Rechenoperationen mit Folgen. Rekursion und Iteration.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Rechenoperationen mit Folgen. Rekursion und Iteration."

Transkript

1 Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n ) n N λ(a n ) n N := (λa n ) n N Rekursion und Iteration. Folgen lassen sich rekursiv beschreiben durch a n+1 := Φ(n, a n ), für n N, wobei Φ : N V V eine bestimmte Iterationsvorschrift bezeichnet. Analysis I TUHH, Winter 2006/2007 Armin Iske 77

2 Das Bisektionsverfahren (Intervallhalbierung). Ziel: Bestimme eine Nullstelle einer stetigen Funktion f : [a, b] R. Voraussetzung: f(a) f(b) < 0. Iteration: Definiere zwei Folgen (u n ) n N0 und (v n ) n N0 rekursiv mit den Startwerten (u 0, v 0 ) = (a, b) und der folgenden Iterationsvorschrift. FOR n = 1, 2,... x := (u n 1 + v n 1 )/2 IF f(x) = 0 THEN RETURN IF (f(x) f(v n 1 ) < 0) THEN u n := x; v n := v n 1 ; ELSE u n := u n 1 ; v n := x; OUTPUT: x mit f(x) = 0, Nullstelle von f in [a, b]. Analysis I TUHH, Winter 2006/2007 Armin Iske 78

3 Beispiel. f : [1, 2] R mit f(x) = x 2 2, a = 1 und b = 2. Beachte: f( 2) = 0, d.h. 2 = ist Nullstelle von f. n u n v n Graph von f(x) = x 2 2. Beobachtung: Das Bisektionsverfahren konvergiert relativ langsam! Analysis I TUHH, Winter 2006/2007 Armin Iske 79

4 Das Newton-Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f : [a, b] R. Verwende Newton-Iteration: mit Startwert x 0. x n+1 := x n f(x n) f (x n ), für f (x n ) 0, Bemerkung: Verfahren konvergiert, falls x 0 nahe bei einer Nullstelle von f liegt. Beispiel: Für f(x) = x 2 2 und x 0 = 1 erhält man n t n Erinnerung: f( 2) = 0, d.h. 2 = ist Nullstelle von f. Analysis I TUHH, Winter 2006/2007 Armin Iske 80

5 Konvergenz von Folgen. Definition: Sei (a n ) n N eine Folge in einem normierten Vektorraum V. Dann heißt (a nj ) j N für n j N mit 1 n 1 < n 2 <... eine Teilfolge von (a n ) n N. die Folge (a n ) n N beschränkt, falls es ein C > 0 gibt mit n N : a n C. die Folge (a n ) n N konvergent mit Grenzwert (Limes) a V, falls ε > 0 : N = N(ε) N : n N : a n a < ε. Eine nicht-konvergente Folge heißt divergent. die Folge (a n ) n N Cauchy-Folge, falls ε > 0 : N = N(ε) N : n, m N : a n a m < ε. Analysis I TUHH, Winter 2006/2007 Armin Iske 81

6 Satz: Sei (a n ) n N eine Folge in einem normierten Vektorraum. Dann gilt: (a) (a n ) konvergent = (a n ) beschränkt; (b) (a n ) konvergent = (a n ) Cauchy-Folge; (c) Falls (a n ) konvergiert, so ist der Grenzwert von (a n ) eindeutig bestimmt. Beweis von (a): Sei (a n ) konvergent mit Grenzwert a. Dann gilt für vorgegebenes ε > 0 die Abschätzung a n = a n a + a a n a + a < ε + a für alle n N(ε). Damit ist die Folge (a n ) beschränkt mit der Konstanten C = max{ a 1, a 2,..., a N 1, a + ε}. Also n N : a n C. Analysis I TUHH, Winter 2006/2007 Armin Iske 82

7 Beweis von (b): Sei (a n ) konvergent mit Grenzwert a. Dann gilt für vorgegebenes ε > 0 die Abschätzung a n a m = a n a + a a m a n a + a m a < ε 2 + ε 2 = ε für alle n, m N = N(ε/2) Beweis von (c): Sei (a n ) konvergent mit verschiedenen Grenzwerten a und a. Dann gelten für ε > 0 die Abschätzungen a n a < ε a n a < ε für alle n N(ε) für alle n N(ε) Somit folgt für n max{n,n} die Ungleichung a a = a a n + a n a a n a + a n a < 2ε. Da dies für jedes ε > 0 gilt, folgt a = a im Widerspruch zur Annahme a a. Analysis I TUHH, Winter 2006/2007 Armin Iske 83

8 Notationen. Für eine konvergente Folge (a n ) mit Grenzwert a schreiben wir lim a n = a oder a n a (n ). n Uneigentliche Konvergenz bzw. Divergenz gegen den uneigentlichen Grenzwert ±. Für reelle Folgen definieren wir zusätzlich lim n a n = C > 0: N N : n N :a n > C lim n a n = C > 0: N N : n N :a n < C Analysis I TUHH, Winter 2006/2007 Armin Iske 84

9 Bemerkungen. Die Umkehrung der Aussage im Satz, Teil (b), (a n ) Cauchyfolge = (a n ) konvergent gilt nur in gewissen normierten Räumen, nämlich in vollständigen Räumen bzw. Banachräumen. Einen vollständigen Euklidischen Vektorraum nennt man Hilbertraum. Beispiele: für vollständige Räume: (R, ), (C, ), (R n, ), (C[a, b], ); für einen nicht vollständigen Raum: (C[a, b], 2 ). Analysis I TUHH, Winter 2006/2007 Armin Iske 85

10 Satz: Seien (a n ) und (b n ) zwei konvergente Folgen. Dann konvergieren die beiden Folgen (a n + b n ) und (λa n ) für λ R (bzw. λ C), wobei gilt (a) lim n (a n + b n ) = lim n a n + lim n b n, (b) lim n (λa n ) = λ lim n a n. Beweis: Sei a = lim n a n und b = lim n b n, d.h. a sei Grenzwert von (a n ) und b sei Grenzwert von (b n ). (a): Für n max{n 1 (ε/2), N 2 (ε/2)} gilt (a n + b n ) (a + b) a n a + b n b < ε 2 + ε 2 = ε. (b): Sei λ 0. Dann gilt für n N 1 (ε/ λ ) die Abschätzung Der Fall λ = 0 ist trivial. λa n λa = λ a n a < λ ε λ = ε Analysis I TUHH, Winter 2006/2007 Armin Iske 86

11 Konvergenzgeschwindigkeit. Definition: Sei (a n ) eine konvergente Folge mit Grenzwert a. (a) Die Folge (a n ) heißt (mindestens) linear konvergent, falls eine Konstante 0 < C < 1 und ein Index N N existiert mit n N : a n+1 a C a n a (b) Die Folge (a n ) heißt (mindestens) superlinear konvergent, falls es eine nicht-negative Nullfolge C n 0 gibt mit lim n C n = 0, so dass n: a n+1 a C n a n a (c) Die Folge (a n ) heißt konvergent der Ordnung (mindestens) p > 1, falls es eine nicht-negative Konstante C 0 gibt mit n: a n+1 a C a n a p. Analysis I TUHH, Winter 2006/2007 Armin Iske 87

12 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge (a n ) n N heißt monoton wachsend streng monoton wachsend nach oben beschränkt n < m :a n a m n < m :a n < a m C R : n : a n C Analog definiert man die Begriffe monoton fallend streng monoton fallend nach unten beschränkt n < m :a n a m n < m :a n > a m C R : n : a n C Analysis I TUHH, Winter 2006/2007 Armin Iske 88

13 Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge (a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N}. n Beweis: Sei (a n ) n N nach oben beschränkt. Dann gilt s = sup{a n n N} <. Sei nun ε > 0 gegeben. Dann existiert ein N = N(ε) mit s ε < a N s Die Folge (a n ) n N ist monoton wachsend, also folgt s ε < a N a n s n N, d.h. s a n < ε n N N(ε) Analysis I TUHH, Winter 2006/2007 Armin Iske 89

14 Folgerung (Prinzip der Intervallschachtelung): Sei (a n ) n N eine monoton wachsende reelle Folge und (b n ) n N eine monoton fallende reelle Folge mit a n b n für alle n N. Dann sind beide Folgen konvergent. Gilt weiterhin lim (a n b n ) = 0, n so haben (a n ) n N und (b n ) n N denselben Grenzwert, d.h. es gibt ein ξ R mit ξ = lim n a n = lim n b n. Weiterhin gelten in diesem Fall die Fehlerabschätzungen a n ξ b n a n und b n ξ b n a n. a 1 a 2 a 3 ξ b 3 b 2 b 1 Analysis I TUHH, Winter 2006/2007 Armin Iske 90

15 Beispiel. Definiere für 0 < a < b zwei Folgen (a n ) und (b n ) rekursiv durch a 0 := a b 0 := b a n+1 := a n b n b n+1 := (a n + b n )/2 für n 0. Die Folgen (a n ) und (b n ) bilden Intervallschachtelung, und es gilt (b n+1 a n+1 ) b n a n 2 Der gemeinsame Grenzwert von (a n ) und (b n ) lim a n = lim b n n n heißt arithmetisch-geometrisches Mittel von a und b. Analysis I TUHH, Winter 2006/2007 Armin Iske 91

16 Die Bernoullische Ungleichung. Es gilt x 1, n N :(1 + x) n 1 + nx, wobei Gleichheit nur für n = 1 oder x = 0 gilt. Beweis: vollständige Induktion. Die Geometrische Folge. Sei (a n ) n N reelle Folge mit a n := q n für q R. Dann gilt q > 1 : lim n q n = + (q n = (1 + (q 1)) n 1 + n(q 1)) q = 1 : lim n q n = 1 0 < q < 1 : lim n q n = 0 1 < q 0 : lim n q n = 0 ( q n = q n ) ( ) q n 1 1 = (1+(1/q 1)) n 1+n(1/q 1) q = 1 : (q n ) beschränkt, aber nicht konvergent (q n { 1, 1}) q < 1 : (q n ) divergent, kein uneigentlicher Grenzwert Analysis I TUHH, Winter 2006/2007 Armin Iske 92

17 Weitere Rechenregeln. Satz: Seien (a n ) n N und (b n ) n N konvergente reelle Folgen. Dann gilt (a) lim n (a n b n ) = (lim n a n ) (lim n b n ) (b) n:b n 0 lim n b n 0 = lim n ( an b n ) = lim n a n lim n b n (c) n:a n 0 m N = lim n m a n = m lim n a n Beweis: Seien (a n ) n N und (b n ) n N zwei konvergente Folgen mit lim a n = a und lim b n = b n n Analysis I TUHH, Winter 2006/2007 Armin Iske 93

18 Beweis von (a): Für ε > 0 und n N N(ε) gilt a n b n ab = a n b n a n b + a n b ab a n b n b + b a n a C a b n b + b a n a < (C a + b )ε Beweis von (b): Da b n 0 und b 0 existiert eine Konstante C b > 0 mit C b b n für alle n N. Damit gilt 1 1 b n b = b b n b n b = 1 b n b b n b für hinreichend große n N N(ε). 1 C b b ε Nun folgt die Aussage in Teil (b) direkt aus Teil (a), denn es gilt 1/b n 1/b. Analysis I TUHH, Winter 2006/2007 Armin Iske 94

19 Beweis von (c): Wir setzen hierzu folgenden Satz voraus. Satz: Zu a > 0 und m N existiert genau eine Zahl w > 0 mit w m = a. Diese Zahl wird mit w = m a bezeichnet. Fall 1: Sei (a n ) eine Nullfolge und ε > 0 vorgegeben. a n < ε m n N(ε m ) Daraus folgt 0 m a n < ε und daher m a n 0 für n. Analysis I TUHH, Winter 2006/2007 Armin Iske 95

20 Fall 2: Sei a > 0. Verwende die Identität m (x y) x m j y j 1 j=1 = (x y) (x m 1 y 0 + x m 2 y x 0 y m 1) = x m y 0 + x m 1 y x 1 y m 1 x m 1 y 1... x 1 y }{{ m 1 x } 0 y m =0 = x m y m Setze nun x = m a n und y = m a. Dann folgt für ε > 0 und n N(ε): m a n m a = a n a ( m a n ) m ( m a) m 1 a n a ( m a) m 1 < C ε Analysis I TUHH, Winter 2006/2007 Armin Iske 96

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Einführung in die Funktionalanalysis

Einführung in die Funktionalanalysis Einführung in die Funktionalanalysis Bernhard Gsell Skriptum zur Vorlesung gelesen von Prof. Wolfgang Woess 21. August 2014 Dies ist die Umsetzung meiner Vorlesungsmitschrift zu Einführung in die Funktionalanalysis,

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln H.R. Schneebeli, T.P. Wihler Version vom 1. Juli 201 Zusammenfassung Zur näherungsweisen numerischen Lösung von nichtlinearen Gleichungen,

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

3 Konvexe Analysis. 3.1 Grundlagen

3 Konvexe Analysis. 3.1 Grundlagen 25 3 Konvee Analsis 3.1 Grundlagen Die konvee Analsis auch Konveitätstheorie genannt untersucht geometrische Eigenschaften von konveen Mengen, Funktionen und Funktionalen in linearen Räumen. Eine tpische

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik Mathematik 2 für Wirtschaftsinformatik Sommersemester 2012 Stefan Etschberger Hochschule Augsburg Vorlesungsbegleitende Unterlagen Arbeitsmaterial: Foliensatz Aufgabenskript Mitschrift auf Wunsch Bücher:

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematische Methoden der Physik: Funktionalanalytische Methoden. Technische Universität Clausthal WS 1998/99

Mathematische Methoden der Physik: Funktionalanalytische Methoden. Technische Universität Clausthal WS 1998/99 Mathematische Methoden der Physik: Funktionalanalytische Methoden Technische Universität Clausthal WS 1998/99 W. Lücke 3 Vorwort Als Funktionalanalysis bezeichnet man die Analysis von Funktionen, deren

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Stefan Funken, Dirk Lebiedz, Karsten Urban. Numerik II. (Einführung in die Numerische Analysis)

Stefan Funken, Dirk Lebiedz, Karsten Urban. Numerik II. (Einführung in die Numerische Analysis) Stefan Funken, Dirk Lebiedz, Karsten Urban Numerik II (Einführung in die Numerische Analysis) SKRIPT, UNIVERSITÄT ULM, SOMMERSEMESTER 213 i Vorwort. Dieses Manuskript ist entstanden aus Mitschriften und

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 3 Bälle und Topologie

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

SWP Prüfungsvorbereitung

SWP Prüfungsvorbereitung 20. Juni 2011 1 Grammatiken 2 LL(1) 3 EXP 4 Datentypen 5 LP Grammatiken Angabe Erstellen Sie First- und Follow-Mengen aller Non-Terminale der folgenden Grammatik. S a S S B y B A C A A b b A x A ɛ C c

Mehr

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen 9.2.5 HUT 9.2.5 3 atenstrukturen im omputer atenstrukturen ie beiden fundamentalen atenstrukturen in der Praxis sind rray und Liste Rekursion Feedback valuation rray Zugriff: schnell Umordnung: langsam

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Hilbertraum-Methoden

Hilbertraum-Methoden Skript zur Vorlesung Hilbertraum-Methoden SS 2013 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen,

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science an der Technischen Universität Berlin Verfasser:

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Grundlagen der Stochastischen Analysis. Egbert Dettweiler

Grundlagen der Stochastischen Analysis. Egbert Dettweiler Grundlagen der Stochastischen Analysis Egbert Dettweiler Vorwort Der erste Teil des vorliegenden Manuskripts ist im wesentlichen eine Vorlesungsausarbeitung einer im Sommersemester 23 an der Universität

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr