3 Windungszahlen und Cauchysche Integralformeln

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3 Windungszahlen und Cauchysche Integralformeln"

Transkript

1 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von bzgl. z 0. Wir zeigen n(, z 0 ) Z, dies folgt aus 3.2 Lemma: Sei : [a, b] C geschlossener Integrationsweg und z 0 C \ Sp. Dann ist n(, z 0 ) Z. Beweis: O.B.d.A. sei stetig differenzierbar (sonst analog), dann ist auch h : [a, b] C, t t (τ) dτ a (τ) z 0 differenzierbar mit h(a) = 0, h(b) = n(, z 0 ). Ferner ist g : [a, b] C, t ((t) z 0 )e h(t) differenzierbar mit g (t) = g(t)[ h (t) + (t) (t) z 0 ] = 0, d.h. c C mit g(t) = c t=a = (a) z 0 ( 0). (t) z 0 (a) z 0 = e h(t) t [a, b], also ((a) = (b)) e h(b) = e h(a) = e 0 =. Also ist nach Beispiel?? b) h(b) = n(, z 0 ) Z. ( ) 3.3 Bemerkung (Zur Bestimmung von n(, z 0 )): Mit den Bezeichnungen aus Lemma 3.2 (mit Beweis) ist für z 0 Sp arg (t) z 0 (a) z 0 = arg[(t) z 0 ] arg[(a) z 0 ] ( ) = 2π Re h(t). Wegen Re h(a) = 0 und Re h(b) = n(, z 0 ) ist der Zuwachs von 2π arg[(t) z 0], wenn t von a nach b läuft, gleich n(, z 0 ).

2 3 Windungszahlen und Cauchysche Integralformeln Beispiel: Sei z 0 C, m Z \ {0} und r > 0. Dann gilt für : [0, 2π] C, t z 0 + re imt : n(, z 0 ) = 2π (t) dt = 2π im re imt dt = m. 0 (t) z 0 0 re imt Nach Bemerkung 3.3 ist sogar n(, z) = m z U r (z 0 ). (vgl. auch Satz 3.6) 3.5 Lemma: Sei Integrationsweg in C und f : Sp O C stetig. Für alle ζ Sp sei f(ζ, ) : O C, z f(ζ, z) holomorph mit stetiger Ableitung f z (ζ, ). Dann ist F : O C, z f(ζ, z)dζ holomorph mit F (z) = f z (ζ, z)dζ z O. Beweis: Nach Voraussetzung ist f stetig, ferner ist ( ζ Sp ) f(ζ, ) stetig reell differenzierbar. (Analysis 2, Satz 29.3, parameterabhängige Integrale) F ist reell differenzierbar mit F z (z) = f z (ζ, z)dζ und F z (z) = f z (ζ, z) dz = 0. }{{} = 0 nach S.?? Also folgt mit Satz?? die Behauptung.

3 3 Windungszahlen und Cauchysche Integralformeln Satz: Sei Γ = m n j j ein Zyklus. Dann ist n(γ, ) : O = C \ Sp Γ Z auf j= jeder Zusammenhangskomponente von O konstant und gleich Null auf der unbeschränkten Zusammenhangskomponente. Beweis: z n(γ, z) = m n j j= j dζ ζ z ist nach Lemma 3.5 holomorph (und somit stetig) in O; wegen n(, z) Z folgt daraus die. Behauptung. Da Sp Γ kompakt ist, existiert genau eine unbeschränkte Zusammenhangskomponente von O. Daher folgt die 2. Behauptung aus n(γ, z) 2π m j= n j L( j ) max ζ Sp j ζ z z Satz (Cauchysche Integralformel): Sei G sternförmig, ein geschlossener Integrationsweg in G und f H(G). Dann gilt für z G \ Sp f(z)n(, z) = dζ. () ζ z Beweis: Für z G \ Sp besitzt g : G C, ζ { f(z) ζ z f (z) für ζ z für ζ = z nach Satz?? eine Stammfunktion. Damit folgt die Behauptung aus dζ 0 = g(ζ)dζ = dζ f(z). ζ z ζ z }{{} = n(,z) Als wichtigsten Spezialfall notieren wir (beachte Beispiel 3.4): 3.8 Korollar: Sei 0 < r < R, a C und f H(U R (a)), so gilt: a) f(z) = ζ z dζ z U r(a). (2) ζ a =r [Man erkennt hier, dass die Funktionswerte von f in U r (a) bereits durch die Funktionswerte von f auf U r (a) bestimmt sind.] b) f (n) (z) = n! ζ a =r (ζ z) n+ dζ z U r(a), n N 0. (3)

4 3 Windungszahlen und Cauchysche Integralformeln 6 Beweis: a) Satz 3.7 b) folgt aus a) mit Lemma 3.5 induktiv. Als Anwendung der Cauchyschen Integralformel ergibt sich der für die Funktionentheorie zentrale Satz: 3.9 Satz: f H(O) f ist um jeden Punkt a O in eine Potenzreihe entwickelbar, d.h. hier: R > 0 mit U R (a) O ist f(z) = c n (z a) n z U R (a). S.?? (Merke: c n = n! f(n) Kor. 3.8 (a) = ζ a =r dζ, 0 < r < R.) (ζ a) n+ Beweis: : Satz?? Zu : Sei f H(O), 0 < r < R, U R (a) O und z U r (a) fest; dann konvergiert die Reihe ζ z = ζ a z a ζ a = (z a) n (ζ a) n+ (4) (für festes z) absolut und gleichmäßig ζ U r (a). Damit folgt die Behauptung aus f(z) (2),(4) = = ζ a =r ( ) (z a) n dζ (ζ a) n+ ζ a =r (ζ a) n+dζ (z a) n. }{{} =:c n Als weitere Anwendungen erhalten wir die Cauchy-Ungleichungen: 3.0 Satz: Mit r, ε > 0 sei f(z) = c n (z a) n konvergent für z a r + ε. Dann gilt mit M(r) := max{ f(z) z a = r} für 0 < δ r f (n) (z) r δ Mit δ = r bzw. δ = r liefert (5) 2 n! δ n M(r) für z a r δ und n N 0. (5) bzw. n! f(n) (a) (),(5) = c n M(r) r n n N 0 (6) f (n) (z) 2n+ n! r n M(r) n N 0 und z a r 2. (7)

5 3 Windungszahlen und Cauchysche Integralformeln 7 Beweis: Für z a r δ und ζ a = r ist ζ z ζ a a z = r z a δ Da f in U r+ε (a) holomorph ist, folgt (5) mit der Standardabschätzung für Integrale aus (3). 3. Satz (Liouville): Ist f ganze Funktion, und gilt für s 0 mit M(r) := max{ f(z) z = r} M(r) lim inf = L <, r r s so ist f ein Polynom vom Grad s; insbesondere ist jede beschränkte ganze Funktion konstant. Beweis: Mit der Potenzreihenentwicklung f(z) = c n z n (konvergent in C nach S. 3.9) folgt aus (6) c n M(r) n N r n 0, r > 0. Nach Voraussetzung existiert eine Folge (r j ) mit lim r j = und M(r j ) < rj s (L + ) j (j j 0 ). Damit folgt die Behauptung aus c n (L + )r s n j Hieraus folgt j 0 für n > s. 3.2 Satz (Fundamentalsatz der Algebra): Jedes Polynom P(z) = n a j z j mit a n 0 und n besitzt in C genau n Nullstellen (jede sooft gezählt, wie es ihrer Vielfachheit entspricht). Beweis: Hätte P keine Nullstelle, so wäre beschränkte ganze Funktion und somit nach P dem Satz von Liouville konstant; Widerspruch. Die Beschränktheit von für z R folgt aus P(z) ( n )] [ a n z n a j z P(z) a n z j n 0. j=0 Also besitzt P mindestens eine Nullstelle z n C und somit die Darstellung n P(z) = (z z n ) b j z j mit b n = a n 0. j=0 Da jedes nichtkonstante Polynom az + b genau eine Nullstelle hat, folgt induktiv die (bis auf Permutationen eindeutige) Darstellung n P(z) = a n (z z j ). j= j=0

6 3 Windungszahlen und Cauchysche Integralformeln Satz (Morera): Ist f : G C stetig und gilt für jedes abgeschlossene Dreieck G f(z)dz = 0, so ist f H(G). Beweis: Sei r > 0 und U r (a) G. Wir setzen für z U r (a) F(z) := dζ. [a,z] Dann ist F lokale Stammfunktion von f, denn für z U r (a) gilt (nach Voraussetzung) F(z) dζ F(z ) = dζ = 0 [z,z] (a,z,z ) und somit (für z z ) F(z) F(z ) f(z ) z z = ( f(z ))dζ z z [z,z] max{ f(z ) ζ [z, z]} z z 0 ( da f stetig ), d.h. F (z ) = f(z ). Da a G beliebig war, folgt f H(G). 3.4 Satz: Sei f H(O), f = u+iv. Dann gilt: u, v C (τ(o)) und u = 0, v = 0 in τ(o), (d.h. u und v sind harmonische Funktionen). Beweis: u, v C (τ(o)) gilt wegen f (n) H(O) n N 0. Die Cauchy-Riemannschen Differentialgleichungen liefern: } u x = v y u y = v x u } xx = v yx u u yy = v xx + u yy = 0. xy Analog folgt v = 0.

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS WERNER MÜLLER Sommersemester 205 Inhaltsverzeichnis 0. Die komplexen Zahlen 3. Holomorphe Funktionen 6 2. Die Cauchy-Riemannschen Differentialgleichungen 9 3. Potenzreihen

Mehr

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader Damian Rösslers Komplexe Analysis SS 2 getext von Johannes Bader Copyright 22 Johannes Bader baderj@ee.ethz.ch Die Verteilung dieses Dokuments in elektronischer oder gedruckter Form ist nicht gestattet.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Einführung in die Funktionentheorie

Einführung in die Funktionentheorie Einführung in die Funktionentheorie Andreas Gathmann Vorlesungsskript TU Kaiserslautern 204/5 Inhaltsverzeichnis 0. Einleitung und Motivation..................... 3. Komplexe Zahlen.......................

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Komplexe Analysis und Geometrie

Komplexe Analysis und Geometrie Fakultät für Mathematik Universität Bielefeld Reine Mathematik Komplexe Analysis und Geometrie Dozent: Hsch.-Doz. PhD. Kim A. Frøyshov SS 2004, WS 2004/05, SS 2005 Stand: März 2006 Komplexe Analysis und

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Klaus Lichtenegger. Komplexe Analysis

Klaus Lichtenegger. Komplexe Analysis Klaus Lichtenegger Komplexe Analysis Eine Einführung in die Funktionentheorie im Rahmen der Analysis Telematik. Auflage, Mai/Juni M. C. Escher: Drei Welten (Lithographie, 955) ii Inhaltsverzeichnis Die

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 3 Bälle und Topologie

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

4 Runge-Kutta-Verfahren

4 Runge-Kutta-Verfahren Numerik gewöhnlicher Differentialgleichungen 43 4 Runge-Kutta-Verfahren 4. Konstruktion Ausgangspunkt wie immer (Substitution: s = t + τh, 0 τ ) y(t + h) = y(t) + [y(t + h) y(t)] = y(t) + = y(t) + h 0

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Komplexe Analysis. Prof. Dr. Dirk Ferus. Sommersemester 2010

Komplexe Analysis. Prof. Dr. Dirk Ferus. Sommersemester 2010 Komplexe Analysis Prof. Dr. Dirk Ferus Sommersemester 200 Version vom 3.07.200 Inhaltsverzeichnis Holomorphe Funktionen 7. Die komplexen Zahlen........................................ 7.2 Differenzierbarkeit..........................................

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Topologie. Prof. Dr. Dirk Ferus. Wintersemester 2004/5

Topologie. Prof. Dr. Dirk Ferus. Wintersemester 2004/5 Topologie Prof. Dr. Dirk Ferus Wintersemester 2004/5 Version vom 04.02.2005 Inhaltsverzeichnis 1 Topologische Räume und stetige Abbildungen 7 1.1 Metrische und topologische Räume.................................

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

Schulmathematik und Algorithmen der Computeralgebra

Schulmathematik und Algorithmen der Computeralgebra Schulmathematik und Algorithmen der Computeralgebra Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 13. Dezember 2008 Universität Passau Überblick

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung /

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung / Algebra II Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium 82-105-L-MAT09-H-0610 N.N. Lehramt (H. Fischer) Leistungspunkte (ECTS-Punkte) 5 Gründliches

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin

Fakultät für Mathematik und Informatik. Seminar über angewandte Analysis. Sommersemester 2007. Der Kreissatz von Gerschgorin Fakultät für Mathematik und Informatik Lehrgebiet angewandte Mathematik Prof. Dr. H. Linden Dipl.-Math. H.-J. Schäfer Seminar über angewandte Analysis Sommersemester 2007 Der Kreissatz von Gerschgorin

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr