Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Größe: px
Ab Seite anzeigen:

Download "Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79"

Transkript

1 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

2 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: Multiplikator B: * Produkt: Grundlagen der Rechnerarchitektur Logik und Arithmetik 80

3 Maximale Länge des Ergebnisses Beobachtung: Multiplikand der Länge n Bits und Multiplikator der Länge m Bits ergibt Produkt einer Länge mit maximal n+m Bits. Grundlagen der Rechnerarchitektur Logik und Arithmetik 81

4 Das Verfahren als Algorithmus 1 Addiere Multiplikand zum Produkt Beispiel für 4 Bit Zahlen Start Teste erstes Multiplikator Bit Shifte Multiplikand ein Bit nach Links Shifte Multiplikator ein Bit nach Rechts 5ter Durchlauf? ja Ende nein 0 Beispiel 1001*0101: * Grundlagen der Rechnerarchitektur Logik und Arithmetik 82

5 Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt + Multiplikand, wenn Bit 0 des Multiplikators = 1 Control Test 4. Anzahl Durchläufe = 5 Ende Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 83

6 Vorzeichenbehaftete Multiplikation Betrachte Multiplikand x und Multiplikator y. Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne z = x * y. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Möglichkeit 2: Tausche im Verfahren der vorigen Folie das Produktregister mit einem vorzeichenbehafteten Rechts Shift Register aus. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 84

7 Weitere Beschleunigungen Eine ALU für jede Summation x 3 *y x 2 *y 4 Bit ALU c s 3 s 2 s 1 s 0 x 1 *y 4 Bit ALU c s 3 s 2 s 1 s 0 x 0 *y 3 y 2 y 1 4 Bit ALU c s 3 s 2 s 1 s 0 x 0 *y 0 Beobachtung: (Y) * (X) = = = (Z) z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 85

8 Weitere Beschleunigungen Parallele Organisation der ALUs in einen Binärbaum (keine weiteren Details hier) Jede ALU Operation verbrauche einen Taktzyklus. Wie viele Taktzyklen dauert die Multiplikation von 32 Bit Zahlen? Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 86

9 Division Grundlagen der Rechnerarchitektur Logik und Arithmetik 87

10 Division nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a : b? Beispiel: Dividend Divisor Quotient : = Rest: Grundlagen der Rechnerarchitektur Logik und Arithmetik 88

11 Shifte Quotient nach Links und setze dessen LSB=1. Beispiel für 4 Bit Zahlen Das Verfahren als Algorithmus 0 Start Subtrahiere Divisor vom Rest Teste Rest Shifte Divisor ein Bit nach Rechts 6ter Durchlauf? ja Ende <0 Restauriere den alten Rest. Shifte Quotient nach Links und setze dessen LSB=0. nein Beispiel 1001 : 10: Dvdt :Dvsr= Qtnt : 10 = Rest Grundlagen der Rechnerarchitektur Logik und Arithmetik 89

12 Das Verfahren in Hardware Rechts Shift 8 Bit Divisor Demonstration mit 1001 : 0010 = 100 Rest 1 3. Rechts Shift Links Shift 4 Bit Quotient 8 Bit ALU 2. Links Shift; LSB=Rest wurde verändert 1. Rest=Rest Divisor, wenn Divisor < Rest 4. Anzahl Durchläufe = 6 Ende 8 Bit Rest Control Test Beispiel für 4 Bit Zahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 90

13 Vorzeichenbehaftete Division Umgang mit dem Quotienten (analog wie für Multiplikation): Betrachte Divisor x und Dividend y (also: Quotient z von y:x). Sei x = x wenn x nicht negativ bzw. x = x sonst. Sei y = y wenn y nicht negativ bzw. y = y sonst. Berechne Quotient z von y : x. Ergebnis z = z wenn x und y nicht negativ oder x und y negativ, ansonsten ist z = z. Und was ist das Vorzeichen des Rests? Beispiel: Dividend : Divisor Quotient Rest Quotient * Divisor + Rest = Dividend 7 : * = 7-7 : * 2 1 = -7 7 : * = 7-7 : * -2 1 = -7 Also: Vorzeichen des Rests ist Vorzeichen des Dividend. Grundlagen der Rechnerarchitektur Logik und Arithmetik 91

14 Gleitkommazahlen Grundlagen der Rechnerarchitektur Logik und Arithmetik 92

15 Reelle Gleitkommazahlen Beispiel Kleine Zahl Große Zahl Wissenschaftliche Darstellung (eine Ziffer links des Kommas) Normalisierte Darstellung (keine führende Null) Grundlagen der Rechnerarchitektur Logik und Arithmetik 93

16 Binäre Gleitkommazahlen Was ist der Dezimalwert der binären Gleitkommazahl 101,1001? Was bedeutet 11,011 * 2 2? Also: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach rechts. Analog: mit 2 i multiplizieren verschiebt das Komma um i Stellen nach links. Grundlagen der Rechnerarchitektur Logik und Arithmetik 94

17 Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 95

18 Nebenbemerkung Betrachte die recht harmlose Dezimalzahl 0,8. Für die folgende unendliche Reihe rechnet man leicht nach: ( ) + ( ) + ( ) + ( ) +... = 4/5 = 0.8 Folglich ist die Binärdarstellung von 0.8 unendlich lang, nämlich: 0, Annahme wir speichern nur die ersten 32 Bits. Rechnet man in den Dezimalwert x zurück, dann ergibt sich: x = ( ) + ( ) + ( ) ( ) = / = 0, ,8 Oha, 0,8 ist scheinbar doch nicht so harmlos. Es gibt folglich Zahlen mit endlicher dezimaler Gleitkommadarstellung, die binär nicht mit endlicher Anzahl Bits darstellbar sind. Grundlagen der Rechnerarchitektur Logik und Arithmetik 96

19 N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für ) s exponent fraction 1 Bit 8 Bits 23 Bits Tradeoff: Viele Fraction Bits: hohe Genauigkeit der Fraction Viele Exponent Bits: großer darstellbarer Zahlenbereich Grundlagen der Rechnerarchitektur Logik und Arithmetik 97

20 Beispiel s exponent fraction 1 Bit 8 Bits 23 Bits Was ist der Dezimalwert x des folgenden Bit Strings? Grundlagen der Rechnerarchitektur Logik und Arithmetik 98

21 Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * Größte darstellbare Zahl annähernd 2,0 * Was, wenn die darzustellende Zahl außerhalb dieses Bereichs ist? Overflow: Zahl zu groß (Exponent ist zu groß um im Exponent Feld darstellbar zu sein) Underflow: Zahl zu klein (Negativer Exponent ist zu groß um im Exponent Feld darstellbar zu sein) Grundlagen der Rechnerarchitektur Logik und Arithmetik 99

22 Beispiel: Single Precision Double Precision Double und Single Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Double Precision hat höhere Genauigkeit der Fraction und mit größerem Exponent auch einen größeren darstellbaren Zahlenbereich. Double Precision in diesem Beispiel: Kleinste darstellbare nicht negative Zahl annähernd 2,0 * Größte darstellbare Zahl annähernd 2,0 * Grundlagen der Rechnerarchitektur Logik und Arithmetik 100

23 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen in dieser Form sind in IEEE 754 spezifiziert. Betrachte die wissenschaftliche, normalisierte Darstellung: [+ oder ] 1,xxxxxxxx * 2 yyyy Beobachtung: die 1 vor dem Komma ist redundant. Somit: Bei IEEE 754 wird die 1 implizit angenommen und in fraction nicht codiert. fraction speichert nur Nachkommastellen. Grundlagen der Rechnerarchitektur Logik und Arithmetik 101

24 Beispiel s exponent fraction 1 Bit 8 Bits 23 Bits Es sei die 1 vor dem Komma implizit angenommen. Fraction speichere damit nur die Nachkommastellen. Was ist der Dezimalwert x des folgenden Bit Strings? Grundlagen der Rechnerarchitektur Logik und Arithmetik 102

25 Weitere Eigenschaften von IEEE 754 Unterscheidung von Fraction und 1+Fraction in der Darstellung ( 1) S * (1 + Fraction) * 2 Exponent 1+Fraction wird als Significant (deutsch: Mantisse) bezeichnet. Grundlagen der Rechnerarchitektur Logik und Arithmetik 103

26 Motivation für eine geeignete Exponent Darstellung Annahme: Exponent wäre mit Zweierkomplement dargestellt. Wie macht man einen Größer Kleiner Vergleich der folgenden beiden Zahlen? Zahl 1: Zahl 2: Vergleiche erst mal die Vorzeichenbits. Bei unterschiedlichen Vorzeichenbits ist der Vergleich beendet. 2. Vergleiche die Exponenten. Ist einer größer als der andere, ist der Vergleich beendet. (Signed Vergleich) 3. Vergleiche die Fractions. (Unsigned Vergleich) Kann man Schritt 2 und 3 in einem durchführen? Kleinster Exponent müsste und größter Exponent müsste sein, dann könnte man Exponent und Fraction für einen Vergleich einfach konkatenieren. Grundlagen der Rechnerarchitektur Logik und Arithmetik 104

27 Darstellung des Exponenten in Biased Notation Erinnerung: Biased Notation (hier mit 8 Bit und Bias 127): = -127 (0-Bias = -127) = -126 (1-Bias = -126) = -1 (126-Bias = -1) = 0 (127-Bias = 0) = 1 (128-Bias = 1) = 127 (254-Bias = 127) = 128 (255-Bias = 128) Zusammengefasst: Der Wert x einer Zahl in IEEE 754 Darstellung ist (Single Precision (8 Bit Exponent) Bias=127, Double Precision (11 Bit Exponent) Bias=1023) Grundlagen der Rechnerarchitektur Logik und Arithmetik 105

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Kapitel 6 Darstellung von Daten im Rechner. Kapitel 6: Darstellung von Daten im Rechner Seite 1 / 63

Kapitel 6 Darstellung von Daten im Rechner. Kapitel 6: Darstellung von Daten im Rechner Seite 1 / 63 Kapitel 6 Darstellung von Daten im Rechner Kapitel 6: Darstellung von Daten im Rechner Seite / 63 Darstellung von Daten im Rechner Inhaltsverzeichnis 6. Darstellung ganzer Zahlen 6.2 Darstellung reeller

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Datenverarbeitung - Zahlensysteme

Grundlagen der Datenverarbeitung - Zahlensysteme 1. Zahlensysteme 1.1.Dezimalsystem Das Dezimalsystem ist das System, in dem wir gewohnt sind zu zählen und zu rechnen. Zahlen werden durch die Ziffern 0,1,2,...,9 dargestellt. Die Zahl 7243 wird als Siebentausendzweihundertdreiundvierzig

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Kapitel 2. Zahlensysteme

Kapitel 2. Zahlensysteme Kapitel 2 Zahlensysteme 13.08.12 K.Kraft D:\MCT_Vorlesung\Folien2013\Zahlensysteme_2\Zahlensysteme.odt 2-1 Zahlensysteme Definitionen Ziffern : Zeichen zur Darstellung von Zahlen Zahl : Eine Folge von

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Stichpunktezettel fürs Tutorium

Stichpunktezettel fürs Tutorium Stichpunktezettel fürs Tutorium Moritz und Dorian 11. November 009 1 Kleiner Fermat Behauptung. Seien a, b N relativ prim und b eine Primzahl. Dann ist a b 1 = 1. Beweis. Wir definieren die Funktion f

Mehr

3. Datentypen, Ausdrücke und Operatoren

3. Datentypen, Ausdrücke und Operatoren 3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement 3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Informatik I Übung, Woche 41

Informatik I Übung, Woche 41 Giuseppe Accaputo 8. Oktober, 2015 Plan für heute 1. Fragen & Nachbesprechung Übung 3 2. Zusammenfassung der bisherigen Vorlesungsslides 3. Tipps zur Übung 4 Informatik 1 (D-BAUG) Giuseppe Accaputo 2 Nachbesprechung

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm 5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.

Mehr

Codierung: Zahlen. Stellenwertsysteme BIT I, WS 2016/17. Dezimalsystem

Codierung: Zahlen. Stellenwertsysteme BIT I, WS 2016/17. Dezimalsystem Stellenwertsysteme Dezimalsystem Normalerweise benutzen wir Zahlen in einem Stellenwertsystem der Basis 10. Die Zeichen, die wir zur Verfügung haben sind: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Wie setzt sich

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08

Kapitel 4. Programmierkurs. Datentypen. Arten von Datentypen. Wiederholung Kapitel 4. Birgit Engels, Anna Schulze WS 07/08 Kapitel 4 Programmierkurs Birgit Engels, Anna Schulze Wiederholung Kapitel 4 ZAIK Universität zu Köln WS 07/08 1 / 23 2 Datentypen Arten von Datentypen Bei der Deklaration einer Variablen(=Behälter für

Mehr

Einführung in die Computerorientierte Mathematik

Einführung in die Computerorientierte Mathematik Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 28. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1

Mehr