel 1: Filmdatenbank

Beispiel 1: Filmdatenbank Beispiel 1: Filmdatenbank Die Filmdatenbank hat drei Tabellen (ACTOR, MOVIE, PLAYED) Aufgabe 1: Erstelle mit Hilfe der SQL-DDL die drei Tabellen und die Datenbank (MOVIEDB) ACTOR (ActorID, Name, Birthday,

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

XML in der Oracle Datenbank "relational and beyond"

XML in der Oracle Datenbank relational and beyond XML in der Oracle Datenbank "relational and beyond" Ulrike Schwinn (Ulrike.Schwinn@oracle.com) Oracle Deutschland GmbH Oracle XML DB Ein Überblick 1-1 Agenda Warum XML in der Datenbank? Unterschiedliche

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr