Kapitel 1: Aussagenlogik und Mengenlehre

Größe: px
Ab Seite anzeigen:

Download "Kapitel 1: Aussagenlogik und Mengenlehre"

Transkript

1 the I : in/st Kpitel : Aussgenlogik und engenlehe.bill: Ohne Aussgenlogik keine Schltkeise und ohne Schltkeise keine Compute Kpitel, Folie

2 . Aussgenlogik und engenlehe the I : in/st A (A) (A) 3 (A) 4 (A) egtion (A) Α Α Kpitel, Folie

3 . Aussgenlogik und engenlehe the I : in/st A B (A,B) (A,B) 6 (A,B) Kpitel, Folie 3

4 . Aussgenlogik und engenlehe the I : in/st A B Konjunktion A B Disjunktion A B Impliktion A B Äquivlenz A B Kpitel, Folie 4

5 . Beeis von Sätzen mit Whheitsteln the I : in/st Beispiel Stz: (A B) (B A) (A B) A B A B B A (A B) (B A) Kpitel, Folie 5

6 . Beeis von Sätzen mit Whheitsteln the I : in/st Stz : (A B) ( B A) (A B) Diekte Beeis Indiekte Beeis Widespuchs- Beeis Beeis: diekt indiekt Widespuch A B A B A B B A (A B) Kpitel, Folie 6

7 . Rechengesetze the I : in/st De ogn sche Regeln (A B) A B (A B) A B Distibutivgesetze Α (Β C) (Α Β) (Α C) Α (Β C) (Α Β) (Α C) Tnsitivität de Impliktion (A B) (B C) (A C) Kpitel, Folie 7

8 . Quntoen the I : in/st ü lle es eistiet ein! es eistiet genu ein Kpitel, Folie 8

9 . ultiplee the I : in/st Eingng y Ausgng m z Ist z h (), so soll übetgen eden. Ist z lsch (0), so soll y übetgen eden. Kpitel, Folie 9

10 the I : in/st Kpitel, Folie 0 m y z. ultiplee y z A y z A y z A 3 y z A 4 Whheitstel ü den ultiplee y) z ( ) (z A A A A A 4 3 logische Ausduck ü den ultiplee:

11 . ultiplee the I : in/st Schltkeis (egto, Reihenschltung, Pllelschltung) A (z ) ( z y) & y m & z Kpitel, Folie

12 . engen the I : in/st Deinition: enge Geog Cnto (845-98) Unte eine enge vestehen i jede Zusmmenssung von bestimmten ohlunteschiedenen Objekten de Anschuung ode des Denkens, elche die Elemente von gennnt eden, zu einem Gnzen. Kpitel, Folie

13 the I : in/st Kpitel, Folie 3. engen { } { } { } \ : \ : : ) ( ) ( C Gleichheit Teilmenge von Obemenge von Veeinigung Duchschnitt Dieenz,dnn gilt

14 . Rechengesetze ü engen Fü eine enge und S,T,V P() gelten olgende Rechengesetze: S S S ( S T) V S ( T ) ( S T) V S ( T V) S C S S Ø S T S C ( C S ) ( T V) ( S T) ( S V) (T S, Ø, S, T, Ø V) S S S, C S S Ø S, (S S S, C Ø, T T) V, Ø S T C (S S S V), S Kommuttivität Assozitivität Distibutivität S, the I : in/st Kpitel, Folie 4

15 the I : in/st Kpitel, Folie 5. Rechengesetze ü engen ( ) ( ) ) ( \ ) \ ( ) \ ( \ ) \ ( ) ( ) \ ( ) \ ( \ ) ( \ \ ) \ ( V S T S V T S S V T S V T S V S T S V T S V T S V T S T S T S T S T S C C C C C C Fü eine enge und S,T,V P() gelten olgende Rechengesetze: De ognsche Regeln

16 . Beispiel eine Reltion the I : in/st {,,3,4 } {,b,c } R y (,y) y R (,) b (,b) c 3 b (,) (3,b) b 3 c (3,c) 4 c (4,c) R 3 4 Kpitel, Folie 6

17 . Beispiel zu Komposition the I : in/st 3 { m, m, m } { männl.,alte 30 } { m, m, m, m } { männl.,alte < 30 } { m, m, m, m } { eibl., Alte < 30 } R {( m, m ),( m, m ),( m, m )} 3 4 Vte von S S {( m, m ),( m, m )} R {( m }, m3 ),( m, m33) 3 Kpitel, Folie 7 3 Veheitet mit Schiegevte von

18 . Deinition: Reltion the I : in/st Die Reltion R heißt Releiv, lls (,) R ist. Symmetisch, lls (,y) R (y,) R Antisymmetisch, lls (,y) R (y,) R y Tnsitiv, lls (,y) R (y,z) R (,z) R Äquivlenzeltion: eleiv, symmetisch, tnsitiv y (,y) R Kpitel, Folie 8

19 . Beispiele ü Äquivlenzeltionen the I : in/st Restklssen modulo 5: R[0] { y Z: y 5q, 0,q Z} {..., 0, 5, 0, 5,0,... }, y mod 5 R[] R[] {..., - 9, - 4,, 6,,... } {..., - 8, - 3,, 7,,... },, R[3] {..., - 7, -, 3, 8,3,... }, Z R[0] R[4] {..., - 6, -, 4, 9,4,... }, R[] R[] R[3] R[4]. Kpitel, Folie 9

20 . Ptition eine enge the I : in/st Deinition: Eine enge von Teilmengen i lls i I j i i, j I, i ist. j, nennen i { } i i I mit Ptition von, Stz: Jede Äquivlenzeltion R ezeugt eine Ptition von, jede Ptition bestimmt eine Äquivlenzeltion. Kpitel, Folie 0

21 . Abbildungen the I : in/st : ( bildet nch b) : () y (jedem id eindeutig ein Element y () zugeodnet) De Gph von ist eine Reltion G () {(,y), y () }. Kuz: ist sujektiv : ist Abbildung von u ist injektiv : ist eineindeutige Abbildung von in ist bijektiv : ist sujektiv injektiv Kpitel, Folie

22 . ächtigkeit von engen the I : in/st Die engen A und B sind gleichmächtig bijektive Abbildung : A B A ist bzählb unendlich, lls A gleichmächtig zu ist. Die enge de gnzenzhlen ist bzählb unendlich. Die enge de tionlen Zhlen ist bzählb unendlich. Kpitel, Folie

23 Peno Aiome: Deinition de ntül. Zhlen the I : in/st ist eine enge, u de eine Abbildung cholge : eklät ist, die olgende Eigenschten besitzt: ()! ( ). () Die Abbildung cholge ist injektiv. (3) Ist und gilt ), b) ist n cholge (n), dnn ist. Induktionsiom Kpitel, Folie 3

24 . Vollständige Induktion the I : in/st AA(n) sei eine Aussge. Es gelte: i) A() ist h. Induktionsnng ii) n : A(k) sei h ü k n, dnn ist uch A(n) h. Induktionsschitt Es olgt, A(n) ist h ü lle n. Induktionsschluss Kpitel, Folie 4

25 . Teilbkeit the I : in/st Deinition: Sei n Z, m. Die Zhl m heißt Teile von n ( m n ), lls k Z: kmn Sei Z. D(){d : d } enge de Teile von Seien Z, b Z. D(,b)D() D(b). enge de gemeinsmen Teile ggt(,b)m{d D() D(b)}. gößte gemeinsme Teile Kpitel, Folie 5

26 . Beechnung des ggt Beechnung von ggt(,b), >b euklidische Algoithmus the I : in/st j bggt(,b) Stopp Stt (,b) b? nein bq (b,) 0 k k b q k q k q q k k ggt(,b) k k 3 0 höchstens b Schitte Kpitel, Folie 6

27 . Rtionle, eelle und komplee Zhlen Q enge de tionlen Zhlen R enge de eellen Zhlen C enge de kompleen Zhlen the I : in/st bzählb unendlich Z Q R Addition, ultipliktion zusätzlich: Subtktion zusätzlich: Division zusätzlich: Wuzelziehen 0 übebzählb unendlich n b, b 0 * z(,b) Guß sche Zhlenebene C zusätzlich: Wuzelziehen n b Kpitel, Folie 7

28 . Reelle Zhlen the I : in/st ist keine tionle Zhl q Annhme Q :q b (Dilemm des,b () mit b Pythgos) und,b teileemd.(*). ist eine gede Zhl (Wäe m,dnn ist 4m 4m ungede, Widespuch zu ()). k 4k b d.h. ist gemeinsme Teile von b k b ist gede und b. Widespuch zu (*) Kpitel, Folie 8

29 . Übebzählbe engen the I : in/st I { R: 0 < < } ist übebzählb Annhme : : I, ist bijektiv I {,,, } n n 0, (n), (n), Setzen b n 0 lls lls (n) -n (n) -n 0 0 y 0,b b... I Widespuch! Kpitel, Folie 9

30 . Komplee Zhlen Deinition: Die enge de kompleen Zhlen C entspicht R RR, in de neben de Addition eine zusätzliche ultipliktion eingeüht ist the I : in/st z z (,b ) (,b ) ( b b, b b ) Imginäe Einheit i i (0,),, i. : R ist bijektiv in C eingebettet: :R R * {z C:z,0 } R z,0 : Kpitel, Folie 30

31 . Polkoodintendstellung the I : in/st z ( cos ϕ i sinϕ ) ib (,b ) b z b, z(,b) cos ϕ sin ϕ b b b., ϕ Kpitel, Folie 3

32 . Dezimldstellung eine eellen Zhl Z ) Wähle y : y <y Ist y. the I : in/st y y ) Flls y, zelege [y,y) in 0 Teilintevlle beindet sich im - -ten Teilintevll - {0,,...,9}, y <y( - )0 - Ist, setze ± , - 3) Ist, zelege [, ) in 0 Teilintevlle beindet sich im - -ten Teilintevll,... ± j 0 j j. y y evtl. unendliche Pozess ± j 0 j j ±... 0, 3... Kpitel, Folie 3

33 the I : in/st Kpitel, Folie 33 0, 0 0, 0 0, 0 - < < < < < g g g g g g g g g n g n g. Divisionslgoithmus ü n Ν Allgemein: Teile k duch g k- ) Teile n duch g : ) Teile duch g - : 3) Teile - duch g - : 0 k k k k g g

34 the I : in/st Kpitel, Folie 34. g-dische Buchdstellung ü R ± ± j 0 j j g, g ). (, ) )(g )(g (g, Setzen j j ü g j 0 j 0 0 j 0 0 ± ± g Veboten:

35 . Beispiel Rundungsehle (Bill S.53) the I : in/st y z y z Rundungsehle (y z) ( y) Rundung z Rundung Kpitel, Folie 35

36 . Veknüpung the I : in/st -enge, : :(m,m ) m m m heißt Veknüpung - ist ssozitiv, lls (m m ) m 3 m (m m 3 ). - ist kommuttiv, lls m m m m -Ds Element e heißt neutl bezüglich lls e mm em m Kpitel, Folie 36

37 . Guppe the I : in/st -(G,, e) ist Guppe, lls - ist ssozitiv neutles Element e g G g - G :g g - g - ge (G,, e) ist belsche Guppe, lls zusätzlich gilt: - ist kommuttiv Kpitel, Folie 37

38 . Ring, Köpe the I : in/st (,, ) ist Ring, lls -(,) belsche Guppe mit neutlem Element e - ist ssozitiv, neutles Element e. -(b) c cb c, c (b) cc b,b,c -e e. (,, ) sei Ring und - sei kommuttiv -(\ {e }, ) ist Guppe ist Köpe Kpitel, Folie 38

39 . Stuktuehltende Reltionen the I : in/st G,, G, Hlbguppen R G G ist stuktuehltend, lls b, b R,, b, b R Stuktuehltende Abbildung :G G, b b, b G Kpitel, Folie 39

40 . onoid und Guppenhomomoph. the I : in/st G,, e, G,, e onoide (Guppen) :G G ist onoid (Guppen)-Homomophismus, lls b b,, G e e. bijektive Homomophismus Isomophismus. Kpitel, Folie 40

41 . Unteguppen the I : in/st Unteguppe Sei G,,e Guppe. U G ist Unteguppe, lls, b U b U e U U U Lemm Sei ein Guppenhomomophismus ken ke { G : e } ist Unteguppe von G. Bild Im {b G : G mit b } ist Unteguppe von G. Kpitel, Folie 4

42 . Äquivlenzeltionen the I : in/st Äquivlenzeltion u G ~ b b Ubildptition in G Stuktuehltend (Konguenzeltion) ~ b und c ~ d c ~ b d () Äquivlenzklssen [ ]{b G : b } [e ]{b G : e e b }Ken [ ] [b ]:[ b ] ohldeiniet nch () Kpitel, Folie 4

43 . Fktoguppe the I : in/st Fktoguppe G /ke {[ ],,[e ]} ist Guppe. Homomopiestz ü Guppen G /ke Im Kpitel, Folie 43

44 Zusmmenssung: Kpitel the I : in/st. Aussgenlogik De: Aussge Whheitsete - Veknüpung von Aussgen,,,, Whheitsteln - Beeise: diekt, indiekt, Widespuchsbeeis A B, B A (A B) notendig, hineichend - Logische Ausdücke und Schltkeise Kpitel, Folie 44

45 . engen, Reltionen, Abbildungen the I : in/st De: engen, Teilmengen, Veknüpungen,, \ -Reltion, Äquivlenz- und Odnungseltion Ptition -Abbildung :, G(){(,y): y()} spezielle Reltion sujektiv, injektiv, bijektiv - ächtigkeit von engen Kpitel, Folie 45

46 .3 Zhlenmengen the I : in/st - - Peno-Aiome vollständige Induktion Teilbkeit von Pimzhlen - Z,Q,R,C -Zhlendstellung duch g-dische Büche -Zhlendstellung im Compute Kpitel, Folie 46

47 .4 Guppen, Ringe, Köpe the I : in/st -(G, ) Guppe e, g - -(,, ) Ring e, e. (,) Guppe (belsch) -(,, ) Köpe Ring und (\{e}, ) belsche Guppe Hlbguppen, onoide, onoid- und Guppenhomomophismen, Unteguppen, Fktoguppen, Homomophiestz ü Guppen Kpitel, Folie 47

Analysis I/II - Vorlesungs-Script

Analysis I/II - Vorlesungs-Script Anlysis I/II - Vorlesungs-Script Prof. Michel Struwe 05/06 Mitschrift: Eveline Hrdmeier Grphics: Prisc Greminger Mthis Weylnd Corrections: Prisc Greminger $Id: nlysis.tex 1237/1502 2006-10-19 21:13:30

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse Mthemtik für Volkswirte Mthemticl Methods for Economists Josef Leydold Institute for Sttistics nd Mthemtics WU Wien Wintersemester 05/6 009 05 Josef Leydold This work is licensed under the Cretive Commons

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog.

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. Anlysis I Ein Aufschrieb der Vorlesung Anlysis I n der Uni Krlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. GeTEXt von Andres Klöckner (k@ixion.net). Für Kommentre und Berichtigungen

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06 Inhltsverzeichnis Modul Produktion + Steuerungstechnik Grundlgen Zusmmenfssung Wintersemester 05/06 Inhltsverzeichnis... 2 1. Einleitung... 3 1.1 Einordnung... 3 1.2.1 Steuern... 3 1.2.2 Regeln... 3 1.2.3

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1 igitltechnik 3 Sequenzielle Schltungen A Revision 1.1 Trnsitionssysteme Synchroner sequenzieller Entwurf Timing-Anlyse Pipelining Mely und Moore Mschinen Zustndsmschinen in Verilog Sequentielle Schltungen

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007 Endliche Automten Prof. Dr. W. Vogler Sommersemester 2007 1 INHALTSVERZEICHNIS i Inhltsverzeichnis 1 Wörter und Monoide 1 2 Endliche Automten 4 3 Anwendung: Diophntische Gleichungen 9 4 Minimierung endlicher

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Einführung: Sequence Alignment

Einführung: Sequence Alignment lgorthmsche nendungen - Prktkum WS 7/8 ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 - Hener Klocke Fchhochschule Köln Informtk Prktkum: ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 9 ufge Kptel ynmsche

Mehr

4. Chemische Bindung

4. Chemische Bindung 4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

04.12.15. 2. Rahmen und Bogen

04.12.15. 2. Rahmen und Bogen Gekrümmte Blken werden ls Bogen bezeichnet. Rhmen sind Trgwerke, die us strr verbundenen gerden Blken oder Bogen zusmmengesetzt sind. Die Schnittlsten können wie bei gerden Blken us Gleichgewichtsbetrchtungen

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann Jhrgg, Het, Otober, ISSN 99-88 IAL Übuge t Lösuge zur Mthet ür Wrtschtsort Ulrch Ho Techcl Reports d Worg Ppers Leuph Uverstät Lüeburg Hrsg der Schrtrehe INAL: Ulrch Ho Schrhorststrße, D-5 Lüeburg Übuge

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Prozeßalgebren. Prof. Dr. Ursula Goltz

Prozeßalgebren. Prof. Dr. Ursula Goltz Prozeßlgebren Prof Dr Ursul Goltz Stnd: 24 Oktober 2012 Vorwort Ds vorliegende Skript ist die Ausrbeitung einer Vorlesung, die wesentliche Grundbegriffe us dem weiten Feld der Prozeßlgebren einführt Dbei

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr