Gedanken stoppen und entschleunigen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gedanken stoppen und entschleunigen"

Transkript

1 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert Einstein «Tun» sttt «sensibilisieren» Ds Wissen drum, wie Stress entsteht und wie mn Stress vorbeugen knn, ist ds eine Werkzeuge zu kennen und nzuwenden sowie zu wissen, ws mn prktisch tun knn, wenn mn sich in einer Stresssitution befindet oder Burn-out-gefährdet ist, ds ndere. Wir sind der Ansicht, dss in Seminren oft zu viel Zeit dfür verwendet wird, ufzuzeigen, wie Stress entsteht. Es wird erklärt, welche Merkmle ein Burn-out ufweist, und es werden Checklisten vorgestellt, die helfen sollen, ein Burn-out zu vermeiden. Diese Zeit knn nders und sinnvoller genutzt werden. Denn die Teilnehmer/-innen eines Anti-Stress-Seminrs wissen bereits, ws die Zeichen eines Burn-outs sind, wie es entsteht, woruf zu chten ist. Wir gehen dvon us, dss sich diese Menschen bereits vorgängig drüber informiert hben. Eine Sensibilisierung für dieses Problem findet permnent sttt in Zeitungen, Mgzinen, Fchzeitschriften, in firmeninternen Publiktionen sowie im Rdio, TV und Internet. In Anti-Stress-Seminren wollen Betroffene nicht ds hören, ws sie bereits kennen. Vielmehr möchten sie hören, sehen und erleben, ws sie im Alltg konkret tun können, um Stress und Burn-out erfolgreich zu begegnen.

2 AGOGIK 2/10 33 Sie möchten erfhren, wie sie ll dieses Wissen prktisch umsetzen können. Hilfreich sind dbei insbesondere konkrete Werkzeuge, die uf die individuelle Person zugeschnitten sind. Bei unseren Cochings und Seminren steht der Mensch im Mittelpunkt. Es gibt keine Checkliste us der Schublde, uf der steht, ws von Punkt eins bis Punkt zehn zu tun ist, dmit der Gednkenfluss stoppt bzw. sich entschleunigt, oder wie mn den Stresszustnd ktiv beenden knn. Denn jeder Mensch ist einzigrtig und funktioniert uf seine ureigene Art und Weise. Kretive und individuelle Lösungen sind gefrgt. Wichtig ist, dss Menschen ihre eigenen Fähigkeiten kennenlernen und eine persönliche Methode entwickeln, mit der sie verhindern können, dss sie in die Stress- und Denkspirle gerten. Und flls dies dennoch geschehen sollte, müssen sie wissen, ws sie tun können, um es zu bemerken und um dieser Spirle so schnell wie möglich wieder zu entkommen. Wie bemerke ich, wenn es im Alltg «stürmt», dss es «jetzt» Zeit ist, innezuhlten? Ws knn ich dnn tun? Ws funktioniert bei mir m besten? Dies sind Frgen, uf die Teilnehmer/-innen ihre individuelle Antwort finden müssen. Dnn ist geholfen und dies nchhltig präventiv. Es geht um lebendiges, ktives Lernen Lerning by Doing! Tell me nd I forget, tech me nd I remember, involve me nd I lern. Benjmin Frnklin Ob im Einzelcoching oder in einem Seminr es sind Coching-Fähigkeiten und zusätzlich unterstützend neue, kretive Methoden gefrgt. Ziel ist es, dss jede Person ihre eigenen wirksmen, uf sie zugeschnittenen Methoden findet, um ds Denken zu entschleunigen, us der Hektik uszutreten. Wie wird dieses Ziel erreicht?

3 34 AGOGIK 2/10 Coching-Anstz Wir hlten uns nebst den üblichen Coching-Ansätzen n die Strukturen des Neurolinguistischen Progrmmierens (NLP), rbeiten mit der Whrnehmung über sämtliche Sinnesknäle und verwenden die grundlegenden mnemotechnischen Prinzipien, Techniken, mit denen Menschen m besten lernen und sich n Gelerntes erinnern. Ddurch können wir sicherstellen, dss die Vorussetzungen für optimles Lernen und Erinnern gegeben sind. Unser Ziel ist es, Menschen dhin gehend zu begleiten, dss sie herusfinden, wie sie eingefhrene Muster einfch verändern können. Beispielsweise nutzen wir Aussgen, Gednken, Anlogien, Metphern der Kundinnen und Kunden. Somit können wir in die Whrnehmungswelt des Gegenübers eintreten wir sprechen dieselbe Sprche. Neue Strtegien werden entwickelt, und dies zugeschnitten uf den einzelnen Menschen egl, ob im Einzelcoching oder in Seminren. Wir tun dies, indem wir den Prozess begleiten. Es findet keine inhltliche Bertung sttt. Nicht ds WARUM steht im Mittelpunkt, sondern ds WIE. Wie geschieht etws? Wie ist der Abluf? Ws wäre hilfreich, wenn ws genu, wnn genu nders wäre? Wnn genu fängt es n? Wnn ist es vorbei? Ebenso stehen ds Jetzt und die Zukunft im Mittelpunkt und ds mentle Üben «so tun, ls ob ds Ziel bereits erreicht wäre». Stressprävention und Entschleunigung gelingen durch optimles Selbstmngement. Prozesse werden bewusst gemcht, neue Strtegien kennengelernt. Wichtig ist, dss Stressgeplgte in gewohnten Situtionen innehlten und bewusst «nders ls üblich» regieren können. Die Bereitschft, Neues uszuprobieren, muss vorhnden sein. Lernen mit Depotwirkung Wie bleiben neue Informtionen m einfchsten im Gedächtnis? Wie lernen Menschen optiml? Unsere Prämisse sind die cht mnemotechnischen Prinzipien. Durch diese wird Lernen mit Depotwirkung ermöglicht so bleibt ds neu Erfhrene optiml im Gedächtnis, bewirkt spielerisch Einsichten und sorgt für bleibende Lerneffekte. Wir gehen gemäss den mnemotechnischen Prinzipien vor. Denn: So hinterlssen wir Spuren im Gedächtnis nderer Menschen!

4 AGOGIK 2/10 35 Mnemotechnische Prinzipien nch Dnie Beulieu (2005) 1. Multisensorisches Lernen Lernen mit llen Sinnen Wir sprechen gleichzeitig möglichst viele Whrnehmungsknäle n. Wir kommunizieren über ds Sehen, ds Hören, ds Fühlen und uch über ds Riechen und Schmecken. 2. Abstrkte Konzepte konkret mchen Wir verwenden Vergleiche, Anlogien, Metphern. Mnchml teilen wir diese verbl mit, mnchml stellen wir sie bildlich dr oder m effektivsten wir lssen eine Metpher durch die Teilnehmer/-innen szenisch umsetzen. 3. Nutzen bereits beknnter Informtionen Wir nutzen Informtionen, von denen wir denken bzw. hinsichtlich derer wir dvon usgehen können, dss diese bei unserem Gegenüber vorhnden sind. 4. Emotionen uslösen Wir lösen mit unseren Worten und unserem Tun Emotionen us sprechen den «Buch» der Menschen n. 5. Interesse wecken Wir tun oder sgen etws Unübliches, Unerwrtetes. Wir überrschen und verblüffen. 6. Lust, Spss und Humor Wir bieten Rum für Lust, Spss und Humor und mchen selbst den Anfng. 7. Einfch ist einfcher Wir sprechen eine einfche Sprche, schreiben einfche Sätze, tun einfch verständliche Dinge. 8. Wiederholen ohne Zwng Wir wiederholen ohne Druck oder Zwng. Wir überlegen uns prktische, «utomtische» Wiederholungen.

5 36 AGOGIK 2/10 Beispiel 1 Veränderungsbereitschft erzielen mithilfe einer Aromt 1 -Dose Mnchml ist es so, dss Personen überzeugt sind, dss es lles ndere ls einfch ist, sich vom Stress zu lösen; dss sie im Alltg keine Chnce dzu hben, wenn dieser «stürmt»; dss sie fremdbestimmt sind und kein Entschleunigen möglich ist. In solchen Momenten holen wir eine Aromt- Dose hervor, präsentieren sie den Teilnehmerinnen und Teilnehmern und frgen in die Runde, «Ws ist ds?». Die Teilnehmer/-innen sind überrscht und ntworten «Aromt». Druf sgen wir, «Es ist Aromt Ws ist lso in der Dose drin?». Die Antwort ist immer «Aromt» oder «ein gelbes Pulver» oder «verschiedene Gewürze». Wir schütteln die Dose und lle hören, dss sich drin KEIN Aromt befindet (stttdessen enthält unsere Dose Würfel). Dnch folgt eine bewusste Puse und längere Zeit ist Stille. Wir sgen: «Und mnchml ist es im Leben gnz nders, ls mn denkt», stellen die Aromt-Dose uf einen für lle gut sichtbren Pltz und fhren mit dem Seminr fort. Dies wirkt! Die Teilnehmer/-innen lssen plötzlich neue Gednken zu, hinderliche Überzeugungen uf dem Weg zum Ziel werden ufgeweicht. Eine Aromt-Dose ist immer dnn hilfreich, wenn die Einsicht erzielt werden soll, dss etws uch nders sein könnte, ls mn glubt. Sie öffnet Rum für neue Möglichkeiten. Mit solchen Interventionen können spielerisch Einsichten bei den Teilnehmerinnen und Teilnehmern erzielt werden, ohne verbles «Überzeugen-Wollen». Eine Einsicht stellt sich ein, einfch und gnz simpel, ohne Druck oder viele Worte. So gibt es Hunderte von unterschiedlichen Interventionen mit verschiedensten Gegenständen oder uch ohne, die zu ebenso unterschiedlichen Einsichten oder Lerneffekten führen, egl, ob in Seminren, Trinings, Cochings und uch sonst im lltäglichen Austusch mit Menschen. 1 Aromt ist ein schweizweit beknntes Würzmittel.

6 AGOGIK 2/10 37 Checkliste Sind die mnemotechnischen Prinzipien erfüllt? Bleibt ds Beispiel 1 in Erinnerung? Mnemotechnisches Prinzip erfüllt? Multisensorisches Lernen Abstrkte Konzepte konkret mchen Nutzen bereits beknnter Informtionen Emotionen uslösen Interesse wecken Lust, Spss und Humor Einfch ist einfcher Wiederholen ohne Zwng J Nein Weshlb? Intervention wirkt visuell und uditiv. In Szene gesetzte Metpher, kommt fst ohne Worte us. Wir gehen dvon us, dss lle Aromt kennen. Überrschung, Stunen, Nchdenklichkeit. Die Menschen frgen sich: «Ws soll ds jetzt?» und zeigen Interesse m Geschehen. Es wird ls witzig empfunden, die Menschen schmunzeln, lchen. Die Informtion wird völlig einfch trnsportiert. Jedes Ml, wenn diese Menschen ein Aromt sehen, erinnern sie sich n diese Sequenz und wiederholen bewusst oder unbewusst ds Gelernte Depotwirkung! Beispiel 2 Genu zuhören und Metphern der Teilnehmer/-innen in Szene setzen Jeder Mensch nimmt Stress nders whr und spricht uch nders drüber. Ein Teilnehmer sgt beispielsweise, dss sich seine Gednken in Stresssitutionen endlos im Kreis drehen. Wir frgen nch, WIE die Gednken drehen: Nch rechts oder nch links? Weit oder eng kreisend? Wgrecht oder senkrecht? Ht der Kreis eine Frbe? Usw. Wir lden die Person dzu ein, mit dem Kreis mitzugehen, in genu derselben Geschwindigkeit, in der sich die Gednken bewegen, oder, flls es sich um ein senkrechtes Kreisen hndelt, ds Drehen mit dem Arm mitzumchen. Dnch lden wir den/die Teilnehmer/-in dzu ein, lngsmer zu drehen oder zu gehen, irgendwnn zu stoppen und uszuprobieren, ws mit den Gednken geschieht, wenn z. B. in die entgegengesetzte Richtung gedreht wird. Ws geschieht, wenn

7 38 AGOGIK 2/10 mn us dem Kreis hinustritt? Diese Person ht somit bereits eine für sie optimle Möglichkeit gefunden, wie sie sich vom «Stressdenken» lösen knn. Und dies ht sie gnz einfch und spielerisch geschfft. So ermuntern wir lle Teilnehmer/-innen, sich zu überlegen, wie sie ihre Whrnehmung beschreiben würden, welche Worte sie verwenden, wenn sie über Stress und Hektik sprechen. Dnn lssen wir jede und jeden dies bildlich umsetzen. Checkliste Sind die mnemotechnischen Prinzipien erfüllt? Bleibt ds Beispiel 2 in Erinnerung? Mnemotechnisches Prinzip erfüllt? Multisensorisches Lernen Abstrkte Konzepte konkret mchen Nutzen bereits beknnter Informtionen Emotionen uslösen Interesse wecken Lust, Spss und Humor Einfch ist einfcher Wiederholen ohne Zwng J Nein Weshlb? Intervention wirkt uditiv, visuell und kinästhetisch. Szenisch umgesetzte Metpher. Ds «Kreisen der Gednken» ist der Person bestens beknnt. Verwunderung, Erleichterung. Die Menschen frgen sich: «Ws soll ds jetzt?» und zeigen Interesse m Geschehen. Es wird ls witzig empfunden, die Menschen schmunzeln. Die neue Informtion wird völlig einfch trnsportiert. Jedes Ml, wenn bei dieser Person die Gednken kreisen, wird sie sich drn erinnern und regieren können Depotwirkung! Ws knn uf dem Weg zum optimlen Selbstmngement hinderlich sein? Die Lern- und Veränderungsbereitschft der Teilnehmer/-innen wird vorusgesetzt. Trotzdem ist diese nicht immer gegeben. Oft kommt es vor, dss Menschen einen oft unbewussten Nebennutzen us einem unerwünschten Verhlten ziehen. Solnge der zugrunde liegende Neben-

8 AGOGIK 2/10 39 nutzen nicht erknnt wird, ist eine Veränderung kum möglich. Hinderlich für ein optimles Selbstmngement ist, wenn Mitrbeiter/-innen sich ls Opfer fühlen und nicht einsehen können, dss die Mcht über «diesen Stress» in ihrer eigenen Hnd liegt. Personen, die Führungsufgben nchkommen, nehmen Stresssymptome ihrer Mitrbeiter/-innen oft nicht ernst oder bewerten diese ls Unfähigkeit oder Schwäche. Eine weitere Schwierigkeit ist, dss viele Vorgesetzte in ihrer Arbeit «ufgehen» und dsselbe von den Mitrbeiterinnen und Mitrbeitern erwrten denselben 24-Stunden-Tkt, n sieben Tgen pro Woche. Schwierig ist zudem der Fktor Zeit. Es benötigt ttsächlich Zeit, um die Wirkung des individuellen Cochings in Zhlen beziffern zu können. Eine kurzfristige Auswertung ist nur subjektiv möglich. In der heutigen 24-Stunden-Gesellschft ist die Fähigkeit, mit Geduld und Musse Prozesse zuzulssen und Resultte bwrten zu können, ein benötigtes Gut. Herusforderungen sind dzu d, in Lösungen umgewndelt zu werden! Die Autorin Bertie Frei, Coch und NLP-Trinerin IANLP, wingwve -Coch, Mgic- Words-Trinerin, Erwchsenenbildnerin i. A., Mitglied Verbnd Swiss NLP, Verein zur Verzögerung der Zeit, Coching-Pool NLP-Akdemie Schweiz, wingwve -Service Hmburg, Trinerserch, ostschweizerinnen.ch. Kontkt: Der Autor Luigi Chiodo, Coch und NLP-Triner IANLP, Hynpo-Coch, wingwve - Coch, Mgic-Words-Triner, Erwchsenenbildner i. A., Supervisor BSO i. A., Mitglied Verbnd Swiss NLP, Coching-Pool NLP-Akdemie Schweiz, wingwve -Service Hmburg, Trinerserch. Kontkt: Litertur Beulieu, Dnie (2005): Impct-Techniken für die Psychotherpie. Heidelberg: Crl-Auer Verlg, 2005.

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN Der beste Umzug, den wir je htten. Privtumzüge Überseeumzüge Senioenumzüge Kunsttrnsporte Lgerung ERWIN WEDMANN Erwin Wedmnn Euromovers erfolgreiche Koopertion seit über 20 Jhren Heute zählt die EUROMOVERS

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

tujareisen Ihr Nordlandpartner

tujareisen Ihr Nordlandpartner Incentives Events Abenteuer tujreisen Ihr Nordlndprtner tujreisen Ihr Nordlndprtner 17 Jhre 17 Jhre tujreisen Ihr Nordlndprtner Wer sind wir? Ws können wir für Sie tun? Ihnen zuhören, nchfrgen, Wünsche

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

2 Herr Breitenbach und Herr Lindner müssen eine kurze Dienstreise machen. Hören Sie das Telefongespräch. Was ist richtig? Kreuzen Sie an.

2 Herr Breitenbach und Herr Lindner müssen eine kurze Dienstreise machen. Hören Sie das Telefongespräch. Was ist richtig? Kreuzen Sie an. plus 4/11 Mit Kollegen Asprchen treffen 1 Ws psst? Ergänzen Sie. die Fertigung die Qulitätssicherung die Zulieferfirm / der Zulieferer Eine Firm stellt ein Produkt her. Dfür rucht sie estimmte (Bu-)Teile.

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Die Taxi-Aktions-Angebote

Die Taxi-Aktions-Angebote Die Txi-Aktions-Angebote il Ihre Vorte e: tie PLUS n r ig x lose T Kosten nzierung in F e ig t uch für Güns e s s lä h c tive N Attrk hrzeuge Inhberf CrePort Finnzierungsngebot 3). Cddy Trendline ls Txi,

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Prüfungsteil Mündliche Kommunikation (MK)

Prüfungsteil Mündliche Kommunikation (MK) Prüfungsteil Mündliche Kommuniktion (MK) Die mündliche Prüfung besteht us zwei Teilen. Im ersten Teil sollst du ein Gespräch führen, im zweiten Teil hältst du einen Vortrg und musst dnch Frgen dzu bentworten.

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Würden Sie gerne mehr schlafen? Wie und wann könnte das klappen?

Würden Sie gerne mehr schlafen? Wie und wann könnte das klappen? Kretivität fördern Ann Hoffmnn 2013 Einfche Methoden, um die Fähigkeit zur Kretivität zu fördern: 1. Genügend schlfen Genügend = Ich fühle mich fit und bin motiviert für Tten. Schlf hilft bei der Verrbeitung

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

XING Events. Kurzanleitung

XING Events. Kurzanleitung XING Events Kurznleitung 00 BASIC nd PLUS Events 2 Die Angebotspkete im Überblick Wählen Sie zwischen zwei Pketen und steigern Sie jetzt gezielt den Erfolg Ihres Events mit XING. Leistungen Event BASIS

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Werben auf askenrico

Werben auf askenrico Weren uf skenrico skenrico Ihr Online-Reiseführer für Mitteleurop Unser Online-Reiseführer ht eine rsnte Entwicklung zu verzeichnen. Gegründet Ende 2009, zählt er mit üer 10.000 montlichen Besuchern Mitte

Mehr

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden Kommuniktion und Mrketing Mrketing-Dienstleistungen Für Sie und Ihre Kunden Kommuniktion und Mrketing KNV Servicenummern Koch, Neff & Volckmr GmbH Stuttgrt Husnschrift: Schockenriedstrße 37 70565 Stuttgrt

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Die Schülerinnen und Schüler kennen verschiedene Phänomene der antiken Kultur und ihre Entwicklung.

Die Schülerinnen und Schüler kennen verschiedene Phänomene der antiken Kultur und ihre Entwicklung. 2 Fchbereichslehrpln Ltein Kompetenzufbu. Kulturen im Fokus A Kenntnisse 1...A.1 1 können nhnd sprchlicher und nicht-sprchlicher Quellen Beispiele für kulturelle Phänomene nennen (z.b. Text, bildliche

Mehr

Lektion 2: Du und ich

Lektion 2: Du und ich Lektion 2: Du und ich Lernziele Stellung nehmen Über sttistische Angben sprechen Vergleiche formulieren Einen Forumsbeitrg schreiben Argumente gegenüberstellen Ein Interview mchen 2 d(r)/wo(r) + Präposition

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Buchstaben schreiben lernen - Lateinische Ausgangsschrift

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Buchstaben schreiben lernen - Lateinische Ausgangsschrift Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Buchstben schreiben lernen - Lteinische Ausgngsschrift Ds komplette Mteril finden Sie hier: School-Scout.de Kirstin Jebutzke Buchstben

Mehr

FDT-VERLEGESCHULUNGEN

FDT-VERLEGESCHULUNGEN 25 % RABATT SICHERN. BIS 15.11.2015 online buchbr FDT-VERLEGESCHULUNGEN KURSSTAFFEL 2016 WEITERBILDEN. OPTIMIEREN. WISSEN! 02 03 WEITERBILDEN. OPTIMIEREN. WISSEN! FDT-Verlegeschulungen Schulungen für Verleger

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Social Media Guidelines

Social Media Guidelines Socil Medi Guidelines Socil Medi (Sozile Online-Netzwerke) sind us unserer Gesellschft nicht mehr wegzudenken. Auf Plttformen und in Netzwerken wie Blogs, Wikipedi, YouTube, Fcebook, GooglePlus, Twitter

Mehr

Lineare Schaltungen (Widerstände), gleichförmige Erregungen, Knotenpotenzial-Verfahren

Lineare Schaltungen (Widerstände), gleichförmige Erregungen, Knotenpotenzial-Verfahren Linere Schltungen (Widerstände), gleichförmige Erregungen, Knotenpotenzil-Verfhren 2 2.1 Einführung In diesem Kpitel wird ds Knotenpotenzil-Verfhren vorgestellt. Mit Hilfe dieses Verfhrens können uch umfngreiche

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Kapitel 5 Viren und unerwünschte Werbung abwehren

Kapitel 5 Viren und unerwünschte Werbung abwehren Kpitel Viren und unerwünschte Werbung bwehren Firewll und Antivirenprogrmm sind Pflicht für jeden Computerbesitzer. Wissen Sie, ob Sie wirklich geschützt sind? Ich zeige Ihnen, wo Sie ds erfhren und ws

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Projektwoche «Gesundheit - Xsund» Schule Amriswil 2008

Projektwoche «Gesundheit - Xsund» Schule Amriswil 2008 «Seilspielereien für Kopf, Herz und Hnd» - Stoffvermittlung Flüssigkeitshushlt Unterstufe Ziel: - Die Kinder wissen, ws und wie viel sie trinken sollten. - Die Kinder erleben, weshlb Bewegung für die Gesunderhltung

Mehr

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern For better Whitepper epyslip Moderne und sichere Kommuniktion mit Mitrbeitern Ws Sie zum Them Digitlisierung von Verdienstbrechnungen und nderen Dokumenten wissen müssen. INHALTSVERZEICHNIS 2 2 3 4 5 5

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

FERTIG! Spielidee. Spielmaterial. Das Solitärspiel von Friedemann Friese - eine völlig neue Art, Patience zu spielen!

FERTIG! Spielidee. Spielmaterial. Das Solitärspiel von Friedemann Friese - eine völlig neue Art, Patience zu spielen! FERTIG! Ds Solitärspiel von Friedemnn Friese - eine völlig neue Art, Ptience zu spielen! Spielidee Ein typischer Areitstg. Auf deinem Schreitisch herrscht ml wieder ds reinste Chos, lso konzentriere dich

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Pause im Alltag - Babysitterbörse der Caritas macht-s möglich

Pause im Alltag - Babysitterbörse der Caritas macht-s möglich Puse im Alltg - Bbysitterbörse der Crits mcht-s möglich Um Eltern und Fmilien zu unterstützen und zu entlsten, ht die Crits-Konferenz St. Mrien in Koopertion mit der Crits-Helfergruppe St. Peter und Pul

Mehr

Hessisches Kultusministerium Institut für Qualitätsentwicklung (IQ) Lernstandserhebung. Aufgabenheft. Deutsch (Lesen) Klasse:... Name:...

Hessisches Kultusministerium Institut für Qualitätsentwicklung (IQ) Lernstandserhebung. Aufgabenheft. Deutsch (Lesen) Klasse:... Name:... Hessisches Kultusministerium Institut für Qulitätsentwicklung (IQ) Lernstndserhebung Aufgbenheft eutsch (Lesen) Klsse:.... 9/ Nme:........ Liebe Schülerin, lieber Schüler, in diesem Aufgbenheft findest

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

11 Perfekt organisiert: icloud, Erinnerungen, Termine und Adressen

11 Perfekt organisiert: icloud, Erinnerungen, Termine und Adressen 11 Perfekt orgnisiert: icloud, Erinnerungen, Termine und Adressen Ihr Mc ist ein whres Orgnistionstlent und wrtet gleich mit einer gnzen Hndvoll größerer und kleinerer Apps uf, um Ihr Leben zu vereinfchen.

Mehr