KOMPETENZHEFT ZUR TRIGONOMETRIE, II

Größe: px
Ab Seite anzeigen:

Download "KOMPETENZHEFT ZUR TRIGONOMETRIE, II"

Transkript

1 KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4 2) cos(β) = 0,8 3) tan(γ) = 0,8 Aufgabe 1.2. Im folgenden Zeigerdiagramm ist der Funktionsgraph einer allgemeinen Sinusfunktion f(t) = A sin(ω t + ϕ) dargestellt. a) Zeichne die Startposition des Zeigers ein. b) Bestimme die Amplitude A, die Kreisfrequenz ω und den Nullphasenwinkel ϕ. c) Gib eine Funktionsgleichung der dargestellten, allgemeinen Sinusfunktion an. Datum: 3. Februar

2 Aufgabe 1.3. Ermittle die Parameter A, ω, ϕ und c der dargestellten Sinusfunktionen y(x) = A sin(ω x + ϕ) + c. a) b) c) d) Aufgabe 1.4. Berechne alle Winkel in [0 rad; 2π rad], die Lösungen der folgenden Gleichungen sind: a) sin(2 x 3) = 0,7 b) cos(3 x + 5) = 0,1 c) tan(2 x 1) = 42 Aufgabe

3 3

4 1.1 1) α 1 = 336,4..., α 2 = 203,5... 2) β 1 = 36,8..., β 2 = 323,1... 3) γ 1 = 38,6..., γ 2 = 218, a) b) A = 5, ω = 0,5, ϕ = π oder: ϕ = 7π ( 4 ) 4 π c) f(t) = 5 sin 0,5 t a) y = 2 sin (0,5 x) b) y = 8 sin ( ) ( 2x π c) y = 2 sin x 3π a) x 1 = 1, rad, x2 = 5, rad, x3 = 2, rad, x4 = 5, rad ) ( 1 d) y = 0,5 sin 4x 3π 2 ) b) x 1 = 0, rad, x2 = 3, rad, x3 = 5, rad, x4 = 1, rad, x5 = 4, rad, x6 = 6, rad a) x 1 = 1, rad, x2 = 2, rad, x3 = 4, rad, x4 = 5, rad 1.5 a) d = 121 m, ω 0,21 min 1, c = 74,5 m b) t 1 = 40,78... s, t2 = 86,71... s = Gondel ist rund 46 Sekunden in einer Höhe von mindestens 60 m. c) v 2,827 km/h, 12 gleichmäßig verteilte Gondeln = Winkel zwischen zwei benachbarten Gondeln π 6 rad. ϕ wird gegen den Uhrzeigersinn von der rechten horizontalen Lage gemessen = ϕ = π = 11π 6 6 4

5 2. Winkelfunktionen am Einheitskreis Wir haben die Winkelfunktionen Sinus, Cosinus und Tangens bereits im rechtwinkligen Dreieck folgendermaßen definiert: sin(α) = G H, cos(α) = A H, tan(α) = G A H G α A i) Erkläre, warum hiermit die Winkelfunktionen ausschließlich für Winkel zwischen 0 und 90 ( spitze Winkel ) definiert sind. ii) Leite aus der Definition den Zusammenhang sin(α) cos(α) = tan(α) ab. Im Folgenden erweitern wir den Definitionsbereich der Winkelfunktionen auf beliebige Winkel. Von einem Kreis mit Radius 1 ( Einheitskreis ) zeichnen wir nur ein Viertel und wählen am Kreisbogen einen Punkt P. Ausgehend von P konstruieren wir folgendermaßen zwei rechtwinklige Dreiecke: 1. Quadrant (0 < α < 90 ) 1) Erkläre, warum der Punkt P = (x P y P ) tatsächlich die x-koordinate x P = cos(α) und die y-koordinate y P = sin(α) hat. 2) Erkläre, warum die senkrechte Kathete im großen Dreieck tatsächlich die Länge tan(α) hat. 3) Berechne mit dem Taschenrechner sin(90 ), cos(90 ) und tan(90 ). Kannst du eine plausible Erklärung für die Ergebnisse finden? 5

6 Um sin(α) und cos(α) nun auch für größere Winkel zu definieren, lassen wir den Punkt P am Kreisbogen weiter gegen den Uhrzeigersinn laufen. Jedem Winkel α entspricht genau ein Punkt P = (x P y P ) am Einheitskreis: 2. Quadrant (90 < α < 180 ) Die Eigenschaft des Punkts P im ersten Quadranten nehmen wir als Ausgangspunkt für die Definition von sin(α) und cos(α) für jeden beliebigen Winkel, nämlich: cos(α) = x P bzw. sin(α) = y P. Erkläre, warum cos(α) für Winkel zwischen 90 und 180 negativ ist, während sin(α) positiv ist. Welches Vorzeichen hat daher sin(α) cos(α)? Damit uns der Zusammenhang tan(α) = sin(α) aus dem ersten Quadranten auch im zweiten cos(α) Quadranten erhalten bleibt, haben wir für die Definition von tan(α) die Hypotenuse wie zuvor nach rechts verlängert. 6

7 Erkläre, warum mit diesen Definitionen auch im dritten und vierten Quadranten die Gleichung tan(α) = sin(α) erfüllt ist. cos(α) 3. Quadrant (180 < α < 270 ) 4. Quadrant (270 < α < 360 ) Beispiel 2.1. Trage in der folgenden Tabelle die Vorzeichen der Winkelfunktionen in den vier Quadranten sowie die Werte an deren Schnittstellen ein Qu Qu Qu Qu. 360 sin(α) cos(α) tan(α) Erkläre, warum sin 2 (α) + cos 2 (α) = 1 für jeden Winkel α gilt. Anmerkung: sin 2 (α) ist die Kurzschreibweise für sin(α) sin(α) Berechne mit dem Taschenrechner sin(20 ) und sin(380 ). Gib eine plausible Erklärung, wie die Winkelfunktionen für Winkel größer als 360 definiert werden. 7

8 Auch für negative Winkel können wir auf diese Weise die Winkelfunktionen definieren, indem wir so oft 360 addieren, bis wir einen Winkel im Bereich von 0 bis 360 erhalten, z.b.: sin( 420 ) = sin( 60 ) = sin(300 ). i) Erkläre, warum der eingezeichnete Winkel α eine Lösung der Gleichung sin(α) = 0,6 ist. ii) Erkläre, warum die Gleichung noch eine zweite Lösung zwischen 0 und 360 besitzt. Zeichne den zweiten Winkel ein. iii) Erkläre anhand der Zeichnung den Zusammenhang sin(α) = sin(180 α) iv) Berechne mit dem Taschenrechner beide Lösungen. i) Erkläre, warum der eingezeichnete Winkel α eine Lösung der Gleichung cos(α) = 0,8 ist. ii) Erkläre, warum die Gleichung noch eine zweite Lösung zwischen 0 und 360 besitzt. Zeichne den zweiten Winkel ein. iii) Erkläre anhand der Zeichnung den Zusammenhang cos(α) = cos(360 α) iv) Berechne mit dem Taschenrechner beide Lösungen. 8

9 i) Erkläre, warum der eingezeichnete Winkel α eine Lösung der Gleichung tan(α) = 0,75 ist. ii) Erkläre, warum die Gleichung noch eine zweite Lösung zwischen 0 und 360 besitzt. Zeichne den zweiten Winkel ein. iii) Erkläre anhand der Zeichnung den Zusammenhang tan(α) = tan(180 + α) iv) Berechne mit dem Taschenrechner beide Lösungen. i) Erkläre anhand der Zeichnung den Zusammenhang sin( α) = sin(α) ii) Erkläre anhand der Zeichnung den Zusammenhang cos( α) = cos(α) iii) Erkläre anhand der Zeichnung den Zusammenhang tan( α) = tan(α) 9

10 Allgemein nennt man Funktionen mit der Eigenschaft f( x) = f(x) gerade Funktionen, und solche mit der Eigenschaft f( x) = f(x) ungerade Funktionen, d.h. Sinus und Tangens sind ungerade Funktionen, während Cosinus eine gerade Funktion ist. 3. Funktionsgraphen der Winkelfunktionen Zur Messung von Winkeln gibt es neben dem zuvor verwendeten Gradmaß (Einheit: Grad, kurz: ) auch das sogenannte Bogenmaß (Einheit: Radiant, kurz: rad). Dazu betrachten wir einen Kreissektor mit Radius 1. Den Winkel messen wir dann im Bogenmaß, indem wir die Länge des Kreisbogens angeben. Genauer: Der Winkel b rad ist jener Winkel, bei dem der Bogen des Kreissektors die Länge b hat. 1) Begründe die folgende Formel für die Bogenlänge b eines Kreissektors mit Radius r = 1 und Zentriwinkel α (in Grad): b = 2 π 360 α Die Bogenlänge b ist also direkt proportional zum Zentriwinkel α. Daher können wir Winkel von Grad in Radiant und umgekehrt mittels Schlussrechnungen umwandeln. 2) Erkläre, warum 360 = 2 π rad gilt, und rechne die folgenden Winkel zwischen Gradmaß und Bogenmaß um: Gradmaß Bogenmaß 2 π rad 1 rad Für jeden Winkel x können wir am Einheitskreis genau einen zugehörigen Sinuswert sin(x) bestimmen, daher sprechen wir auch von der Winkelfunktion Sinus. Sehen wir uns den Funktionsgraph von y = sin(x) für Winkel x [0 rad; 2π rad] an. 10

11 Funktionsgraph der Sinusfunktion 1) Erkläre bei welchen Winkeln der Sinuswert minimal, maximal bzw. Null ist. 2) Erkläre, warum der Funktionsgraph nicht stückweise gerade, sondern wellenförmig verläuft. Auch nach einer vollständigen Umdrehung können wir den Punkt am Einheitskreis weiter rotieren lassen, und so den Funktionsgraphen von y = sin(x) für beliebige Winkel x bestimmen. Erkläre, warum sin(x + 2 π) = sin(x) für alle Winkel x gilt. Die Sinusfunktion ist daher eine periodische Funktion mit Periodenlänge T = 2 π. 11

12 Erkläre anhand des Einheitskreises, wie die Lücken zu ergänzen sind, und vergleiche mit dem nebenstehenden Funktionsgraphen. Sinusfunktion: y = sin(x) Definitionsmenge: D = Wertemenge: W = Periodenlänge: T = Nullstellen: Cosinusfunktion: y = cos(x) = sin ( x + π 2 ) Der Funktionsgraph entsteht durch Verschiebung von y = sin(x) um nach. Definitionsmenge: D = Wertemenge: W = Periodenlänge: T = Nullstellen: Tangensfunktion: y = tan(x) = sin(x) cos(x) Definitionsmenge: D = Wertemenge: W = Periodenlänge: T = Nullstellen: Polstellen: 12

13 Arcussinusfunktion: y = arcsin(x) Die Funktion x sin(x) nimmt auf dem Intervall [ π; π ] jeden Funktionswert im Intervall 2 2 genau einmal an. Definitionsmenge von y = arcsin(x): D = Wertemenge von y = arcsin(x): W = Arcuscosinusfunktion: y = arccos(x) Die Funktion x cos(x) nimmt auf dem Intervall [0; π] jeden Funktionswert im Intervall genau einmal an. Definitionsmenge von y = arccos(x): D = Wertemenge von y = arccos(x): W = Arcustangensfunktion: y = arctan(x) Die Funktion x tan(x) nimmt auf dem Intervall ] π; π [ jeden Funktionswert in 2 2 genau einmal an. Definitionsmenge von y = arctan(x): D = Wertemenge von y = arctan(x): W = 13

14 4. Allgemeine Winkelfunktionen Die Funktion y(x) = A sin (ω x + ϕ) + c heißt allgemeine Sinusfunktion. A... Amplitude ω... Kreisfrequenz ϕ... Nullphasenwinkel Erkläre, warum die Funktionswerte von y(x) = A sin(x) genau im Intervall [ A; A] liegen. = A > 1 bewirkt eine in -Richtung. = 0 < A < 1 bewirkt eine in -Richtung. y 1 = y 2 = y 3 = Erkläre, warum y(x) = sin(ω x) die Periodenlänge T = 2 π ω hat. = ω > 1 bewirkt eine in -Richtung. = 0 < ω < 1 bewirkt eine in -Richtung. y 1 = y 2 = y 3 = 14

15 Erinnere dich, dass der Funktionsgraph von g(x) = f(x+2) durch Verschiebung des Funktionsgraphen von f um 2 Einheiten nach links entsteht. (Es ist ja g(0) = f(2), g(1) = f(3),... ) Erkläre, warum der Funktionsgraph von y(x) = A sin (ω x + ϕ) durch Verschiebung des Funktionsgraphen von y(x) = A sin (ω x) um ϕ/ω Einheiten nach links entsteht. = ϕ > 0 bewirkt eine um nach. = ϕ < 0 bewirkt eine um nach. y 1 = y 2 = (Wegen der Periodizität kann der Funktionsgraph von y 2 durch eine Links- oder Rechtsverschiebung zustande gekommen sein.) Erinnere dich, dass der Funktionsgraph von g(x) = f(x)+2 durch Verschiebung des Funktionsgraphen von f um 2 Einheiten nach oben entsteht. (Es ist ja g(0) = f(0) + 2, g(1) = f(1) + 2,... ) Erkläre, warum der Funktionsgraph von y(x) = A sin (ω x + ϕ) + c durch Verschiebung des Funktionsgraphen von y(x) = A sin (ω x + ϕ) um c Einheiten nach oben entsteht. = c > 0 bewirkt eine um nach. = c < 0 bewirkt eine um nach. y 1 = y 2 = 15

16 Funktionsgraph Funktionsgleichung Die Parameter einer allgemeinen Sinusfunktion y(x) = A sin(ω x + ϕ) können wir am Funktionsgraphen folgendermaßen ablesen: 1) Amplitude A > 0 ablesen: A = 2) Periodenlänge T > 0 ablesen: T = = ω = 3) Verschiebung in y-richtung ablesen: c = 4) Verschiebung in x-richtung ablesen ( ± ϕ ) : ω = y(x) = = ϕ = Die Parameter A, ϕ und ω können wir auch in einem sogenannten Zeigerdiagramm interpretieren. Die Amplitude A legt die Länge des Zeigers fest, der Nullphasenwinkel ϕ den Startwinkel und die Kreisfrequenz ω die Winkelgeschwindigkeit: Beispiel 4.1. ( f(t) = 5 sin 0,5 t + 5 π ) 4 = A = 5, ω = 0,5, ϕ = 5 π 4 16

17 Beispiel 4.2. Berechne alle Winkel in [0 rad; 2π rad], die die Gleichung cos(3 x) = 0,2 erfüllen. Lösung. Die Periodenlänge beträgt T = 2π/3. Aufgrund der Kreisfrequenz ω = 3 erwarten wir 2 3 = 6 Lösungen im Intervall [0 rad; 2π rad]: Durch Umformen erhalten wir die erste Lösung: cos(3 x) = 0,2 = x = arccos( 0,2) = 0, rad 3 Durch Addieren der Periodenlänge finden wir zwei weitere Lösungen der Gleichung: x 1 = 0, rad x 2 = x 1 + T = 2, rad x 3 = x 2 + T = 4, rad Für die zweite Hälfte der Lösungen verwenden wir den Zusammenhang cos(z) = cos(2 π z): cos(3 x) = cos(2 π 3 x) = 0,2 = 2 π 3 x = arccos( 0,2) = x = 2 π arccos( 0,2) 3 = 1, rad x 4 = 1, rad x 5 = x 4 + T = 3, rad x 6 = x 5 + T = 5, rad 17

18 5. Weitere Aufgabenstellungen Aufgabe 5.1. Erkläre am Einheitskreis, warum sin(α + 90 ) = cos(α) und cos(α + 90 ) = sin(α) gilt. Aufgabe Amplitude: A = 2 ma, Periodendauer: T = 0,25 s = Frequenz: f = 1 = 24 Hz, y(t) = 2 sin ( 6π t) 6 T 125 Dieses Werk von Mathematik macht Freu(n)de unterliegt einer CC BY-NC-ND 4.0 Lizenz.

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

F u n k t i o n e n Trigonometrische Funktionen

F u n k t i o n e n Trigonometrische Funktionen F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid.

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid. Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen LehrerInnenteam m/ Mag. Wolfgang Schmid Unterlagen Um die Größe eines Winkels anzugeben gibt es verschiedenee

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

O A B. Ableitung der Winkelfunktionen

O A B. Ableitung der Winkelfunktionen Ableitung der Winkelfunktionen Das Verständnis der Herleitung der Ableitung der Winkelfunktionen sett einiges an Mittelstufenkenntnissen voraus; das meiste davon wird häufig im Unterricht geschlabbert

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Prof. U. Stephan Wi-Ing 1.2

Prof. U. Stephan Wi-Ing 1.2 Seite 1 von 5 Prof. U. Stephan Wi-Ing 1. inweis: Dateien Starmath.ttf und Starbats.ttf im Verzeichnis C:\WINDOWS\FONTS erforderlich Ich vermisse im Vorspann "Was man weiß, was man wissen sollte" die trigonometrischen

Mehr

Die allgemeine Sinusfunktion

Die allgemeine Sinusfunktion Die allgemeine Sinusfunktion 1. Die Tageslänge(Zeitdauer zwischen Sonnenaufgang und Sonnenuntergang) an einem festen Ort verändert sich im Lauf eines Jahres. Die Graphik zeigt diese Veränderung für München.

Mehr

Aufgaben zum Basiswissen 10. Klasse

Aufgaben zum Basiswissen 10. Klasse Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken. Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Mehr

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß?

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß? M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius Kreissektor mit Mittelpunktswinkel? die Länge des Kreisbogens für einen Wie berechnet man in einem Kreis mit Radius Kreissektors

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Trigonometrie. Winkelfunktionen und Einheitskreis

Trigonometrie. Winkelfunktionen und Einheitskreis Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Experimente mit trigonometrischen Funktionen

Experimente mit trigonometrischen Funktionen Mathematik und ihre Didaktik Uni Bayreuth Sinus Sachsen-Anhalt Experimente mit trigonometrischen Funktionen Eine Sammlung von interaktiven Arbeitsblättern zur vertieften Betrachtung der Funktionen sin

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit 5. Trigonometrie 5.. Trigonometrische Terme am Einheitskreis 5... Das olarkoordinatensstem Man kann die Lage eines unktes im -dimensionalen Raum folgendermaßen

Mehr

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN KOMPETENZHEFT ZU LINEAREN FUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Gib die Gleichung der dargestellten Gerade in Normalform an. a) b) Aufgabe 1.2. Ein Skatepark ist ein speziell für Skater/innen eingerichteter

Mehr

Zusammenfassung: Sinus- und Kosinusfunktion

Zusammenfassung: Sinus- und Kosinusfunktion LGÖ Ks h -stündig 96 Zusammenfassung: Sinus- und Kosinusfunktion Sinus und Kosinus am rechtwinkligen Dreieck Für einen Winkel mit 9 gilt: Hpotenuse Gegenkathete Gegenkathete sin = Hpotenuse Ankathete cos

Mehr

21 Winkelfunktionen

21 Winkelfunktionen Winkelfunktionen. Berechnungen am rechtwinkligen Dreieck Ein Dreieck, in dem ein Winkel genau 90 hat nennt man ein rechtwinkliges Dreieck. Für die Dreiecksseiten hat man hier verschiedene Bezeichnungen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Was mag das sein? Wir haben auch hier wieder eine Grundform, in die sich alle trigonometrischen Funktionen pressen lassen, mit denen wir zu tun haben werden: f(x) = a sin(bx

Mehr

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT Reihe 9 S Verlauf Material Schritt für Schritt erklärt Sinus und Kosinus Florian Borges, Traunstein y 5 6 R ϕ( t ) 7 0 Die Sinusfunktion entsteht durch Projektion eines rotierenden Zeigers auf die y-achse.

Mehr

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck.

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Trigonometrie Lernziele befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Selbständiges Erarbeiten der Kurztheorie Kenntnis der wichtigsten Begriffe, Definitionen und Formeln

Mehr

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle Sinus, Cosinus und Tangens Sinus, Cosinus und Tangens Gruppenmitglieder: Gruppenmitglieder: Bearbeitet gemeinsam die Aufgabenstellungen, die bei den einzelnen Stationen bereitliegen (in beliebiger Reihenfolge!

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0)

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0) 55 6 Reelle Funktionen 6.1 Beispiele von Funktionen A) Lineare Funktionen: Seien a, b R, a 0. Dann heißt die Funktion f : R R, die durch definiert wird, eine lineare Funktion. 1 f(x) := ax + b Lineare

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 =

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 = Trriigonomettrriische Funkttiionen Bezeichnungen Das Wort Trigonometrie stammt aus dem Griechischen: τρι (tri) bedeutet drei und γονυ (gony) Winkel, insgesamt also Dreiwinkligkeit oder Dreiecksberechnung.

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Trigonometrie am rechtwinkligen Dreieck

Trigonometrie am rechtwinkligen Dreieck 1. Geschichtliches Trigonometrie am rechtwinkligen Dreieck Die Trigonometrie ein Teilgebiet der Geometrie, welches sich mit Dreiecken beschäftigt. Sie entstand vor allem aus der frühen stronomie 1, hat

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie?

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie? Einführung Was bedeutet und mit was beschäftigt sich die? Wortkunde: tri bedeutet 'drei' Bsp. Triathlon,... gon bedeutet 'Winkel'/'Eck' Bsp. Pentagon das Fünfeck mit 5 Winkeln metrie bedeutet 'Messung'

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 TRIGONOMETRISCHE GRUNDBEZIEHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 TRIGONOMETRISCHE GRUNDBEZIEHUNGEN ARBEITSBLATT TRIGONOMETRISCHE GRUNDBEZIEHUNGEN Ein paar wichtige Grundbeziehungen zwischen den Winkelfunktionen sollten Sie unbedingt auswendig wissen: Als Erstes zeichnen wir uns noch einmal einen beliebigen

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Übungsbeispiel 1 1/1 Einheitskreis. Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze.

Übungsbeispiel 1 1/1 Einheitskreis. Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze. Übungsbeispiel 1 1/1 Einheitskreis Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze. Tipp: rote Folie Übungsbeispiel 2 1/1 Einheitskreis Beispiel 2 Wie lautet

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Trigonometrie. Schülerzirkel Mathematik Schülerseminar

Trigonometrie. Schülerzirkel Mathematik Schülerseminar Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Konstruktion des isoperimetrischen Punktes

Konstruktion des isoperimetrischen Punktes Konstruktion des isoperimetrischen Punktes C. und M. Reinsch Dreieck in der komplexen Ebene Ecken: A, B, C. Seiten: a = B C, b = C A, c = A B. Kreise: A(u) um A mit Radius u, B(v) um B mit Radius v, C(w)

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen 1. Tageslänge Im Verlauf eines Jahres ändert sich aufgrund der geneigten Erdachse die astronomische Sonnenscheindauer, d.h. die Zeitspanne zwischen Sonnenaufgang und - untergang.

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Winkelfunktionen und ihre Graphen

Winkelfunktionen und ihre Graphen mathe online Skripten http://www.mathe-online.at/skripten/ Winkelfunktionen und ihre Graphen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at WWW: http://homepage.univie.ac.at/franz.embacher/

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik

Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik Johannes Creutziger Hochschule für nachhaltige Entwicklung Eberswalde (FH) Fachbereich

Mehr

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz Thema Musterlösungen 1 Trigonometrie mit Sinus- und Kosinussatz Vorbemerkungen Für Winkelangaben wird hier, wenn nicht anders angegeben, das Bogenmaß verwendet. Es gilt 1 rad = 360 π 57, bezeichnet das

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Didaktik der Geometrie 7.1 Didaktik der Geometrie Didaktik der Geometrie 7.2 Inhalte Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

1. Aufgabe: Grundwissen

1. Aufgabe: Grundwissen NAME: Mathematik 3. Klassenarbeit Klasse 10e- Gr. A 06. Feb. 2007 Trigonometrie für Winkel bis 90 Grad - ups - Teil A: Arbeitsblatt ohne Nutzung von Tafelwerk, Formelsammlung und Taschenrechner 1. Aufgabe:

Mehr

Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Kontakt zum Autor:

Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Kontakt zum Autor: Rüdiger Kuhnke Mathematischer Vorkurs zur Physik Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Version 0. vom.0.008 Noch nicht vollständig korrigiert Kontakt

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $ $Id: dreieck.tex,v 1.21 20/04/15 14:02:10 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Am Ende der letzten Sitzung hatten wir begonnen die primitiven pythagoräischen Tripel zu bestimmen, und in einem

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405

Mehr

MTG Grundwissen Mathematik 10. Klasse

MTG Grundwissen Mathematik 10. Klasse MTG Grundwissen Mathematik 0. Klasse Der Kreis und der Kreissektor Umfang eines Kreises mit Radius r: u = r π Fläche eines Kreises mit Radius r: A = r²π. Der Kreissektor Bogenlänge eines Kreisessektors

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen 5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Kreisfunktionen 1 KREISFUNKTIONEN TGM Angewandte Mathematik WK

Kreisfunktionen 1 KREISFUNKTIONEN TGM Angewandte Mathematik WK Kreisfunktionen KREISFUNKTIONEN 0.5 sin( 5x) 0 0.5 0.5 0 0.5 cos ( 3x) Kreisfunktionen Inaltsverzeichnis Kreisfunktionen Kreisfunktionen 4. Definitionen im rechtwinkeligen Dreieck 4. Zusammenhang zwischen

Mehr

Eingangstest Mathematik

Eingangstest Mathematik Eingangstest Mathematik DHBW Mannheim Fachbereich Technik e-mail: Adresse: Gesamtzeit: 20 Minuten Gesamtpunktzahl: 20 Beachten Sie bitte folgende Punkte:. Der folgende Test umfasst neun Aufgabenblöcke.

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Winkel im rechtwinkeligen Dreieck

Winkel im rechtwinkeligen Dreieck Theorie 1 1 Winkel im rechtwinkeligen Dreieck Winkel im rechtwinkeligen Dreieck Für die Winkel im rechtwinkeligen Dreieck gilt: Gegenkathete sin Hypotenuse Gegenkathete tan Ankathete cos cot Ankathete

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr