Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Größe: px
Ab Seite anzeigen:

Download "Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten"

Transkript

1 Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem unterstützt. Damit hat der Programmierer die Möglichkeit, Anwendungen zu entwickeln, die mit verschiedenen Datenbanksystemen lauffähig sind, ohne dass Änderungen des Quellcodes notewendig sind. Sprachumfang: DDL (Data Definition Language) DQL (Data Query Language) DML (Data Manipulation Language) DCL (Data Controlling Language) Erstellen von Datenbanken, Tabellen und Indizes Abfragen von Daten Anlegen, Ändern und Löschen von Datensätzen Anlegen von Benutzern und Vergabe von Zugriffsrechten Seite 1 von

2 Die Abfragesprache DQL Die DQL besteht nur aus einer einzigen Anweisung, der SELECT-Anweisung. Diese besitzt jedoch sehr viele Erweiterungen, so dass sich verschiedenste Abfrageresultate ergeben können. einfache Form: SELECT <Feldliste> FROM <Tabelle> SELECT * from Kunde selektiert alle Felder der Tabelle Kunde SELECT Nummer,Name from Kunde selektiert nur die Felder Nummer und Name aus der Tabelle Kunde Erweiterung mit WHERE SELECT <Feldliste> FROM <Tabelle> WHERE <Bedingung> [AND OR] <Bedingung> Vergleichsoperatoren: = gleich >= größer gleich <= kleiner gleich < kleiner > größer <> ungleich logische Operatoren: AND OR NOT logisches UND logisches ODER Negation Seite 2 von

3 SELECT * from Kunde where Ort = 'Frankfurt' Alle Kunden die in Frankfurt wohnen SELECT Nummer, Name, Vorname from Kunde where Name = 'Meier' Alle Personen mit dem Namen Meier SELECT * from Kunde where Name = 'Meier' AND Ort = 'München' Alle Kunden mit dem Namen Meier die in München wohnen Der Operator LIKE Über Wildcards können unscharfe Selektionskriterien erstellt werden. SELECT <Feldliste> FROM <Tabelle> WHERE <Feldname> LIKE <muster> SELECT <Feldliste> FROM <Tabelle> WHERE <Feldname> LIKE <muster> Muster: % oder * steht für beliebigen Rest _ oder? für ein Zeichen SELECT * from Kunde WHERE Name LIKE 'S%' Suche alle Kunden, deren Name mit S beginnt SELECT * from Kunde WHERE Name LIKE ' y%' Suche alle Kunden, deren Name an der dritten Stelle ein y aufweist. SELECT * from abteilung where stadt like '%E%' Suche alle Abteilungen in denen sich im Ortsnamen ein E befindet. Seite 3 von

4 Die Operatoren IN und BETWEEN Mit dem IN-Operator können mehrere Konstanten angegeben werden, auf die dann die Suche beschränkt wird. SELECT <Feldliste> FROM <Tabelle> WHERE <Feldname> IN(<konst1>,<konst2>,...) SELECT <Feldliste> FROM <Tabelle> WHERE <Feldname> BETWEEN <wert1> AND <wert2> SELECT * from Kunde where id IN(5,17,40) SELECT * from project where mittel between and Der NULL-Operator SELECT * FROM <tabelle> WHERE <Feldname> IS [NOT] NULL select * from Kunde where Name is NULL select * from arbeiten where Vorname is NOT NULL Unterabfragen Bis jetzt wurde der Vergleich in der WHERE -Klausel immer mit einer Konstanten durchgeführt. Zusätzlich dazu ist es möglich, den Vergleich mit dem Ergebnis einer weiteren SELECT-Anweisung durchzuführen. Eine Unterabfrage wird häufig als innere SELECT-Anweisung bezeichnet. Eine Unterabfrage kann im Zusammenhang mit folgenden Operatoren auftreten: alle Vergleichsoperatoren IN-Operator Seite 4 von

5 Unterabfragen mit Vergleichsoperatoren SELECT * FROM <Tabelle> WHERE <Feldname> = (SELECT * FROM <tabelle> WHERE <Feldname> = <wert>) SELECT abt_nr from mitarbeiter where m_nr in (select m_nr from arbeiten where pr_nr = 'p3') Nennen Sie die Abteilungsnummer allwe Mitarbeiter, die im Projekt p3 arbeiten. SELECT distinct pr_nr from arbeiten where m_nr < (select m_nr from mitarbeiter where m_name = 'Müller') Nennen Sie die Nummern aller Projekte, in welchen Mitarbeiter arbeiten, deren Personalnummer kleiner als die Nummer des Mitarbeiters namens Müller ist. Unterabfragen mit IN-Operator SELECT * FROM <Tabelle> WHERE <Feldname> IN (SELECT <Feldliste> FROM <Tabelle> WHERE <Feldname> = <wert>) Nennen Sie die Daten aller Mitarbeiter, die in München arbeiten Die GROUP BY -Klausel Die GROUP BY- Klausel definiert eine oder mehrere Spalten als Gruppenkennzeichen, wonach die Reihen gruppiert werden. SELECT <Feldname>,... FROM <tabelle> GROUP BY <Feldname> SELECT aufgabe from arbeiten GROUP BY aufgabe SELECT pr_nr, aufgabe from arbeiten GROUP BY pr_nr, aufgabe Gruppieren aller Mitarbeiter nach Projektnummer und Aufgabe Seite 5 von

6 Aggregatfunktionen Min Max Sum AVG Count Die Aggregatfunktionen können in einer SELECT-Anweisung mit oder ohne GROUP BY-Klausel erscheinen. Falls die SELECT-Anweisung die GROUP BY-Klausel nicht enthält, dürfen in der Projektion nur die Spaltennamen angegeben werden, die als Parameter der Aggregatfunktion erscheinen. Alle Spaltenamen, die nicht Parameter der Aggregatfunktion sind, dürfen in der SELECT-Anweisung erscheinen, falls sie zur Gruppierung verwendet werden. Die Funktionen MIN und MAX Die Funktionen ermitteln den kleinsten oder größten Wert aus einer Tabelle SELECT MIN(<Feldname>) as <alias> FROM <tabelle> select MIN(m_nr) as min_m_nr from mitarbeiter kleinste Personalnummer eines Mitarbeiters select m_nr, m_name from mitarbeiter where m_nr = (select min(m_nr) from mitarbeiter) Personalnummer und Namen des Mitarbeiters mit der kleinsten Personalnummer select m_nr from arbeiten where einst_dat = (select max(einst_dat) from arbeiten where aufgabe = 'Projektleiter') Finden Sie die Personalnummer des Projektleiters, der in dieser Position als letzter eingestellt wurde. Seite 6 von

7 Die Funktion SUM Die Aggregatfunktion SUM berechnet die Summe der Werte einer Spalte. Die Spalte muss numerisch sein. SELECT SUM(<Feldname>) <alias> from <tabelle> select SUM(mittel) summe from projekt Berechnen der Summe aller finanziellen Mittel Die Funktion COUNT Die Aggregatfunktion COUNT hat zwei verschiedene Formen. Die erste Form sieht wie folgt aus: COUNT ([distinct] <spalten_name>) Sie berechnet die Anzahl der Werte der Spalte, wobei alle mehrfach vorhandenen Werte nicht berücksichtigt werden. Die zweite Form der Funktion COUNT sieht folgendermaßen aus: COUNT(*) oder COUNT(1) Sie berechnet die Anzahl der Reihen. select pr_nr, count(m_nr) as anzahl from arbeiten group by pr_nr Finden sie heraus, wie viele Mitarbeiter in jedem Projekt arbeiten. select pr_nr, count(aufgabe)as anzahl from arbeiten group by pr_nr Finden Sie heraus, wie viele verschiedene Aufgaben in jedem Projekt ausgeübt werden. Seite 7 von

8 Die HAVING-Klausel Die HAVING-Klausel hat dieselbe Funktion für die GROUP-BY-Klausel wie die WHERE-Klausel für die SELECT-Anweisung. HAVING <Bedingung> select pr_nr from arbeiten group by pr_nr having count(*) < 4 Nennen Sie alle Projekte, mit denen weniger als vier Mitarbeiter befasst sind. Die ORDER BY-Klausel Die ORDER-BY-Klausel definiert die Reihenfolge der Ausgabe aller ausgewählten Reihen einer SELECT-Anweisung. Diese Klausel ist optional (ASC ist Defaultwert) ORDER BY <feldname> [ ASC DESC] SELECT m_nr, m_name, m_vorname from mitarbeiter order by m_nr UNION Mit UNION können zwei SELECT-Anweisungen miteinander verbunden werden SELECT name,vorname from <tabelle> UNION SELECT name,vorname from <tabelle> Die Felder müssen denselben Datentyp besitzen und in der gleichen Reihenfolge angegeben werden. select m_nr from mitarbeiter where abt_nr = 'a1' UNION select m_nr from arbeiten where einst_dat < ' ' order by 1 Seite 8 von

9 Komplexe Abfragen Verknüpfen zweier oder mehrerer Tabellen Der Equijoin Finden Sie für jeden Mitarbeiter, zusätzlich zu seiner Personalnummer, Namen und Vornamen, auch die Abteilungsnummer und den Standort der Abteilung. die doppelten Spalten beider Tabellen sollen ausgegeben werden. select mitarbeiter.*,abteilung.* from mitarbeiter, abteilung where mitarbeiter.abt_nr = abteilung.abt_nr Das Kartesische Produkt select * from mitarbeiter,abteilung Jeder Spalte der Tabelle mitarbeiter wird mit jeder Spalte der Tabelle abteilung verkettet. Das so entstandene Zwischenergebnis heißt Kartesisches Produkt. Eine Tabelle mit sich selbst verknüpfen select a.abt_nr, a.abt_name, from abteilung a, abteilung b where a.stadt = b.stadt and a.abt_nr <> b.abt_nr Finden sie alle Abteilungen, an deren Standort sich weitere Abteilungen befinden. INNER JOIN Gibt die Datenmenge aus beiden Tabellen zurück. Es werden nur Daten ausgegeben, die in beiden Tabellen vorkommen. SELECT Bestellungen.Menge, Artikel.EP FROM Artikel INNER JOIN Bestellungen ON Artikel.Artnr = Bestellungen.ArtNr; SELECT Kunden.Name, Kunden.Vorname, Bestellungen.Menge, Artikel.EP FROM Kunden INNER JOIN (Artikel INNER JOIN Bestellungen ON Artikel.Artnr = Bestellungen.ArtNr) ON Kunden.KdNr = Bestellungen.KdNr; LEFT JOIN SELECT Bestellungen.Menge, Artikel.Artnr FROM Artikel LEFT JOIN Bestellungen ON Artikel.Artnr = Bestellungen.ArtNr WHERE (((Bestellungen.Menge) Is Null)); Welcher Artikel wurde noch nie bestellt Seite 9 von

10 Die INSERT-Anweisung INSERT INTO mitarbeiter (m_nr, m_name, m_vorname) values(15201,'lang','viktor') INSERT INTO mit_neu(abt_nr, abt_name) select abt_nr, abt_name from abteilung where stadt = 'München' Die UPDATE-Anweisung UPDATE arbeiten set aufgabe = 'Gruppenleiter' where m_nr = and pr_nr = 'p2 UPDATE projekt set mittel = mittel * 0.89 Die DELETE-Anweisung Mit der DELETE-Anweisung werden Reihen aus einer Tabelle gelöscht. DELETE from <tabelle> where <bedingung> DELETE from arbeiten where m_nr = (select m_nr from mitarbeiter where m_name = 'Mozer' VIEWs Jedes View wird mit der Anweisung CREATE VIEW erstellt. die allgemeine Form dieser Anweisung ist: CREATE VIEW <view_name> AS <select_anweisung> CREATE VIEW qrysachbearbeiter as select m_nr, pr_nr, einst_dat from arbeiten where aufgabe = 'Sachbearbeiter Seite 10 von

11 Die Datendefinitionssprache DDL Erstellen einer Tabelle CREATE TABLE <Tabellenname> (<Spaltendef1>,<Spaltendef2>,...) Eine Spaltendefinition baut sich wie folgt auf: Bezeichner: Name des Attributs Datentyp: ChAR, SHORT,LONG,FLOAT,DOUBLE,Date,Blob,Bit,TEXT Zusatz: NOT NULL, WITH NULL, UNIQUE NOT NULL: das Feld kann keine Null-Werte enthalten WITH NULL: das Feld darf leer sein UNIQUE: das Feld ist indiziert, keine doppelten Einträge CREATE TABLE Kunde (Id integer NOT NULL, Name varchar(15), Ort varchar(30)) Erstellen einer Tabelle Kunde mit den Spalten Id, Name, Ort CREATE TABLE Kunde(id integer UNIQUE, Name varchar(15) NOT NULL) create table abteilung (abt_nr varchar(4) not null, abt_name varchar(20) not null, stadt char(15) null, primary key(abt_nr)) Primary Key-Klausel (CONSTRAINT) CONSTRAINT <schluesselname> PRIMARY KEY <feldname> CREATE TABLE Kunde (id integer CONSTRAINT PRIMARY KEY id, Name varchar(30) NOT NULL) Die referentielle Integrität Sie ermöglicht dem Benutzer die Einschränkung in Bezug auf Tabellen, die einen Primär- oder entsprechenden Fremdschlüssel enthalten. create table abteilung ( abt_nr char(4) not null, abt_name char(20) not null, stadt char(15) null, primary key(abt_nr)) Seite 11 von

12 create table mitarbeiter ( m_nr integer not null, m_name char(20) not null, m_vorname char(20) not null, abt_nr char(4) null, primary key(m_nr), foreign key(abt_nr) references abteilung(abt_nr)) Ändern einer Tabelle ALTER TABLE <Tabellenname> <MODIFIER> Modifier: ADD COLUMN ALTER COLUMN DROP COLUMN Hinzufügen von Spalten (ADD) Ändern einer Spalte (MODIFY) Löschen einer Spalte (DROP) ALTER TABLE Kunde ADD dummy SMALLINT Hinzufügen der Spalte dumme zur Tabelle Kunde ALTER TABLE Kunde MODIFY Name CHAR(30) Ändern des Datentyps der Spalte Name der Tabelle Kunde ALTER TABLE Kunde DROP dummy Löschen der Spalte dummy aus der Tabelle Kunde Seite 12 von

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Aufbau des SELECT-Befehls. Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen.

Aufbau des SELECT-Befehls. Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen. Datenbankabfragen (Query) mit SQL (Structured Query Language) 1 Aufbau des SELECT-Befehls Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen. SQL-Syntax: SELECT spaltenliste FROM tabellenname

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus:

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus: Einführung in MySQL SQL (Structured Query Language) ist eine Computersprache zum Speichern, Bearbeiten und Abfragen von Daten in relationalen Datenbanken. Eine relationale Datenbank kann man sich als eine

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services 531 27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services Im zweiten Teil dieses Buches haben wir die Eigenschaften der Transact-SQL- Sprache in Bezug auf die Bearbeitung von operativen Daten gezeigt.

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Structured Query Language (SQL) 1

Structured Query Language (SQL) 1 Structured Query Language (SQL) 1 1. Grundlagen und Hilfsmittel Structured Query Language, kurz SQL, wurde in den 70er Jahren bei IBM entwickelt, als eine Arbeitsgruppe die erste relationale Datenbank

Mehr

zwei verschiedene Darstellungsformen derselben Abfrage.

zwei verschiedene Darstellungsformen derselben Abfrage. SQL Sprache Die strukturierte Abfragesprache SQL (englisch: Structured Query Language) bildet einen Standard zur Formulierung von Abfragen. Das SQL und das Abfragefenster bilden zwei verschiedene Darstellungsformen

Mehr

Access Grundkurs. M. Eng. Robert Maaßen

Access Grundkurs. M. Eng. Robert Maaßen Access Grundkurs M. Eng. Robert Maaßen Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung Medientechnik, Diplom Ingenieur (FH), HAWK,

Mehr

Einführung in SQL mit Oracle

Einführung in SQL mit Oracle Seminar Einführung in SQL mit Oracle von Prof. Dr. Rainer Schwenkert Hochschule München c Vervielfältigung nur mit Zustimmung des Autors Themenbereiche SQL-Historie Wichtige DDL- und DML-Anweisungen Der

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

U 8 SQL. = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN:

U 8 SQL. = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN: U 8 SQL = Structured Query Language (heute auch Standard Query Language) ALLGEMEIN: - Abfragesprache für relationale Datenbanken, die plattformübergreifend verwendet wird - Vereinfachte Verwendung über

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

INFORMATIONSUNTERLAGEN. Grundzüge der SQL-Programmierung. Vag 09/2005

INFORMATIONSUNTERLAGEN. Grundzüge der SQL-Programmierung. Vag 09/2005 INFORMATIONSUNTERLAGEN zu Grundzüge der SQL-Programmierung Vag 09/2005 1. SQL 1.1. Einführung Die Sprache SQL (structured query language) wird als einer der Hauptgründe für den kommerziellen Erfolg von

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Arbeiten mit ACCESS 2013

Arbeiten mit ACCESS 2013 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2013 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

SQL. Abfragesprache Datenmanipulation - DML

SQL. Abfragesprache Datenmanipulation - DML SQL Abfragesprache Datenmanipulation - DML SQL DML-Operationen DML = Data Manipulation Language Sprache zur Veränderung der Daten Operationen Daten selektieren Daten einfügen Daten ändern Daten löschen

Mehr

SQL. Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 -

SQL. Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 - SQL - 1 - SQL Was ist SQL? SQL- Standards Grundregeln Die DDL Datenbanken erstellen Tabellen erstellen und ändern Spalten definieren Schlüssel definieren - 2 - Was ist SQL? 1974 unter dem Namen Sequel

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

Datenbankanfragen und -operationen mittels SQL

Datenbankanfragen und -operationen mittels SQL Datenbankanfragen und -operationen mittels SQL Über den verschiedenen Tabellen einer Datenbank werden Operationen ausgeführt, die immer wieder eine Tabelle als Ergebnis zurückgeben. Mathematisch modelliert

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen C3: Structured Query Language Lernziele: Nach der Bearbeitung dieser Lektion haben Sie folgende Kenntnisse erworben: Sie können elementaren

Mehr

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY.

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY. SELECT - Der Grundbefehl zur Auswahl von Daten Die SELECT-Anweisung fragt Daten aus einer Datenbank ab und stellt diese in einer virtuellen Tabelle zur Verfügung. Diese virtuelle Tabelle, eine Menge von

Mehr

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler Inhaltsverzeichnis Einleitung...13 SQL: Die Abfragesprache für Datenbanken...17 Kennzeichnende Merkmale von SQL...17 SQL-Dialekte...18 Kurze Entwicklungsgeschichte...18 SQL/86 oder SQL/1...19 SQL/89 oder

Mehr

MySQL: Einfaches Rechnen. www.informatikzentrale.de

MySQL: Einfaches Rechnen. www.informatikzentrale.de MySQL: Einfaches Rechnen Vorweg: Der Merksatz Warum geht Herbert oft laufen? Vorweg: Der Merksatz Warum geht Herbert oft laufen?...... WHERE... GROUP BY... HAVING... ORDER BY... LIMIT Beispieldatenbank

Mehr

Kompaktes Datenbank-Wissen rund um die Datenbank-Programmierung mit Transact-SQL

Kompaktes Datenbank-Wissen rund um die Datenbank-Programmierung mit Transact-SQL UnternehmensDatenbanken im Netzwerk Teil 3: SQL Programmierung - Grundlagen SQL-Befehle Funktionen Operatoren Datentypen Datenbank erstellen Tabellen SQL-Abfragen Autor: Rainer Egewardt Copyright Kompaktes

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Wirtschaftsinformatik. SQL Abfragen und QBE. Unterrichtsskript. Version: 2.0

Wirtschaftsinformatik. SQL Abfragen und QBE. Unterrichtsskript. Version: 2.0 Wirtschaftsinformatik SQL Abfragen und QBE Unterrichtsskript Version: 2.0 Autor: Jonas Lanz Datum: 02.06.2006 FHNW Hochschule für Wirtschaft 2 / 29 Inhaltsverzeichnis 1. Einführung 3 1.1 Relationale Operationen

Mehr

IBM Informix SQL. Seminarunterlage. Version 11.04 vom

IBM Informix SQL. Seminarunterlage. Version 11.04 vom Seminarunterlage Version: 11.04 Version 11.04 vom 27. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird.

2) Nennen Sie die Namen der 3 Ebenen des 3-Ebenen-Modells, und geben Sie an, was in jeder Ebene dargestellt wird. Übungen und Lösungen 1. Einführung Datenbanken 1) Welche Datenbanktypen kennen Sie? Wodurch sind sie gekennzeichnet? Hierarchische Datenbanken: Zwischen den Datensätzen besteht eine untergeordnete Rangfolge.

Mehr

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5. Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.1 im Internet: www.datenbanken-programmierung.de... 3.0 SQL nach

Mehr

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden.

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden. Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) PHP & MySQL MySQL Einführung Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424 (Michael.Kluge@tu-dresden.de) Inhalt Grundsätzliches

Mehr

SQL. Structured Query Language

SQL. Structured Query Language SQL Structured Query Language Grundlagen zu Abfrage SQL Jede SQL-Abfrage enthält die drei Hauptbefehle: select (engl. auswählen), from (engl. von) und where (engl. wo). Mit select gibt man an, welche Spalten

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

StructuredQueryLanguage(SQL)

StructuredQueryLanguage(SQL) StructuredQueryLanguage(SQL) Themen: ErstelenundÄndernvonTabelen AbfragenvonDaten Einfügen,ÄndernundLöschenvonDaten Erstelennutzerde niertersichten(views) 2012Claßen,Kempa,Morcinek 1/23 SQL Historie System

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Stichwortverzeichnis. Iron Werther. Business Intelligence

Stichwortverzeichnis. Iron Werther. Business Intelligence Stichwortverzeichnis Iron Werther Business Intelligence Komplexe SQL-Abfragen am Beispiel eines Online-Shops. Inkl. Testdatenbank mit über zwei Millionen Datensätzen ISBN (Buch): 978-3-446-43580-3 ISBN

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

5 SQL Structured Query Language

5 SQL Structured Query Language 5 SQL Structured Query Language 5.1 Allgemeines zu SQL... 5 5.2 SQL-DDL: Definition eines Datenbankschemas... 8 5.3 SQL-DML: Abfragen in SQL (Query Language)... 15 5.4 SQL-DML: Mutationen in SQL (Insert,

Mehr

SQL. Komplexe Abfragen. SQL-Komplexe Abfragen. SQL-Komplexe Abfragen. Komplexe Abfragen verknüpfen mehrere Tabellen miteinander.

SQL. Komplexe Abfragen. SQL-Komplexe Abfragen. SQL-Komplexe Abfragen. Komplexe Abfragen verknüpfen mehrere Tabellen miteinander. SQL Komplexe Abfragen Komplexe Abfragen verknüpfen mehrere Tabellen miteinander. Voraussetzung für das Verständnis ist die Beherrschung einfacher SELECT-Abfragen Die Möglichkeit, Tabellen zu verknüpfen,

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL )

SQL-DDL und SQL-Anfragen. CREATE TABLE Kategorie (Bezeichnung VARCHAR(15) NOT NULL PRIMARY KEY, Klassifikationskriterium VARCHAR(100) NOT NULL ) Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 6 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 1.12.2003 SQL-DDL und SQL-Anfragen

Mehr

Microsoft Access 2010 SQL nutzen

Microsoft Access 2010 SQL nutzen Microsoft Access 2010 SQL nutzen Welche Bestellungen hat Kunde x aufgegeben? Welche Kunden haben noch nie bestellt? Wer hat welche Bestellungen von welchen Kunden aufgenommen? S(tructured)Q(uery)L(anguage)

Mehr

7.5.3. CREATE TABLE-Syntax

7.5.3. CREATE TABLE-Syntax 7.5.3. CREATE TABLE-Syntax 7.5.3.1. Stille Spaltentyp-Änderungen CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tabelle [(create_definition,...)] [tabellen_optionen] [select_statement] create_definition: spalten_name

Mehr

DATENBANKEN & SQL. Martin Schmidt Berufsschule Obernburg

DATENBANKEN & SQL. Martin Schmidt Berufsschule Obernburg DATENBANKEN & SQL Martin Schmidt Berufsschule Obernburg Hinweis Das Script enthält zahlreiche Codebeispiele, die teilweise direkt zu den im Unterricht verwendeten Übungsdatenbanken Volkshochschule Waldklinik

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

DBMS-Übungsserver. Seite 1 von 13

DBMS-Übungsserver. Seite 1 von 13 Aufgabe Nr. 1, BETWEEN-Prädikat Welche Fahrten finden von Heiligabend bis Neujahr 2001/2002 einschließlich statt? Rückgabe-Typ sei (fahrtnr). SELECT fahrtnr FROM Fahrt WHERE tag BETWEEN '2001-12-24' AND

Mehr

Microsoft Access 2010 SQL nutzen

Microsoft Access 2010 SQL nutzen Microsoft Access 2010 SQL nutzen Welchen Bestellwert haben die einzelnen Bestellposten? Wie ist der durchschnittliche Bestellwert? Wie viel Zeit liegt zwischen dem Bestelldatum und dem Versanddatum? S(tructured)Q(uery)L(anguage)

Mehr

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Garten -Daten Bank Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Inhalt heute Kurz: Motivation und Begriffe SQL (am Beispiel MySQL und Workbench) create table(tabelle erzeugen) insert into(einfügen) select

Mehr

SQL Structured Query Language

SQL Structured Query Language SQL Structured Query Language LV Datenorientierte Systemanalyse, WS 2014/15 Dr. Walter Ebner, Institut für Informationswirtschaft Wirtschaftsuniversität Wien SQL Structured Query

Mehr

4. Structured Query Language (SQL)

4. Structured Query Language (SQL) 4. Structured Query Language (SQL) Rückblick Konzeptuelles Modell (ERM) können wir nun in (wenige) Relationen übersetzen Relationale Algebra gibt uns eine Sprache an die Hand, mit der wir Anfragen auf

Mehr

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005 Webbasierte Informationssysteme SS 2005 8. SQL-Vertiefung Prof. Dr. Stefan Böttcher Universität Paderborn Datenbanksprache SQL Structured Query Language (SQL) - am IBM San Jose Research Laboratory entwickelt

Mehr

FRANZIS PROFESSIONAL SERIES. Daniel Warner. udienausgabe. SQL für Praxis und Studium. Mit 95 Abbildungen

FRANZIS PROFESSIONAL SERIES. Daniel Warner. udienausgabe. SQL für Praxis und Studium. Mit 95 Abbildungen FRANZIS PROFESSIONAL SERIES Daniel Warner Advanced SQL. udienausgabe SQL für Praxis und Studium Mit 95 Abbildungen 11 Inhaltsverzeichnis 1 Einleitung 21 1.1 Über das Buch und seine Zielgruppe 21 1.2 Inhalte

Mehr

Index. Zahlen. Symbole

Index. Zahlen. Symbole Index Zahlen 1NF (Erste Normalform) 177, 181, 194, 320 321, 340 2NF (Zweite Normalform) 329 335, 340 funktionelle Abhängigkeit 331 3NF (Dritte Normalform) 336 Symbole % (Prozentzeichen) 101, 102 (einfache

Mehr

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27 Inhalt 1. MySQL-Einführung 1... 1.1 Geschichte von MySQL... 1 1.2 Entscheidungskriterien für MySQL... 2 1.3 Installation eines MySQL-Servers... 3 1.3.1 Linux... 5 1.3.2 Windows 9x/Me/NT/2000/XP... 7 1.3.3

Mehr

JOIN-Strategien eines Optimizers (1)

JOIN-Strategien eines Optimizers (1) JOIN-Strategien eines Optimizers (1) Die drei unten aufgeführten Join-Strategien *) sollen exemplarisch anhand der folgenden SQL-Abfrage erklärt werden: select * from B, C where c.x=b.w and c.z=17; Verschachtelter

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 22. April 2013 - MySQL Sebastian Cuy sebastian.cuy@uni-koeln.de Datenbanken Was sind eigentlich Datenbanken? Eine

Mehr

5. Datenabfrage mit SQL 14

5. Datenabfrage mit SQL 14 Informationsbestände analysieren Datenabfrage mit SQL 5. Datenabfrage mit SQL 14 5.1. Einige Infos zu SQL SQL wurde Ende der 70er Jahre in den IBM Labors entwickelt und später als Standard für relationale

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing.

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing. PHP + MySQL Die MySQL-Datenbank Zusammenspiel Apache, PHP, PHPMyAdmin und MySQL PHPMyAdmin Verwaltungstool Nutzer Datei.php oder Datei.pl Apache HTTP-Server PHP Scriptsprache Perl Scriptsprache MySQL Datenbank

Mehr

Structured Query Language SQL

Structured Query Language SQL K.-H. Krötzsch Structured Query Language SQL 05.11.-18.11.2002 1. Wichtige Konventionen Zeichenketten, Kommentare, Befehlsende 2. Einfache Abfragen SELECT DISTINCT AS FROM LIMIT oder TOP ORDER BY; ASC

Mehr

SQL (Structured Query Language) Datenbanken und Tabellen erstellen

SQL (Structured Query Language) Datenbanken und Tabellen erstellen SQL (Structured Query Language) Datenbanken und Tabellen erstellen Bücher RRZN-Handbuch "SQL, Grundlagen und Datenbank-Design" Alan Beaulieu: Einführung in SQL; O'Reilly-Verlag; ISBN-Nr. 978-3-89721-443-9

Mehr