Grundlagen digitaler Systeme WS12

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen digitaler Systeme WS12"

Transkript

1 Grundlagen digitaler Systeme WS12 Binary Decision Diagrams Johann Blieberger , VU 2.0 Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology

2 Darstellungsmöglichkeiten kombinatorischer Logik Disjunktive-/konjunktive Normalform Geeignet zur Implementierung in Hardware (Gatterschaltungen, PLA, etc.) Darstellung mittels If-Then-Else (ITE) Z.B.: if(a = true) then if(b= true) then x = false else x = true endif else x = true endif Geeignet zur Implementierung in Software (Hochsprache, Maschinencode) Ableitbar von Binary Decision Diagram 2

3 Wahrheitstabelle und ITE Einführung des ITE Operators ITE (a,b,c) kann interpretiert werden als If (a = true) then b else c Darstellung Boolescher Operatoren (,,0) (,0,1) (,1, ) Umwandlung von Disjunktiver-/Konjunktiver Normalform in ITE Basiert auf Shannon-Zerlegung 3

4 Shannon-Zerlegung Sei f : B n B eine Boolesche Funktion. Definiere Kofaktor von f nach x i =1 durch f i,1 : B n B f i,1 (a 1,,a i-1, a i, a i+1,,a n ) = f(a 1,,a i-1, 1, a i+1,,a n ) für alle a k {0,1}, k=1,,n. Entsprechend heißt f i,0 Kofaktor von f nach x i =0. Es gilt dann f = (x i f i,1 ) ( x i f i,0 ). f = (x i f i,1 ) ( x i f i,0 ) heißt Shannon-Zerlegung von f. 4

5 Wahrheitstabelle und ITE Beispiel x 1 x 2 x 3 y IF x 1 THEN IF x 2 THEN IF x 3 THEN 1 ELSE 0 ELSE IF x 3 THEN 1 ELSE 0 ELSE IF x 2 THEN IF x 3 THEN 1 ELSE 1 ELSE IF x 3 THEN 0 ELSE 0 5

6 Decision Tree y x 1 x 1 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x

7 Decision Tree: Andere Schreibweise Negation auf Kanten x 1 x 2 x 2 x 3 x 3 x 3 x

8 BDD Reduction Rules Umwandlung eines Decision Trees in einen minimalen DAG (Directed Acyclic Graph) Anwenden von zwei Regeln Delete Rule: Löschen unnötiger Zwischenstufen Merge Rule: Zusammenfassen von identen Teilgraphen Ergebnis: Binary Decision Diagram (BDD) (eigentlich geordnetes BDD, engl. Ordered BDD = OBBD) 8

9 BDD Reduction Rule Delete Rule x i x k x k 9

10 BDD Reduction Rules Merge Rule x i x i x i x k x k x k x k 10

11 Beispiel Schritt 1: Nur 1x 1 und 1x 0 x 1 x 2 x 2 x 3 x 3 x 3 x 3 11

12 Beispiel Delete Rule x 1 x 2 x 2 x 3 x 3 x 3 x 3 12

13 Beispiel Delete Rule x 1 x 2 x 2 x 3 x 3 x 3 13

14 Beispiel Delete Rule x 1 x 2 x 2 x 3 x 3 x 3 14

15 Beispiel Delete Rule x 1 x 2 x 2 x 3 x 3 15

16 Beispiel Merge Rule x 1 x 2 x 2 x 3 x 3 16

17 Beispiel Merge Rule x 1 x 2 x 2 x 3 17

18 Beispiel Delete Rule x 1 x 2 x 2 x 3 18

19 Beispiel x 1 x 2 x 3 19

20 Beispiel Merge Rule? x 1 x 2 x 3 20

21 Beispiel Merge Rule? Nein x 1 x 2 x 3 x 2 x 3 21

22 Beispiel als ITE x 1 x 2 IF x 1 THEN IF x 3 THEN 1 ELSE 0 ELSE IF x 2 THEN 1 ELSE 0 x 3 22

23 Vereinfachte Reduktion (Beads) Bisherige Reduktion im Baum durch Anwendung von Merge-Rule, Delete-Rule Vereinfachte Version durch Aufschreiben der Ergebnisse der Wahrheitstabelle als Wort der Länge 2 wobei die Anzahl der Eingangsvariablen ist. Z.B.:,, = sogenannte Beads (Wörter der Länge 2 ) Beads sind binäre Haben nicht die Form ww, wobei w ein Wort der Länge 2 ist. Beispiel(n=2): alle Beads der Länge 4 sind 0001, 0010, 0011, 0100, 0110, 0111,1000, 1001, 1011, 1100, 1101, 1110 Keine Beads (= Squares) der Länge 4 sind 0000, 0101, 1010,

24 Beispiel via Beads In x 1 Wahrheitswerte eintragen x 2 x 2 x 3 x 3 x 3 x 3 24

25 Beispiel via Beads Halbieren und nach unten übertragen x 2 x 2 x 3 x 3 x 3 x 3 25

26 Beispiel via Beads Halbieren und nach unten übertragen x 3 x 3 x 3 x 3 26

27 Beispiel via Beads Falls gleich ww, Merge/Delete Rule x 3 x 3 x 3 x 3 27

28 Beispiel via Beads Falls gleich ww, Merge/Delete Rule x 3 x 3 x 3 x 3 28

29 Beispiel via Beads Falls gleich ww, Merge/Delete Rule x 3 x 3 29

30 Beispiel via Beads Halbieren und nach unten x 3 x 3 30

31 Beispiel via Beads Halbieren und nach unten

32 Beispiel via Beads Falls gleich 00 0 oder 11 1, Je nach eigehender Kante direkt auf 0 oder 1 umleiten

33 Beispiel via Beads Falls gleich 00 0 oder 11 1, Je nach eigehender Kante direkt auf 0 oder 1 umleiten

34 Beispiel via Beads Falls gleich 00 0 oder 11 1, Je nach eigehender Kante direkt auf 0 oder 1 umleiten

35 Beispiel via Beads Falls gleich 00 0 oder 11 1, Je nach eigehender Kante direkt auf 0 oder 1 umleiten

36 Beispiel via Beads ohne Decision Tree Wahrheitstabelle eintragen

37 Beispiel via Beads ohne Decision Tree Halbieren und nach unten; Squares überspringen Ebenen, bis Beads übrig bleiben

38 Beispiel via Beads ohne Decision Tree Falls gleich 00 0 oder 11 1, je nach eingehender Kante direkt auf 0 oder 1 umleiten

39 Beispiel via Beads ohne Decision Tree Reihenfolge der Variablen ergibt sich aus der Wahrheitstabelle

40 Variablenreihenfolge Wählen andere Reihenfolge x 3 x 2 x 1 y

41 Beispiel Wahrheitstabelle eintragen

42 Beispiel Halbieren und nach unten

43 Beispiel Halbieren und nach unten 11 und 00 auf 1 und 0 umleiten

44 Beispiel Benötigt mehr Knoten!

45 Variablenreihenfolge Für n Variablen gibt es n! unterschiedliche Permutationen (Permutationen) Z.B. =,,,, =,,,, Minimum-Finden ist schwer! 45

46 Größe von BDDs Es gibt Boolesche Funktionen, sodass unabhängig von der Variablenreihenfolge alle BDDs exponentielle Größe haben. Die meisten praktisch relevanten Funktionen haben geringe Größe. Bekannte schwere Funktion: Multiplikation. Exponentiell große disjunktive Form aber polynomielle BDD-Größe: Majority-Funktion. 46

47 Eigenschaften von BDDs In einem BDD kommen alle Beads der Wahrheitstabelle und nur diese vor. Darstellung einer bestimmten Booleschen Funktion ist bei gegebener Variablenreihenfolge isomorph (eindeutig). Zwei isomorphe OBDDs beschreiben äquivalente Boolesche Ausdrücke Typische Funktionen sind einfach mittels BDD-Darstellung zu realisieren. 47

48 Typische Funktionen auf BDDs Negation: Kantentypen vertauschen 48

49 Typische Funktionen UND 49

50 Typische Funktionen ODER

51 Typische Funktionen XOR: einen Operanden duplizieren 51

52 Realisierung als mehrstufige Schaltkreise mittels MUX MUX x 1 x 2 10 x 3 MUX MUX

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme Kapitel 4: Binäre Entscheidungsdiagramme (BDDs) BDDs (binary decision diagrams) wurden aus binären Entscheidungsbäumen für boole sche Funktionen entwickelt. Binärer Entscheidungsbaum (binary decision tree:

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Begleitmaterial zur Vorlesung Binary Decision Diagrams Wintersemester 2006/2007 Detlef Sieling Universität Dortmund FB Informatik, LS 2 44221 Dortmund Von diesem Begleitmaterial dürfen einzelne Ausdrucke

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Fragen für die Klausuren

Fragen für die Klausuren Fragen für die Klausuren Vom Quellcode zum ausführbaren Programm Was ist ein Quellcode? Ist der Quellcode von einem Programm auf unterschiedlichen Rechner gleich? Nennen Sie drei Programmiersprachen. Was

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

1. Grundlagen der Digitaltechnik K. Taubert WS 01/ 02

1. Grundlagen der Digitaltechnik K. Taubert WS 01/ 02 1. Grundlagen der Digitaltechnik K. Taubert WS 1/ 2 Digitaltechnik ist allgegenwärtig und viele Abläufe in unserem heutigen Leben sind kaum noch denkbar ohne diese Technik. Hier beschäftigen wir uns mit

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Planen als Model Checking

Planen als Model Checking Otto-Friedrich-Universität Bamberg Lehrstuhl Angewandte Informatik Kognitive Systeme Seminararbeit Planen als Model Checking Svetlana Balinova Januar 2007 Inhaltsverzeichnis 1 Einführung 1 2 Explicit Model

Mehr

Inhaltsverzeichnis. Inhalt. 1 Einleitung

Inhaltsverzeichnis. Inhalt. 1 Einleitung Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition.

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Binäre Entscheidungsgraphen

Binäre Entscheidungsgraphen Binäre Entscheidungsgraphen Christel Baier Skript zum Seminar SS 2012 i Inhaltsverzeichnis 1 Schaltfunktionen und Schaltkreise 3 1.1 Schaltfunktionen................................ 3 1.2 Schaltkreise...................................

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Kapitel 3: Boolesche Algebra

Kapitel 3: Boolesche Algebra Inhalt: 3.1 Grundlegende Operationen und Gesetze 3.2 Boolesche Funktionen u. u. ihre Normalformen 3.3 Vereinfachen von booleschen Ausdrücken 3.4 Logische Schaltungen 3.1 Grundlegende Operationen und Gesetze

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Institut für Innovatives Rehnen und Programmstrukturen (IPD) Übersetzerbau WS 2007/08 http://www.info.uni-karlsruhe.de/ Dozent: Prof. Dr.rer.nat. G. Goos goos@ipd.info.uni-karlsruhe.de

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

13. Einführung in die Programmiersprache Strukturierter Text (ST)

13. Einführung in die Programmiersprache Strukturierter Text (ST) 13. Einführung in die Programmiersprache Strukturierter Text (ST) 13.1 Übersicht Strukturierter Text (ST, auch SCL) ist eine der sechs in IEC 61131-3 festgeschriebenen Programmiersprachen für Automatisierungstechnik.

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Entscheidungstabellen zur Testdatenermittlung

Entscheidungstabellen zur Testdatenermittlung Entscheidungstabellen zur Testdatenermittlung ÜBERBLICK... 2 ERSTELLUNG VON ENTSCHEIUNGSTABELLEN... 2. AUFBAU VON ENTSCHEIUNGSTABELLEN... 2.2 BEISPIEL KFZ-VERSICHERUNG... 2 2.3 VARIANTEN... 2 3 VALIIERUNG

Mehr

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29 Inhaltsverzeichnis 4 Boolesche lgebra... 4-2 4. lgebra der Logik, algebraische Logik... 4-2 4.. Schaltalgebra und logische Schaltungen... 4-3 4... Zustand eines digitalen Systems... 4-5 4...2 Schaltfunktion...

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo Aufgabe ist die Entwicklung einer vereinfachten Variante der beliebten Programmiersprache Logo. Die Aufgabe ist in drei Stufen zu erledigen, von der wir zunächst nur die erste Stufe bekannt geben. Die

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

DAP2-Klausur 07.08.2004

DAP2-Klausur 07.08.2004 DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54 PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1.4.12 Sin-Funktion vgl. Cos-Funktion

1.4.12 Sin-Funktion vgl. Cos-Funktion .4. Sgn-Funktion Informatik. Semester 36 36.4.2 Sin-Funktion vgl. Cos-Funktion Informatik. Semester 37 37 .4.3 Sqr-Funktion Informatik. Semester 38 38.4.4 Tan-Funktion Informatik. Semester 39 39 .5 Konstanten

Mehr

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter)

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Folgende Darstellung der Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern ist möglich: a) F = X ( Y Z) b) F = EN ( X Y) ( Y

Mehr

Lua Grundlagen Einführung in die Lua Programmiersprache

Lua Grundlagen Einführung in die Lua Programmiersprache Lua Grundlagen Einführung in die Lua Programmiersprache 05.05.2014 Ingo Berg berg@atvoigt.de Automatisierungstechnik Voigt GmbH Die Lua Programmiersprache Was ist Lua? freie Programmiersprache speziell

Mehr

Mathematische Modelle in Angewandten Wissenschaften

Mathematische Modelle in Angewandten Wissenschaften Mathematische Modelle in Angewandten Wissenschaften LVA 405.880 C. Fuchs Inhaltsübersicht 14.12.2015 Inhaltsübersicht Diese Lehrveranstaltung dient zur Finalisierung der mathematischen Ausbildung im Lehramtsstudium

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Constraint-Algorithmen in Kürze - Mit der Lösung zur Path-Consistency-Aufgabe 9

Constraint-Algorithmen in Kürze - Mit der Lösung zur Path-Consistency-Aufgabe 9 Constraint-Algorithmen in Kürze - Mit der Lösung zur Path-Consistency-Aufgabe 9 Prof. Dr. W. Conen Version 1.0c Januar 2009 Genereller Ablauf der Suche Gegeben: Variablen X, Domains D, Constraints R (explizit

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr

Diana Lange. Generative Gestaltung Operatoren

Diana Lange. Generative Gestaltung Operatoren Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.

Mehr

Hardware/Software-Codesign

Hardware/Software-Codesign Klausur zur Lehrveranstaltung Hardware/Software-Codesign Dr. Christian Plessl Paderborn Center for Parallel Computing Universität Paderborn 8.10.2009 Die Bearbeitungsdauer beträgt 75 Minuten. Es sind keine

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr