Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg. vorgelegt von Steffen Groth aus Hamburg

Größe: px
Ab Seite anzeigen:

Download "Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg. vorgelegt von Steffen Groth aus Hamburg"

Transkript

1 UNIVERSITÄT HAMBURG DEPARTMENT PHYSIK Ferninfrarotspektroskopie an mittels lokaler anodischer Oxidation mit einem Rasterkraftmikroskop hergestellten niedrig-dimensionalen Elektronensystemen Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg vorgelegt von Steffen Groth aus Hamburg Hamburg 2008

2

3 Gutachter der Dissertation: Gutachter der Disputation: Professor Dr. D. Heitmann Professor Dr. U. Merkt Professor Dr. D. Heitmann Professor Dr. W. Hansen Datum der Disputation: 23. Mai 2008 Vorsitzender des Prüfungsausschusses: Vorsitzender des Promotionsausschusses: Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften: Dr. T. Kipp Professor Dr. J. Bartels Professor Dr. A. Frühwald

4

5 Abstract In this thesis low dimensional electron systems, like quantum dots, quantum point contacts and meandering miniature conducting stripes are investigated. Starting from modulation doped GaAs/AlGaAs heterostructures the recently introduced technique of local anodic oxidation with an atomic force microscope is used to analyze and manipulate structures in the submicrometer regime. Magnetotransport, spectrally integrated, microwave and photoconductivity measurements are performed with these samples. First the parameters for the local anodic oxidation are optimized to find the best. For these investigations different parameters as the speed of the atomic force microscope tip, the tip-probe voltage and the tip pressure on the sample were varied. By selectively etching the oxide with HCl a connection between the height of the prepared oxide and its depth is found. The samples are fabricated with different geometries and designs. For comparison meandering conducting stripes, separated into several resonators by quantum point contacts are prepared by local anodic oxidation with the atomic force microscope and by electron beam lithography in a scanning electron microscope. Measurements on a quantum point contact in a 3 He system with temperatures down to 300 mk show quantized transport. Meandering conductive stripes with lateral width down to 150 nm and length up to 170 µm are prepared with local anodic oxidation. These conductive stripes were investigated by magnetotransport- and photoconductivity measurements. These measurements show the characteristic behavior of an one dimensional electron system. Photoconductivity measurements on the meandering conducting stripes with resonators demonstrate a shift of the photoconductivity resonances to higher energies in contrast to the cyclotron resonance frequency of the two dimensional electron system. Calculations illustrate the origin of these resonances. By applying modulated radiation in the microwave regime, measurements on these conducting stripes show oscillations of the resistance at small magnetic fields. They are periodic in 1. These oscillations neither appear in magnetotransport nor in photomodulated transport measurements. They are microwave detected oscillations in a local B defined area of the two dimensional electron system.

6

7 Inhaltsangabe In dieser Arbeit werden niedrig dimensionale Elektronensysteme wie Einzel-Quanten-Punkte, Quanten-Punkt-Kontakte und mäanderförmige Miniaturleiterstreifen hergestellt und untersucht. Beginnend mit modulationsdotierten GaAs/AlGaAs- Heterostrukturen wird mit einem Rasterkraftmikroskop die Technik der lokalen anodischen Oxidation genutzt, um die Proben im Submikrometerbereich zu strukturieren. Diese Strukturen werden mittels Magnetotransportmessungen, Ferninfrarotspektroskopie und Mikrowellenmessungen analysiert. Zunächst werden die Oxidationsparameter, wie die Schreibgeschwindigkeit, der Spitzendruck und die Proben-Spitzen-Spannung bei der lokalen anodischen Oxidation optimiert. Durch selektives Ätzen wird ein Zusammenhang zwischen Oxidhöhe und Oxidtiefe analysiert. Die Strukturen werden in verschiedenen Geometrien und Designs gefertigt. Ein mäanderförmiger Miniaturleiterstreifen, der durch Quanten-Punkt-Kontakte in einzelne Resonatoren unterteilt ist, wird zum Vergleich der Präparationsmethoden mit Hilfe der lokalen anodischen Oxidation und mit Elektronenstrahllithographie am Rasterelektronenmikroskop hergestellt. Bei Messungen an einem Quanten-Punkt-Kontakt in einem 3 He-System bei einer Temperatur von 300 mk wird quantisierte Leitfähigkeit nachgewiesen. Mäanderförmige Miniaturleiterstreifen mit einer Breite herunter bis 150 nm und einer Länge von bis zu 170 µm zeigen in Magnetotransport- und Photoleitungsspektroskopiemessungen das Verhalten eines eindimensionalen Leiterstreifens. An Miniaturleiterstreifen mit Resonatoren durchgeführte Photoleitungsspektroskopiemessungen zeigen eine Verschiebung ihrer Resonanz aus der Photoleitungsspektroskopie zu höheren Energien im Vergleich zu der Zyklotronresonanzfrequenz des zweidimensionalen Elektronensystems. Unterschiedliche Theorien zu der Entstehung der Resonanz werden in dieser Arbeit präsentiert. Unter modulierter Bestrahlung im Mikrowellenbereich ergeben sich Oszillationen bei niedrigen Magnetfeldern, die periodisch in 1 sind. Diese Oszillationen treten weder in Transportnoch in Photoleitungsmessungen auf. Hierbei handelt es sich um eine durch die B Mikrowellenstrahlung detektierte Shubnikov-de Haas-Oszillation in einem lokal definierten Bereich des zweidimensionalen Elektronensystems.

8

9 Inhaltsverzeichnis 1 Einleitung 1 2 Theoretischer Hintergrund Zweidimensionale Elektronensysteme Plasmonen Eindimensionale Elektronensysteme Nulldimensionale Elektronensysteme Quasi nulldimensionale Elektronensysteme Quanten-Punkt-Kontakte Einzel-Quanten-Punkte Rasterkraftmikroskopie Funktionsweise Arbeitsweise Probenpräparation Heterostruktur Bearbeitung des Wafers Präparation der Mesa Einlegieren von Kontakten Lokale anodische Oxidation Elektronen-Strahl-Lithographie Wedgen Bonden Messmethoden He-System Magnetotransportmessung Photoleitungsspektroskopie Spektral integrierte Photoleitung Mikrowellen-Messung Bolometrischer Effekt I

10 Inhaltsverzeichnis 6 Ergebnisse Ergebnisse und Auswertung Optimierung der AFM-Präparation Messungen an einem Quanten-Punkt-Kontakt Einzelquantenpunkte als Einzel-Elektronen-Transistoren Mäanderförmige Miniaturleiterstreifen und Quantenpunktleiter Untersuchungen an mäanderförmigen Miniaturleiterstreifen Magnetotransport und photomodulierter Transport Photoleitungsspektroskopie Untersuchungen an mäanderförmigen Quantenpunktleitern Magnetotransport und photomodulierter Transport Photoleitungsspektroskopie Mikrowellenmodulierte Photospannungsmessungen REM präparierte Quantenpunktleiter Zusammenfassung und Ausblick 93 A Prozessparameter 97 A.1 Erzeugung der Mesastruktur A.2 Einlegierkontakte A.3 REM erste Schicht A.4 REM zweite Schicht Literaturverzeichnis 99 II

11 Abbildungsverzeichnis 2.1 Aufbau eines Shallow-HEMTs Bandkantenverlauf der Probe Shubnikov-de Haas-Oszillationen Zustandsdichte eindimensionaler Subbänder Abweichung der Magnetoplasmonfrequenz von der Zyklotronresonanzfrequenz des 2DES Resonanzen in einem Quantenpunkt Abweichung der beiden Punktmoden von der Zyklotronresonanzfrequenz des 2DES Magnetoplasmonenfrequenz eines ellipsenförmigen 2DES Magnetoplasmonenfrequenz eines rechteckigen 2DES Quanten-Punkt-Kontakt Leitfähigkeit eines QPCs bei angelegter Gatespannung Einzel-Quanten-Punkt Coulomb-Blockade Coulomb-Blockade-Peaks Photonendetektion mit einem QP Leitfähigkeit eines Quantenpunktes mit und ohne FIR-Strahlung Rasterkraftmikroskop AFM-Spitze über der Probe Siliziumspitze AFM im Tapping-Modus Geometrie einer AFM-Spitze Eigenschaften der Geometrie einer AFM-Spitze Orientierungen des Wafers Die Vorstruktur Die Struktur der Probe Schematische Darstellung der lokalen anodischen Oxidation Beispiel oxidierter Linien Auftretender Shift bei der lokalen anodischen Oxidation III

12 Abbildungsverzeichnis 4.7 AFM-Bild einer Mittels REM präparierten Nanostruktur Gebondete Probe Probenstab im Kryostaten He-System Magnetotransportmessung Michelson-Interferometer Photoleitungsspektroskopie Spektral integrierte Photoleitung Der bolometrische Effekt Bestimmung der optimalen Oxidationsparameter Bestimmung der Tiefe der Oxidlinien Quanten-Punkt-Kontakt Quantisierter Transport in einem Quanten-Punkt-Kontakt Einzel-Elektronen-Transistor Zwei Einzel-Elektronen-Transistoren in einer Struktur Mäanderförmiger Miniaturleiterstreifen Mäanderförmiger Quantenpunktleiter Mittels Lithographie am REM präparierter Quantenpunktleiter Abweichende Oszillationsperioden bei einem Miniaturleiterstreifen Photomodulierter Transport an einem Miniaturleiterstreifen Photoleitungsspektrum an einem Miniaturleiterstreifen Plasmonmode eines Miniaturleiterstreifens verglichen mit der Zyklotronresonanzfrequenz des 2DES /B Transportabhängigkeit eines Quantenpunktleiters Photomodulierter Transport an einem Quantenpunktleiter Photoleitungsspektrum eines Quantenpunktleiters Plasmonmode eines Quantenpunktleiters verglichen mit der Zyklotronresonanzfrequenz des 2DES Quantenpunktmode eines Quantenpunktleiters verglichen mit der Zyklotronresonanzfrequenz des 2DES Rechteckmode eines Quantenpunktleiters verglichen mit der Zyklotronresonanzfrequenz des 2DES Ellipsenmode eines Quantenpunktleiters verglichen mit der Zyklotronresonanzfrequenz des 2DES Magnetotransport- und mikrowellenmoduliertes Photospannungssignal eines Quantenpunktleiters /B Abhängigkeit der mikrowelleninduzierten Photospannungsmessung IV

13 Abbildungsverzeichnis 6.23 Grauskalenplot der Mikrowellenfrequenz von Photospannungsmessungen gegen das Magnetfeld Schwebung bei einer Frequenz von f = 90 GHz Fouriertransformation der Photospannungsmessung bei 90 GHz Mikrowelleninduzierte Photospannung und Lage der MIROs Gateabhängige Magnetotransportmessungen an einem mit dem REM präparierten Quantenpunktleiter Photomodulierte Transportmessung eines mit dem REM präparierten Quantenpunktleiters Photomodulierte Transportmessung eines mit dem REM präparierten Quantenpunktleiters bei einer Gatespannung von U = 120 mv V

14 Abbildungsverzeichnis VI

15 1 Einleitung In den vergangenen 60 Jahren hat die Erforschung von Halbleiter-Technologien einen gewaltigen Fortschritt und Wandel in der Elektronik bewirkt. Bei diesem Wandel ist auch am Anfang des neuen Jahrhunderts noch kein Ende absehbar. Nach wie vor ist die Halbleiter-Technologie eines der Hauptgebiete der Forschung und Entwicklung mit einem großen Einfluss auf zukünftige Technologien. Bereits im Jahre 1947 wurde der erste Germanium-Transistor erfunden. Aber erst mit der Anwendung von Integrierten Schaltungen (ICs 1 ) im Jahre 1958 gewann die Mikroelektronik stark an Bedeutung. Mit der Entwicklung unipolarer Silizium-MOSFETs 2 fand eine Weiterentwicklung der bipolaren Transistoren statt. Unipolare Silizium-MOSFETs stellen in der heutigen Zeit eines der wichtigsten Schaltelemente der Mikroelektronik dar. Der Zwang der Halbleiterindustrie immer mehr Transistoren pro Fläche auf einem Chip unterzubringen, führt zu einer fortwährenden Miniaturisierung der Schaltungen [Moo65]. Da auch in der Mikroelektronik kürzere Wege kürzere Laufzeiten bedeuten, erhöhen sich gleichzeitig die Schaltgeschwindigkeiten der ICs. Heutzutage sind Bauelemente mit lateralen Strukturbreiten im Submikrometerbereich und Schaltgeschwindigkeiten im GHz- Bereich in vielen elektronischen Geräten eingebaut. Die Erschließung niedrigerer Dimensionen und höherer Schaltgeschwindigkeiten ist weiterhin eines der Hauptziele der Halbleiterentwicklung. Um die notwendige Reinheit zur Präparation von Mikrostrukturen aus Halbleitermaterialien wie Silizium (Si), Galliumarsenid (GaAs) oder Aluminium-Galliumarsenid (AlGaAs) in solchen Größenordnungen gewährleisten zu können, werden die Strukturierungsprozesse in Reinsträume verlegt. Die immer kleiner werdenden elektronischen Strukturen sowie das Maßschneidern von Heterostrukturen bedeutete eine Einschränkung in der Bewegungsfreiheit der Elektronen. Das Anlegen von Magnetfeldern schränkt die Bewegungsfreiheit der Elektronen weiter ein. Im Jahre 1980 führte ein solches System zur Entdeckung des Quanten-Hall-Effekts an einem MOSFET durch Klaus von Klitzing [vk80]. Für seine Arbeit erhielt er 1985 den Nobelpreis für Physik. Ein mächtiges Werkzeug zur Untersuchung von Strukturen im Bereich einzelner 1 IC: Integrated Circuit (engl.) integrierte Schaltung 2 MOSFET: Metal Oxide Semiconductor Field Effect Transistor (engl.) Metalloxid-Feldeffekt- Transistor 1

16 1 Einleitung Atome stellt das Rastertunnelmikroskop dar. Es wurde 1982 von Binnig, Rohrer, Gerber und Weibel entwickelt [Bin82]. Diese Entwicklung wurde vier Jahre später mit dem Nobelpreis honoriert. Seit 1986 können mit der Erfindung des Rasterkraftmikroskops durch Binnig, Quate und Gerber [Bin86] auch nichtleitende Materialien untersucht werden. Im Zuge der Miniaturisierung der Halbleitertechnologie kommt auch die Ferninfrarotspektroskopie mehr und mehr in den Bereich der Untersuchung einzelner Nanostrukturen, wie einzelner Quantenpunkte oder einzelner Quantendrähte. Hierbei konnten im Jahr 2000 von Komiyama et al. [Kom00] einzelne Photonen gemessen werden. In der hier präsentierten Arbeit werden mit Hilfe eines Rasterkraftmikroskops und eines Rasterelektronenmikroskops Strukturen im Nanometerbereich, wie Einzel-Elektronen-Transistoren und Quantenpunktleiter, hergestellt und mittels verschiedener Messverfahren untersucht. Nach einer kurzen Einführung in den theoretischen Hintergrund zu dieser Arbeit folgt ein Kapitel über das verwendete Rasterkraftmikroskop, ein Kapitel über die Präparationsmethoden, die in dieser Arbeit verwendet werden und ein Kapitel über die Messmethoden. Eine detaillierte Vorstellung und Diskussion der erzielten Ergebnisse sowie ein Ausblick werden am Ende der Arbeit gegeben. 2

17 2 Theoretischer Hintergrund 2.1 Zweidimensionale Elektronensysteme In dieser Arbeit werden nanostrukturierte elektronische Systeme untersucht, die ausgehend von modulationsdotiertem Aluminium-Galliumarsenid (AlGaAs) / Galliumarsenid (GaAs)-Heterostrukturen hergestellt werden. Eine solche Heterostruktur ist in Abb. 2.1 dargestellt. Mit Hilfe einer MBE 1 -Anlage wird AlGaAs epitaktisch auf GaAs-Schichten aufgewachsen. An der Grenzfläche stellt sich ein Sprung in der Leitungsband- und Valenzbandkante ein. Wird das AlGaAs mit Silizium (Si) dotiert, so werden Elektronen im GaAs transferiert. Sie erzeugen dort in selbstkonsistenter Weise ein Einschlusspotenzial in Wachstumsrichtung z. Es kommt zu einer Einschränkung der Elektronenbewegung in dieser Richtung. Die Elektronen können sich nur noch in der xy-ebene frei bewegen. Daher wird von einem zweidimensionalen Elektronensystem (2DES) gesprochen. Aufgrund der Impulsquantisierung in Wachstumsrichtung bilden sich sogenannte zweidimensionale (2D-) Subbänder aus. Wenn der Einschluss in z-richtung erfolgt, ergibt sich für das m-te 2D-Subband eine Elektronenenergie von: E m (k x,k y ) = 2 2m (k2 x + k 2 y) + E 0 (m) (2.1) Wobei k x und k y die Wellenvektoren in x- und y-richtung der sich frei bewegenden Elektronen bezeichnen. E(m) ist das quantisierte Energieniveau und m die durch die Bandstruktur bedingte reduzierte Elektronenmasse. In den Heterostrukturen dieser Arbeit wird nur das energetisch niedrigste Subband mit m = 1 besetzt. In Abb. 2.2 ist der schematische Verlauf der Valenz- und Leitungsbandkanten eines 2DES in Wachstumsrichtung dargestellt. Im oberen Bereich der Abbildung ist die Leitungsbandkante, im unteren die Valenzbandkante dargestellt. Die Fermi- Energie ist durch E F, die Bandlücke von AlGaAs durch E g1 und die Bandlücke von GaAs ist durch E g2 gekennzeichnet. Der undotierte Spacer trennt das 2DES von der Si-dotierten Schicht. Die ungefüllten Kreise symbolisieren unbesetzte, die gefüllten besetzte Donator- bzw. Akzeptorniveaus. Das 2DES ist als grauer Balken dargestellt. Bis zur Fermi-Energie sind alle Zustände gefüllt. 1 MBE: Molecular Beam Epitaxy (engl.) Molekularstrahlepitaxie 3

18 2 Theoretischer Hintergrund nm cap-layer-gaas 10 nm Si-doped-AlGaAs 20 nm AlGaAs 2 DES 1000 nm GaAs-Buffer y z x Abbildung 2.1: Schematischer Aufbau eines MBE-gewachsenen GaAs-Shallow- HEMTs. Das 2DES befindet sich nur 35 nm unter der Waferoberfläche. Der 1000 nm dicke Buffer sorgt beim Aufwachsen für eine saubere Oberfläche und baut Verspannungen des Substrats ab. Durch den Einschluss in z-richtung entsteht ein Subband für jede Quantisierungsenergie in z-richtung. Die Anzahl der Elektronenzustände pro Energieintervall wird als 2D-Zustandsdichte (DOS 2 ) bezeichnet. Im 2DES hat jedes Subband die konstante Zustandsdichte m D 2D (E) = g s 2π, (2.2) wobei g s = 2 der Spin-Entartungsfaktor ist [And82]. Die Abbildung 2.2 stellt den Bandkantenverlauf der in dieser Arbeit verwendeten Proben dar. Das Besondere an der Struktur in Abbildung 2.1 ist der sehr geringe Abstand zwischen der Waferoberfläche und dem 2DES. Eine solche MBE-Struktur wird Shallow-HEMT 3 genannt und ist in dieser Arbeit für die weitere Präparation von nanostrukturierten 2DES von besonderer Bedeutung. Wird ein homogenes äußeres Magnetfeld B senkrecht zur Ebene des Elektronengases angelegt, werden die Elektronen klassisch vereinfacht betrachtet auf Kreisbahnen gezwungen. Quantenmechanisch betrachtet befinden sich die Elektronen in Eigenzuständen. Diese Eigenzustände werden als Landau-Niveaus bezeichnet [Lan30]. Die Energie dieser Landau-Niveaus ist hierbei gegeben durch: E n = ( n ) ω CR n ǫ 0, 1, 2, 3,.... (2.3) 2 DOS: Density Of States (engl.) Zustandsdichte 3 HEMT: High Electron Mobility Transistor (engl.) Transistor mit hochbeweglichen Elektronen 4

19 2.1 Zweidimensionale Elektronensysteme 2DES L V z Abbildung 2.2: Schematischer Bandkantenverlauf der in dieser Arbeit verwendeten Proben. E L ist die Leitungsbandkante, E V die Valenzbandkante. Die Fermi-Energie ist durch E F, die Bandlücke von AlGaAs durch E g1, die von GaAs durch E g2 gekennzeichnet. Der undotierte Spacer trennt das 2DES von den Si-Donatoren. Die ungefüllten Kreise symbolisieren unbesetzte, die gefüllten besetzte Donatorbzw. Akzeptorniveaus. Das 2DES ist als grauer Balken dargestellt. Alle Zustände bis zur Fermi-Energie sind gefüllt. 5

20 2 Theoretischer Hintergrund Der Index n bezieht sich hierbei auf das n-te Landau-Niveau. Die Zyklotronresonanzfrequenz ist definiert durch ω CR = eb/m. Der Füllfaktor ν = N S /N L beschreibt die Zahl der besetzten Landau-Niveaus. N S ist die Ladungsträgerdichte des 2DES. Jedes Landau-Niveau n ist folgendermaßen entartet: N L = eb h. (2.4) Sollen spinentartete Niveaus betrachtet werden, wird der rechte Term in der Formel um einen Faktor zwei ergänzt. Im Magnetfeld ist die Zustandsdichte im idealen Fall auf der Energieskala durch eine Summe von Deltafunktionen gegeben. Im realen System sind die Landau-Niveaus aufgrund von Streuprozessen und Kristalldefekten allerdings verbreitert [And82]. Üblicherweise wird die Zustandsdichte in solchen Systemen als Summe von Gauß- oder Lorentz-förmigen Niveauverbreiterungen angegeben [Pot96]. Die elektronischen Transporteigenschaften im 2DES werden maßgeblich durch die Zustandsdichte beeinflusst. Wird der Widerstand entlang der Stromflussrichtung R xx gemessen, treten sogenannte Shubnikovde Haas-Oszillationen auf. Diese sind periodisch in 1/B und dadurch zu erklären, dass die Fermi-Energie an die Energie der Landau-Niveaus gepinnt ist. Die Positionen der Landau-Niveaus werden auf der Energieskala mit wachsendem Magnetfeld zu höheren Energien verschoben. Hierbei durchlaufen sie ganzzahlige Füllfaktoren des ursprünglichen Fermi-Niveaus E F vom Magnetfeld B = 0 T. Dabei werden die Zustände in dem jeweiligen Landau-Niveau gefüllt, bis dieses voll ist. Anschließend wird das nächste Landau-Niveau gefüllt. Dies führt bei ganzzahligen Füllfaktoren zu einem Sprung im Verlauf der Fermi-Energie. An diesen Stellen und bei genügend tiefen Temperaturen entstehen Widerstandsminima. Sind die Landau-Niveaus energetisch vollständig getrennt, sinkt der Widerstand auf Null. Zur Veranschaulichung dieser Shubnikov-de Haas-Oszillationen ist im Vorgriff auf den Experimentalteil in der Abbildung 2.3 eine an einem GaAs-Quantenpunktleiter aufgenommene Magnetotransportmessung bei einer Temperatur von T = 300 mk dargestellt. Der longitudinale Widerstand erreicht hier nicht Null. An dieser Probe tritt keine vollständige Trennung der Landau-Niveaus auf. Die Füllfaktoren sind dennoch sehr gut zu erkennen. Füllfaktor ν = 3 liegt bei 6,2 T, ν = 4 bei 4,7 T, ν = 5 bei 3,7 T, ν = 6 bei 3,1 T und Füllfaktor ν = 8 bei 2,3 T. Die geraden Füllfaktoren sind mit langen Balken gekennzeichnet, die ungeraden mit kurzen Balken. Aus der Periodizität der Shubnikov-de Haas-Oszillationen ergibt sich eine Ladungsträgerdichte von N S = 4, Elektronen/cm 2. Bei einer Bestrahlung des 2DES mit Ferninfrarotstrahlung werden bei definierter Magnetfeldrichtung Elektronen aus besetzten Landau-Niveaus mit dem Index n in das nächst höhere, unbesetzte oder teilweise besetzte Niveau mit dem Index n + 1 angeregt [Abs74]. Dabei gelten Auswahlregeln für links- bzw. rechtszirkular polarisierte Strahlung. Dieser Übergang wird als die Zyklotronresonanz bezeichnet. 6

21 2.1 Zweidimensionale Elektronensysteme 5 ν = 8 ν = 6 ν = 4 ν = 5 ν = 3 4 R xx (kω) Magnetfeld (T) Abbildung 2.3: Eine in dieser Arbeit durchgeführte Messung einer Shubnikov-de Haas-Oszillationen an einem GaAs-Quantenpunktleiter bei einer Temperatur von 300 mk. Die berechneten Füllfaktoren befinden sich bei folgenden Magnetfeldern: ν = 3 bei 6,2 T, ν = 4 bei 4,7 T, ν = 5 bei 3,7 T, ν = 6 bei 3,1 T und ν = 8 bei 2,3 T. Die geraden Füllfaktoren sind mit langen Balken, die ungeraden mit kurzen Balken gekennzeichnet. Die Ladungsträgerdichte der Probe beträgt N S = 4, Elektronen/cm 2. Zu höheren Magnetfeldern weichen die Oszillationen geringfügig von den Füllfaktoren ab. Dies kann an den später erläuterten eindimensionalen Effekten liegen. 7

22 2 Theoretischer Hintergrund Die Zyklotronresonanz hat eine Übergangsenergie von: 2.2 Plasmonen E n+1 E n = ω CR. (2.5) Bei den in dieser Arbeit verwendeten zweidimensionalen Elektronensystemen kann die Elektron-Elektron-Wechselwirkung zu einer dynamischen Anregung der Elektronendichte führen. Diese Dichteschwankungen werden als Plasmonen bezeichnet. Sie werden als Quasiteilchen aufgefasst. Die Dispersion der Plasmonfrequenz ω p wurde für die ersten beiden Ordnungen vom Wellenvektor q von Stern [Ste67] berechnet: ωp(q) 2 N S e 2 = 2ǫ GaAs ǫ 0 m q v2 Fq 2. (2.6) Hierbei ist q der Wellenvektor des Plasmons in der xy-ebene und ǫ GaAs ist die relative Dielektrizitätskonstante von GaAs und ǫ 0 die absolute Dielektrizitätskonstante des Vakuum. Der Therm 3 4 v2 F q2 drückt die Inkompressibilität des 2DES als Fermiflüssigkeit aus. Dabei ist v F die Fermigeschwindigkeit. Plasmonen können nicht von senkrecht auf das 2DES fallender elektromagnetischer Strahlung angeregt werden, da in diesem Fall q = 0 ist. Eine Anregung der Plasmonen in einer solchen Anordnung ist möglich, wenn zum Beispiel ein Gitterkoppler auf die Struktur aufgebracht wird. Eine andere Möglichkeit, die in dieser Arbeit verwendet wurde, ist die Probe zu strukturieren. In einem zweidimensionalen Elektronensystem mit endlicher Ausdehnung können sich so genannte confined-plasmonen (CP), also eingeschlossene Elektronendichteschwankungen, bilden. Der Wellenvektor eines Plasmons wird in diesem Fall zu q n = nπ, wobei W W die Breite des Drahtes ist. Daraus ergibt sich die confined-plasmonfrequenz in erster Näherung zu: Hierbei ist: ω 2 cpn = N Se 2 2ǫ 1 m nπ W. (2.7) ǫ 1 = 1 2 (1 + ǫ GaAs)ǫ 0. (2.8) Wird die Probe einem Magnetfeld in z-richtung ausgesetzt, ergibt sich eine Magnetfeldabhängigkeit, welche Magnetoplasmonfrequenz ω mp genannt wird. Sie lässt sich als Kombination von Zyklotronresonanzfrequenz ω CR und confined- Plasmonfrequenz ω cp darstellen [Cha72]: ω 2 mp = ω 2 cp + ω 2 CR. (2.9) 8

23 2.3 Eindimensionale Elektronensysteme 2.3 Eindimensionale Elektronensysteme Wird ein zweidimensionales Elektronensystem im Submikrometerbereich lateral strukturiert, so wird die Elektronenbewegung in einer weiteren Dimension eingeschränkt und die 2D-Subbänder spalten in eindimensionale (1D-) Subbänder auf. Die Energie eines 1D-Subbandes wird als E mn bezeichnet, wobei m die Ordnung der Quantisierung in z-richtung und n die Ordnung der Quantisierung in y-richtung indiziert. Die Elektronen können dann nur noch eine freie Bewegung in x-richtung ausführen. Die Energie eines 1D-Subbandes ist demnach gegeben durch: E mn (k x ) = 2 kx 2 2m + E 0(m) + E 0 (n). (2.10) Da das Einschlusspotenzial in z-richtung im allgemeinen wesentlich höher ist als der laterale Einschluss in y-richtung und speziell auch in dieser Arbeit m = 1 ist, werden im Folgenden nur die entsprechenden n-ten 1D-Subbänder betrachtet. Die eindimensionale Zustandsdichte D 1D (E) der Subbänder ist im Gegensatz zu der des 2DES nicht energieunabhängig, sondern weist eine reziprok-wurzelförmige Abhängigkeit auf: D 1D (E) = g s m 1 π 2 2 n E E0 (n). (2.11) Hierbei ist E die Energie der Elektronen. Die Abbildung 2.4 zeigt die Energieabhängigkeit der Zustandsdichte D 1D. Die Subbänder sind bis zur Fermi-Energie E F besetzt, dies wird durch die graue Fläche angedeutet. Die Indizes an den Subbändern bezeichnet mit der ersten Ziffer die Einschränkung des m-subbandes in z-richtung und mit der zweiten Ziffer die Subbänder n, die von der lateralen Einschränkung in y-richtung stammen. Wird die Probe einem Magnetfeld in z-richtung ausgesetzt, so weicht die Eigenfrequenz dieses eindimensionalen Systems von der Zyklotronresonanzfrequenz des 2DES ab. Diese Eigenfrequenz ist die in Formel 2.9 angegebene Magnetoplasmonfrequenz. In Abbildung 2.5 ist der Unterschied zwischen der Zyklotronresonanzfrequenz (ω CR ) eines 2DES und der Magnetoplasmonfrequenz (ω mp ) für n = 1 skizziert. Bei gleichem Magnetfeld ist die Magnetoplasmonfrequenz gegenüber der Zyklotronresonanzfrequenz des 2DES in Richtung höherer Energien verschoben. Dabei verringert sich der Abstand bei steigendem Magnetfeld. 2.4 Nulldimensionale Elektronensysteme Wird ein eindimensionales Elektronensystem durch weitere Strukturierung auch in der noch freien x-richtung eingeschränkt, ergibt sich ein so genanntes nulldimensionales Elektronensystem (0DES) oder ein Quantenpunkt. In diesem 0DES 9

24 2 Theoretischer Hintergrund D(E) E 11 E 12 E 13 D 1D Abbildung 2.4: Die Zustandsdichte D 1D der eindimensionalen Subbänder ist gegen die Elektronenenergie E aufgetragen. Die Subbänder sind bis zur Fermi-Energie E F besetzt (durch die graue Fläche gekennzeichnet). Der Index an den Energien der Subbänder bezeichnet mit der ersten Ziffer die Einschränkung des m-subbandes in z-richtung und mit der zweiten Ziffer die Subbänder n, die von der lateralen Einschränkung in y-richtung stammen. E F E können sich die Elektronen weder in x-, y-, noch in z-richtung frei bewegen. Die Energie ist in allen drei Raumrichtungen quantisiert: E mno = E 0 (m) + E 0 (n,o). (2.12) Aus dem zusätzlichen quantisierten Potenzial in x- und y-richtung ergeben sich für ein 0DES ausschließlich diskrete Energieniveaus. Aufgrund der kollektiven Bewegung der Elektronen, welche durch das Kohn-Theorem [Koh61] erklärt wird, ergibt sich ein parabolisches Potenzial. Wird das 0DES einem in z-richtung verlaufendem Magnetfeld ausgesetzt, ergeben sich entsprechend den Rechnungen von [Foc28] zwei erlaubte Übergänge, welche eine positive (ω + ) und eine negative (ω ) Magnetfelddispersion verursachen. Eine dieser beiden Moden wird als energetisch leicht verschobene Zyklotronresonanzfrequenz im Inneren des Punktes angesehen (ω + ). Die andere wird als Resonanzfrequenz eines an den Wänden des Punktes reflektierten Elektrons betrachtet (ω ) (Abb. 2.6). Da mit steigendem Magnetfeld die Kreisbahn der Elektronen abnimmt und damit immer besser in den Quantenpunkt passt, nähert sich die ω + -Mode der Frequenz der Zyklotronresonanz an, während die ω -Mode gegen Null strebt. Die Differenz der beiden Moden beträgt dabei stets ω CR. Der Intensitätsunterschied 10

25 2.4 Nulldimensionale Elektronensysteme Energie (arb. units) ω mp 2 ω CR Magnetfeld (arb. units) Abbildung 2.5: Die Energie der Magnetoplasmonfrequenz (ω mp ) und zum Vergleich der Zyklotronresonanzfrequenz (ω CR ) eines 2DES sind gegen das Magnetfeld aufgetragen. Die Magnetoplasmonfrequenz hat bei gleichem Magnetfeld eine Abweichung zu höheren Energien gegenüber der Zyklotronresonanzfrequenz des 2DES. Dabei verringert sich der Abstand bei steigendem Magnetfeld. a b e B e Abbildung 2.6: Resonanzmoden in einem Quantenpunkt. a: die ω + -Mode entspricht einer Elektronenbewegung im Inneren des Quantenpunktes, b: die ω -Mode entspricht einer reflektierten Elektronenbewegung am Rand des Punktes. Das Magnetfeld B verläuft senkrecht in die Abbildungsebene hinein. 11

26 2 Theoretischer Hintergrund Energie (arb. units) ω CR ω + ω Magnetfeld (arb. units) Abbildung 2.7: Die Energie der positiven und der negativen Punktmode (ω + und ω ) und zum Vergleich die Zyklotronresonanzfrequenz (ω CR ) eines 2DES sind gegen das Magnetfeld aufgetragen. Die positve Punktmode hat bei gleichem Magnetfeld eine Abweichung in Richtung höherer Energien gegenüber der Zyklotronresonanzfrequenz des 2DES. Die negative Punktmode strebt bei höheren Magnetfeldern gegen eine Energie von Null. Die Differenz der positiven und der negativen Punktmode ist gleich der Zyklotronresonanzfrequenz. zwischen der ω + - und der ω -Mode wurde von Dingle [Din52] berechnet. Bei hohen Magnetfeldern liegt nahezu die gesamte Intensität bei der ω + -Mode und die ω -Mode verschwindet. Bei niedrigeren Magnetfeldern teilt sich die Intensität gleichmäßig auf beide Moden auf. Nach Maksym et al. [Mak90] ergibt sich für die Moden: ω ± = ω0 2 + ω2 CR 4 ± ω CR 2. (2.13) Hierbei ist ω 0 die Frequenz der Moden bei B = 0 T. In Abbildung 2.7 liegt die Energie bei 0 T bei ω 0 = 1,6 mev. Es ist die Dispersion der beiden Punktmoden (ω + und ω ) und zum Vergleich die Zyklotronresonanzfrequenz (ω CR ) eines 2DES aufgetragen. 12

27 2.5 Quasi nulldimensionale Elektronensysteme 2.5 Quasi nulldimensionale Elektronensysteme Ein strukturiertes 2DES wird immer eine endliche laterale Ausdehnung besitzen, so dass bei der Präparation von Quantenpunkten immer nur von einem quasi nulldimensionalen Elektronensystem ausgegangen werden kann. Bei den in dieser Arbeit präparierten und untersuchten Quantenpunkten in Quantenpunktleitern ist zusätzlich der Einschluss in x- und y-richtung bewusst unterschiedlich gewählt. Es handelt sich in diesem Fall um einen rechteckigen oder um einen elliptischen Quantenpunkt. Die Dispersion der Magnetoplasmonenfrequenz in einem ellipsenförmigen 2DES ist nach [Li91] gegeben durch: ω± 2 = 1 ( ) ωw 2 + ωl 2 + ωcr 2 ± ω 4CR 2 + 2ω2CR (ω2w + ω2l ) + (ω2w ω2l )2. (2.14) Hierbei sind ω L und ω W : ωl 2 = N Se 2 2ǫ 1 m πn (2.15) L ωw 2 = N Se 2 2ǫ 1 m πn W. (2.16) L und W sind die Länge und Breite der beiden Hauptachsen der Ellipse. Da L und W unterschiedlich sind, gleichen sich die beiden entstehenden Modenfrequenzen ω + und ω bei B = 0 T nicht mehr. In Abbildung 2.8 ist die Dispersion der Magnetoplasmonenfrequenz in einem ellipsenförmigen 2DES und die Zyklotronresonanzfrequenz eines unstrukturierten 2DES aufgetragen. Wird von einer rechteckigen Geometrie des quasi 0DES ausgegangen, ergeben sich Rechnungen für einen endlich langen Leiterstreifen. Diese sind analytisch nicht lösbar und wurden von Kukushkin et al. [Kuk05b] in erster Näherung aus der gleichen Formel wie für einen unendlich langen Leiter angegeben [Eli86]. Genauere numerische Rechnungen von Mikhailov und Savostianova [Mik05] liefern einen Korrekturfaktor. Es ergibt sich damit für die positive Mode: und für die negative Mode : ω+ 2 = 0, 85 NSe 2 2ǫ 1 m πn W (2.17) wobei ist [Ale95, Kuk05b]. ω 2 s = N Se 2 2ǫ 1 m ω 2 = ω2 + ω 2 s ω ω 2 CR ( ) 2 πn W ( ( 8 ln L π W ) ) L 0, 577 πn (2.18) (2.19) 13

28 2 Theoretischer Hintergrund 4 Energie (arb. units) ω CR ω + ω Magnetfeld (arb. units) Abbildung 2.8: Die Energie der positiven und der negativen Ellipsenmode (ω + und ω ) und die Zyklotronresonanzfrequenz (ω CR ) eines 2DES sind gegen das Magnetfeld aufgetragen. Das Längen-zu-Breiten- Verhältnis der Ellipse beträgt zwei zu eins. Aufgrund der unterschiedlichen Einschlüsse in x- und y-richtung gleichen sich die Energien beider Moden bei B = 0 T im Gegensatz zu den beiden des Quantenpunktes nicht mehr. 14

29 2.6 Quanten-Punkt-Kontakte Energie (arb. units) ω + ω - ω CR Magnetfeld (arb. units) Abbildung 2.9: Die Energie der positiven und der negativen Rechteckmode (ω + und ω ) und die Zyklotronresonanzfrequenz (ω CR ) eines 2DES sind gegen das Magnetfeld aufgetragen. Das Längen-zu-Breiten- Verhältnis des Rechtecks beträgt zwei zu eins. Bei einer rechteckigen Struktur des 2DES gleichen sich die beiden Modenenergien bei B = 0 T nicht. Dies gilt für L > W. Hierbei bezeichnen L und W die Länge und die Breite des Rechtecks. In der Abbildung 2.9 sind die beiden Rechteckmoden ω + und ω exemplarisch zusammen mit der Zyklotronresonanzfrequenz eines unstrukturierten 2DES aufgetragen. Ähnlich wie bei den Ellipsenmoden gibt es eine Energielücke zwischen den beiden Modenenergien bei B = 0 T. 2.6 Quanten-Punkt-Kontakte Ein Quanten-Punkt-Kontakt (QPC 4 ) ist ein enger elektrischer Leitungskanal zwischen zwei Ladungsträgerreservoirs, wie er in Kapitel 2.3 beschrieben wurde, durch den ballistischer Transport stattfinden kann. In der Praxis können solche Strukturen durch seitlich an einen 2DES-Leitungskanal herangeführte Gates, so genannte Split-Gates, oder auch mittels lateraler Einschränkung durch Lithographieverfahren und einem über der Struktur liegen- 4 QPC: Quantum Point Contact (engl.) Quanten-Punkt-Kontakt 15

30 2 Theoretischer Hintergrund a) b) c) E QPC QPC y E µ S Reservoir Reservoir E F µ D E F µ s S µ D ev 0 x Leitungsbandunterkante x ev 0 k x Abbildung 2.10: a: Schematische Darstellung eines Quanten-Punkt-Kontakts in Kontakt mit den Ladungsträgerreservoirs µ S und µ D. Es sei µ S > µ D. b: Der schematische Bandkantenverlauf des Systems aus a. Im Bereich des QPC ist die Leitungsbandkante um die Potenzialbarriere ev 0 erhöht. c: Die Energiedispersionsrelation im QPC der ersten beiden eindimensionalen Subbänder ist gegenüber dem Wellenvektor k x entlang der freien Richtung x aufgetragen. Bis zur Fermi-Energie E F sind alle Zustände besetzt. Die Potenzialbarriere ev 0 ist im unteren Bereich eingetragen. Abbildung nach [Rac05]. den, so genannten Topgate, realisiert werden. Durch Anlegen einer Gatespannung kann dabei der Kanal verengt und die Anzahl der unterhalb der Fermi-Energie liegenden Subbänder variiert werden. Die erste Messung, die quantisierten Ladungstransport in Quanten-Punkt-Kontakten zeigte, wurde im Jahre 1988 von van Wees et al. [vw88] durchgeführt. Die Abbildung 2.10 zeigt einen schematischen QPC. Im Teil a ist der QPC im Kontakt mit den zwei Ladungsträgerreservoirs µ S und µ D aufgetragen. Hierbei sei µ S > µ D. S und D entsprechen Source und Drain. In Teil b ist der Leitungsbandverlauf dargestellt. Im Bereich des Quanten-Punkt-Kontakts stellt das Einschlusspotenzial eine Potenzialbarriere ev 0 dar. Dies hat eine Verschiebung der Leitungsbandkante zur Folge. Um den lateralen Einschluss V (y) im QPC zu beschreiben, stellt ein externes parabolisches Potenzial bei einer Besetzung von wenigen 1D-Subbändern eine gute Näherung dar [Lau88]. Nach Gleichung 2.12 und Einsetzten der Potenzialbarriere ev 0 des QPCs ergibt sich nach [vw91] die Elektronenenergie des n-ten 1D-Subbandes im QPC zu: E n (k x ) = (n 1 2 ) ω k 2 x 2m + ev 0 n ǫ 1, 2, 3,.... (2.20) 16

31 2.6 Quanten-Punkt-Kontakte In Abbildung 2.10c ist die Energiedispersion der beiden ersten 1D-Subbänder gegenüber dem Wellenvektor k x dargestellt. Bis zur Fermi-Energie E F sind alle Zustände besetzt. Nach [vw91] lässt sich die Leitfähigkeit G c dieses Systems ausdrücken durch: wobei G c = 2e2 h N c (2.21) ( EF ev 0 N c = int + 1 ) ω 0 2 (2.22) ist. Das int bedeutet das restlose Streichen der Nachkommastellen und drückt damit die Anzahl der besetzten Subbänder bis zur Fernienergie E F aus. Die Leitfähigkeit eines QPC ist durch das Leitfähigkeitsquantum 2e2 multipliziert mit der Anzahl der besetzten Subbänder gegeben. Bei einer Temperatur von h T = 0 K bilden sich demnach bei ganzzahligen Vielfachen von 2e2 Plateaus im Leitwert G aus, wenn sukzessive mit Hilfe einer Gatespannung 1D-Subbänder besetzt h werden. Die durchgezogene Stufenfunktion in Abbildung 2.11 stellt diese Plateaus schematisch dar. In der Abbildung ist der Leitwert G gegen die besetzten Subbänder G 6e 2 h T = 0 K T > 0 K 4e 2 h 2e 2 h n = 1 n = 2 n = 3 n = 4 E n Abbildung 2.11: Schematische Darstellung der Leitfähigkeit eines Quanten-Punkt- Kontakts bei unterschiedlicher Besetzung der 1D-Subbänder (nach [Key02]). Der Index n steht für die Anzahl der besetzten Subbänder. Mit jedem weiteren gefüllten Subband springt der Leitwert um 2e2. Die durchgezogene Stufenfunktion gilt für h T = 0 K (Formel 2.21), die gepunktete mit abgeflachten Stufenkanten für eine endliche Temperatur (Formel 2.23). 17

32 2 Theoretischer Hintergrund n aufgetragen. Hierbei handelt es sich jedoch um eine rein theoretische Funktion. Unter realen Bedingungen werden Messungen bei einer endlichen Temperatur durchgeführt. Für solche Systeme lässt sich nach [Kah03] der Leitwert des n-ten Subbandes berechnen durch: G = 2e2 h n e (E F En) k B T. (2.23) Bei dem Term in der Summe handelt es sich um die Fermi-Dirac-Verteilung. In sie geht die Boltzmann-Konstante k B, die Fermi-Energie E F und die Subbandkante E n ein. Dadurch flachen die Kanten der Stufenfunktion von Formel 2.21 etwas ab. In Abbildung 2.11 ist diese Kurve durch die gepunktete Linie dargestellt. 2.7 Einzel-Quanten-Punkte Bei einem Quantenpunkt (QP) handelt es sich um das in Kapitel 2.4 beschriebene 0DES. In diesem Kapitel sollen daher nur die Eigenschaften der in dieser Arbeit hergestellten Quantenpunkte erläutert werden. Die in dieser Arbeit untersuchten Einzel-Quanten-Punkte stehen über zwei im vorherigen Kapitel beschriebene QPCs mit den zwei Ladungsträgerreservoirs µ S und µ D in Verbindung. Dadurch kann der Quantenpunkt durch Einstellen der Potenziale und der Gates der QPCs, wie in Kap. 2.6 beschrieben, mit einzelnen Elektronen gefüllt werden. Der schematische Aufbau eines solchen QPs in Aufsicht ist in Abbildung 2.12 gezeigt. Über die Gates 1, 2 und 5, 6 werden die beiden Kanäle der QPCs verengt. Die Ladungsträgerreservoirs µ S und µ D sind auf unterschiedlichem Niveau mit µ S > µ D. Mit den Gates 3 und 4 können die Energieniveaus des QPs eingestellt werden. Wird die Potenzialdifferenz zwischen µ S und µ D klein gehalten, findet Leitfähigkeit von einem zum anderen Reservoir nur statt, wenn ein diskretes Energieniveau des Quantenpunktes sich genau zwischen µ S und µ D befindet. Dieses Verhalten wird als Coulomb-Blockade bezeichnet und ist in Abbildung 2.13 anschaulich dargestellt. Auf der linken Seite (a) liegt das diskrete Energieniveau des QPs energetisch zwischen den Ladungsträgerreservoirs µ S und µ D. Ein Elektron kann über den ersten QPC in den Quantenpunkt gelangen und durch den zweiten wieder hinaus. Ein Ladungstransport findet statt. Auf der rechten Seite (b) sind mit Hilfe eines Gates die Energieniveaus des QPs verschoben. Ein Elektron aus Reservoir µ S kann nicht durch den QPC in ein höherliegendes Niveau in den QP tunneln. Elektronen aus dem QP können nicht in das höher gelegene Niveau µ D tunneln. Ein Ladungstransport findet nicht statt. Wird in einem solchen QP die Leitfähigkeit in Abhängigkeit von der Gatespannung gemessen, tritt Leitfähigkeit immer nur dann auf, wenn ein diskretes Energieniveau des QP energetisch die Fermi-Energie des 18

33 2.7 Einzel-Quanten-Punkte µ S QP µ D Abbildung 2.12: Schematische Darstellung eines Einzel-Quanten-Punkts in Draufsicht. Über die Gates 1, 2 und 5, 6 werden die beiden Kanäle der QPCs verengt. Die Ladungsträgerreservoirs µ S und µ D sind auf unterschiedlichem Niveau mit µ S > µ D. Mit den Gates 3 und 4 können die Energieniveaus des QPs eingestellt werden. Systems durchquert. Die auftretenden Oszillationen werden Coulomb-Blockade- Peaks genannt. Eine schematische Darstellung dieser Coulomb-Blockade-Peaks ist in Abbildung 2.14 gezeigt. Aufgrund der Eigenschaft, dass Einzel-Quanten-Punkte durch Veränderung eines Gates ihre Leitfähigkeit ändern, werden sie auch als Einzel-Elektronen-Transistoren (SET 5 ) bezeichnet. Wird ein solcher SET einem Magnetfeld ausgesetzt, so bilden sich durch die Landau-Level im Ortsraum ein innerer Kern und zwei äußeren Ringen aus [vdv97]. Die zwei Ringe kommen durch Spinaufspaltung zustande. Der Kern und die Ringe sind kompressible Bereiche, die ein leitfähiges Verhalten von Metallen zeigen. Sie werden daher auch als metallische Regionen bezeichnet. Eine schematische Darstellung dieser Regionen ist in Abbildung 2.15 a skizziert. Die einzelnen metallischen Regionen sind durch inkompressible Bereiche elektrisch voneinander getrennt. Der Teil b der Abbildung 2.15 zeigt das Energiespektrum des QPs. Durch FIR- Strahlung können Elektronen in ein höheres Landau-Level angeregt werden. Das dadurch entstehende Elektron-Loch-Paar sorgt für eine Polarisierung des QPs [Ast00]. In einem solchen polarisierten QP kann bereits bei niedrigeren Gatespannungen ein Ladungstransport durch den Quantenpunkt stattfinden. Die Coulomb- Blockade-Peaks verschieben sich zu kleineren Gatespannungen (Teil c). Die Abbildung 2.16 zeigt eine von Komiyama et al. [Kom00] durchgeführte Messung der Leitfähigkeit an einem Quantenpunkt bei Bestrahlung mit unterschiedli- 5 SET: Single Electron Transistor (engl.) Einzel-Elektronen-Transistor 19

34 2 Theoretischer Hintergrund a QP QPC b QP QPC E µ S µ D µ S µ D Abbildung 2.13: Schematische Darstellung der Coulomb-Blockade. a: Das diskrete Energieniveau des QPs liegt energetisch zwischen den Ladungsträgerreservoirs µ S und µ D. Ein Elektron kann über den ersten QPC in den Quantenpunkt gelangen und durch den zweiten wieder hinaus. Ein Ladungstransport findet statt. b: Mit Hilfe eines Gates werden die Energieniveaus des QPs verschoben. Ein Elektron aus Reservoir µ S kann nicht durch den QPC in ein höherliegendes Niveau in den QP tunneln. Elektronen aus dem QP können nicht in das höher gelegene Niveau µ D tunneln. Ein Ladungstransport findet nicht statt. Die Punkte symbolisieren gefüllte Zustände. 20

35 2.7 Einzel-Quanten-Punkte Leitfähigkeit (arb. units) Gatespannung (arb. Units) Abbildung 2.14: Schematische Darstellung von Coulomb-Blockade-Peaks. Die Leitfähigkeit eines QPs ist in Abhängigkeit von der Gatespannung aufgetragen. Jedes mal, wenn ein diskretes Energieniveau des QPs die Fermi-Energie durchquert, steigt die Leitfähigkeit und es ergeben sich die Coulomb-Blockade-Peaks. a b c y E L3 L2 L1 CR x x Leitfähigkeit Gatespannung V g Abbildung 2.15: Schematische Darstellung der Elektronenanregung in einem QP. a: In einem Magnetfeld bilden sich durch die Landau-Level (LL) im Ortsraum metallische Regionen aus. Einen inneren Kern (L3) und durch Spinaufspaltung zwei äußere Ringe (L1 und L2), die voneinander elektrisch isoliert sind. b: Energiespektrum des QPs. Durch FIR-Strahlung können Elektronen in ein höheres Landau- Level angeregt werden. Das dadurch entstehende Elektron-Loch- Paar sorgt für eine Polarisierung des QPs. c: Durch das Anregen der Elektronen mit FIR-Strahlung kann bereits ein Ladungstransport durch den Quantenpunkt bei niedrigeren Gatespannungen stattfinden. Die Coulomb-Blockade-Peaks verschieben sich zu kleineren Gatespannungen. Abbildungen nach [Ast00] und [Kom00]. 21

36 2 Theoretischer Hintergrund 2 Leitfähigkeit (e /h) Ohne FIR Strahlung Gatespannung (mv) Abbildung 2.16: Leitfähigkeitskurven eines QPs bei unterschiedlicher Bestrahlungsintensität. Ohne FIR-Strahlung zeigt sich ein normaler Coulomb-Blockade-Peak. Wird die Stahlungsintensität sukzessive erhöht, verschiebt sich die Resonanz zu niedrigeren Gatespannungen. Die FIR-Strahlung wird hierbei durch strominduzierte Zyklotronresonanzstrahlung von einem GaAs-Hallbar in einem Magnetfeld erzeugt. Durch Einprägen unterschiedlich starker Stromstärken kann die Intensität der Strahlung erhöht werden. Ein in den Strahlungsemitter eingeprägter Strom mit der Stärke von I em = 3,5 µa entspricht an der Probe einer Strahlungsintensität von weniger als 3 aw (< 10 4 Photonen pro Sekunde). Diese Messungen wurden von Komiyama et al. [Kom00] durchgeführt. cher FIR-Strahlungsintensität. Ohne FIR-Strahlung zeigt sich ein normaler Coulomb-Blockade-Peak. Wird die Stahlungsintensität sukzessive erhöht, verschiebt sich die Resonanz zu niedrigeren Gatespannungen. Die FIR-Strahlung wird hierbei durch strominduzierte Zyklotronresonanzstrahlung von einem GaAs-Hallbar in einem Magnetfeld erzeugt. Durch Einprägen unterschiedlich starker Stromstärken wird die Intensität der Strahlung erhöht. Ein in den Strahlungsemitter eingeprägter Strom mit einer Stärke von I em = 3,5 µa entspricht an der Probe einer Strahlungsintensität von weniger als 3 aw (< 10 4 Photonen pro Sekunde). Aufgrund der enormen Empfindlichkeit von SETs ist es möglich mit ihnen sogar einzelne Photonen im FIR-Bereich zu detektieren [Kom00]. 22

37 3 Rasterkraftmikroskopie Im Jahre 1982 wurde durch die Entwicklung der Rastertunnelmikroskopie von Binnig, Rohrer, Gerber und Weibel [Bin82] die Abbildung von Oberflächen auf atomarer Skala möglich. Hierfür wurde vier Jahre später der Nobelpreis verliehen. Im gleichen Jahr entwickelten Binnig, Quate und Gerber das Rasterkraftmikroskop (AFM 1 ) [Bin86], welches auch die Abbildung von Oberflächen nicht leitender Materialien ermöglichte. Die Funktionsweise des AFM wird in diesem Kapitel beschrieben. 3.1 Funktionsweise Bei dem in dieser Arbeit verwendeten Rasterkraftmikroskop handelt es sich um ein Veeco Dimension TM 3100 [Ins00]. Wie bei allen AFMs wird eine Probenoberfläche abgebildet, indem mit einer nanoskaligen Spitze horizontal über die Probe gescannt wird. Dabei wird die Oberflächenstruktur der Probe linienweise aufgenommen. Wird eine ganze Ebene der Probe Linie für Linie abgerastert, entsteht eine dreidimensionale Abbildung der Probenoberfläche. Die Bewegung der AFM- Spitze in der Ebene der Probenoberfläche sowie die Bewegung senkrecht zu dieser Ebene wird dabei mit Hilfe von Piezokeramiken gesteuert. Der schematische Aufbau eines AFMs ist in Abbildung 3.1 dargestellt. Der Cantilever, auf dem die AFM-Spitze präpariert ist, ist an einem Scanner montiert. Dieser kann mittels dreier Piezokeramiken die Lage der Spitze in den drei Raumrichtungen x, y und z steuern. Ein Laserstrahl trifft auf den Cantilever und wird von diesem auf einen Detektor reflektiert. Durch Höhenunterschiede auf der Probe verändert sich die Kraft auf den Cantilever. Dadurch wird dieser verbogen und die Reflexion des Laserstrahls auf dem Detektor verschiebt sich. Über eine Steuerschleife wird die Lage der AFM-Spitze der Höhe der Probe angepasst. Hierdurch wird der Kontakt zur Probe hergestellt. Die Wechselwirkung, welche zwischen Probenoberfläche und AFM-Spitze wirkt, beruht auf kovalenten, elektrostatischen und Van der Waals- Kräften. Die schematische Zeichnung einer Spitze über der Probenoberfläche ist in Abbildung 3.2 gezeigt. Die AFM-Spitze ist idealisiert mit einem Spitzenatom dargestellt. Sie folgt der Probenoberfläche in einem definierten Abstand entlang der Scanlinie. 1 AFM: Atomic Force Microscope (engl.) Rasterkraftmikroskop 23

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Elektrische Einheiten und ihre Darstellung

Elektrische Einheiten und ihre Darstellung Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM)

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) Inhaltsverzeichnis 1. Motivation 2. Entwickler des AFM 3. Aufbau des AFM 3.1 Spitze und Cantilever 3.2 Mechanische Rasterung 3.3 Optische Detektion

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Grundlagen der Elektronik

Grundlagen der Elektronik Grundlagen der Elektronik Wiederholung: Elektrische Größen Die elektrische Stromstärke I in A gibt an,... wie viele Elektronen sich pro Sekunde durch den Querschnitt eines Leiters bewegen. Die elektrische

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch 14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch Analog zu den Untersuchungen an LDPE in Kap. 6 war zu untersuchen, ob auch für die Hochtemperatur-Thermoplaste aus

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

7. Unipolare Transistoren, MOSFETs

7. Unipolare Transistoren, MOSFETs 7.1. Funktionsweise Die Bezeichnung MOSFET (Metal Oxide Semiconductor Field Effect Transistor) deutet auf den Aufbau dieses Transistors hin: Das Halbleiterelement ist mit einer sehr dünnen, isolierenden

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Cross-plane-Messungen zur elektrischen Leitfähigkeit (Cross-plane measurement of the electrical conductivity)

Cross-plane-Messungen zur elektrischen Leitfähigkeit (Cross-plane measurement of the electrical conductivity) Statustreffen Messtechnik Cross-plane-Messungen zur elektrischen Leitfähigkeit (Cross-plane measurement of the electrical conductivity) Markus Trutschel Interdisziplinäres Zentrum für Materialwissenschaften

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Und was uns betrifft, da erfinden wir uns einfach gegenseitig.

Und was uns betrifft, da erfinden wir uns einfach gegenseitig. Freier Fall 1 Der einzige Mensch Der einzige Mensch bin ich Der einzige Mensch bin ich an deem ich versuchen kann zu beobachten wie es geht wenn man sich in ihn hineinversetzt. Ich bin der einzige Mensch

Mehr

JFET MESFET: Eine Einführung

JFET MESFET: Eine Einführung JFET MESFET: Eine Einführung Diese Präsentation soll eine Einführung in den am einfachsten aufgebauten Feldeffektransistor, den Sperrschicht-Feldeffekttransistor (SFET, JFET bzw. non-insulated-gate-fet,

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Versuch: Siedediagramm eines binären Gemisches

Versuch: Siedediagramm eines binären Gemisches Versuch: Siedediagramm eines binären Gemisches Aufgaben - Kalibriermessungen Bestimmen Sie experimentell den Brechungsindex einer gegebenen Mischung bei unterschiedlicher Zusammensetzung. - Theoretische

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Auch wenn die Messungsmethoden ähnlich sind, ist das Ziel beider Systeme jedoch ein anderes. Gwenolé NEXER g.nexer@hearin gp

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder v = d! p! n da v 1 = v 2 (I) (II) gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder i = Übersetzungsverhältnis n 1 n 2 = d 2 d 1 = i (V) Beispiel

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung

1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung 1 Einleitung 1.1 Motivation und Zielsetzung der Untersuchung Obgleich Tourenplanungsprobleme zu den am häufigsten untersuchten Problemstellungen des Operations Research zählen, konzentriert sich der Großteil

Mehr

Elektrische Spannung und Stromstärke

Elektrische Spannung und Stromstärke Elektrische Spannung und Stromstärke Elektrische Spannung 1 Elektrische Spannung U Die elektrische Spannung U gibt den Unterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei

Mehr

Mehr Energie-Effizienz mit dem exklusiven es-transformer - Stromsparmodul

Mehr Energie-Effizienz mit dem exklusiven es-transformer - Stromsparmodul Mehr Energie-Effizienz mit dem exklusiven es-transformer - Stromsparmodul - Made in Austria - Stromspargarantie von mindestens 5 % oder Geld zurück! Die Vorteile im Überblick: Benötigt selbst keine Energie

Mehr

Bestimmen des Werkstücks in der Vorrichtung

Bestimmen des Werkstücks in der Vorrichtung Bestimmen des Werkstücks in der Vorrichtung 3 3.1 Bestimmen prismatischer Werkstücke Bestimmen (Lagebestimmen) oder Positionieren ist das Anbringen des Werkstücks in eine eindeutige für die Durchführung

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Experimentatoren: Thomas Kunze Sebastian Knitter Betreuer: Dr. Holzhüter Rostock, den 12.04.2005 Inhaltsverzeichnis 1 Ziel

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014)

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014) Handbuch NAFI Online-Spezial 1. Auflage (Stand: 24.09.2014) Copyright 2016 by NAFI GmbH Unerlaubte Vervielfältigungen sind untersagt! Inhaltsangabe Einleitung... 3 Kundenauswahl... 3 Kunde hinzufügen...

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 4 Datum: 21.6.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - digitales Experimentierboard (EB6) - Netzgerät

Mehr

«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen

«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen 18 «Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen teilnimmt und teilhat.» 3Das Konzept der Funktionalen

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,

Mehr

IT-Governance und Social, Mobile und Cloud Computing: Ein Management Framework... Bachelorarbeit

IT-Governance und Social, Mobile und Cloud Computing: Ein Management Framework... Bachelorarbeit IT-Governance und Social, Mobile und Cloud Computing: Ein Management Framework... Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Computergrafik Bilder, Grafiken, Zeichnungen etc., die mithilfe von Computern hergestellt oder bearbeitet werden, bezeichnet man allgemein als Computergrafiken. Früher wurde streng zwischen Computergrafik

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Rastersonden-Mikroskopie (SPM)

Rastersonden-Mikroskopie (SPM) Rastersonden-Mikroskopie (SPM) Der Rastersonden-Mikroskopie (SPM) liegt eine geregelte rasternde Bewegung einer spitz zulaufenden Messsonde in unmittelbarer Nähe zur Probenoberfläche zugrunde. Die erhaltenen

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

2 Naturwissenschaftliche Grundlagen Druckweiterverarbeitung

2 Naturwissenschaftliche Grundlagen Druckweiterverarbeitung Im Kapitel 2.6 werden die Grundlagen der Sensorik behandelt. Nachfolgend zeigen wir Beispiele von Sensoren in der Druckweiterverarbeitung, vornehmlich aus dem Bereich der Zeitungsproduktion. 2.7.1 Induktive

Mehr

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Teil 8: Analysemethoden zur Charakterisierung der Mikrosysteme II Dr. rer. nat. Maryam Weil Fachhochschule

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus.

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus. Anhang Leverage-Effekt Leverage-Effekt Bezeichnungs- Herkunft Das englische Wort Leverage heisst Hebelwirkung oder Hebelkraft. Zweck Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Dateiname: ecdl5_01_00_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 5 Datenbank - Grundlagen

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Funktion Erläuterung Beispiel

Funktion Erläuterung Beispiel WESTFÄLISCHE WILHELMS-UNIVERSITÄT WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BETRIEBLICHE DATENVERARBEITUNG Folgende Befehle werden typischerweise im Excel-Testat benötigt. Die Beispiele in diesem Dokument

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr